Final Version of the ACS Controller #367
@ -269,30 +269,56 @@ void AcsController::performControlOperation() {
|
||||
&mekfData, &validMekf);
|
||||
|
||||
double targetQuat[4] = {0, 0, 0, 0}, refSatRate[3] = {0, 0, 0};
|
||||
double quatRef[4] = {0, 0, 0, 0};
|
||||
uint8_t enableAntiStiction = true;
|
||||
switch (submode) {
|
||||
case SUBMODE_IDLE:
|
||||
guidance.sunQuatPtg(&sensorValues, &mekfData, &susDataProcessed, &gpsDataProcessed, now,
|
||||
targetQuat, refSatRate);
|
||||
for ( uint8_t i = 0; i < 4; i++ ) {
|
||||
quatRef[i] = acsParameters.targetModeControllerParameters.quatRef[i];
|
||||
}
|
||||
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction;
|
||||
|
||||
break;
|
||||
case SUBMODE_PTG_TARGET:
|
||||
guidance.targetQuatPtgThreeAxes(&sensorValues, &gpsDataProcessed, &mekfData, now,
|
||||
targetQuat, refSatRate);
|
||||
for ( uint8_t i = 0; i < 4; i++ ) {
|
||||
quatRef[i] = acsParameters.targetModeControllerParameters.quatRef[i];
|
||||
}
|
||||
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction;
|
||||
|
||||
break;
|
||||
case SUBMODE_PTG_TARGET_GS:
|
||||
guidance.targetQuatPtgGs(&sensorValues, &mekfData, &susDataProcessed, &gpsDataProcessed,
|
||||
now, targetQuat, refSatRate);
|
||||
|
||||
for ( uint8_t i = 0; i < 4; i++ ) {
|
||||
quatRef[i] = acsParameters.targetModeControllerParameters.quatRef[i];
|
||||
}
|
||||
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction;
|
||||
break;
|
||||
case SUBMODE_PTG_NADIR:
|
||||
guidance.quatNadirPtgThreeAxes(&sensorValues, &gpsDataProcessed, &mekfData, now, targetQuat,
|
||||
refSatRate);
|
||||
for ( uint8_t i = 0; i < 4; i++ ) {
|
||||
quatRef[i] = acsParameters.nadirModeControllerParameters.quatRef[i];
|
||||
}
|
||||
enableAntiStiction = acsParameters.nadirModeControllerParameters.enableAntiStiction;
|
||||
break;
|
||||
case SUBMODE_PTG_INERTIAL:
|
||||
guidance.inertialQuatPtg(targetQuat, refSatRate);
|
||||
|
||||
for ( uint8_t i = 0; i < 4; i++ ) {
|
||||
quatRef[i] = acsParameters.inertialModeControllerParameters.quatRef[i];
|
||||
}
|
||||
enableAntiStiction = acsParameters.inertialModeControllerParameters.enableAntiStiction;
|
||||
break;
|
||||
}
|
||||
double quatErrorComplete[4] = {0, 0, 0, 0}, quatError[3] = {0, 0, 0},
|
||||
deltaRate[3] = {0, 0, 0}; // ToDo: check if pointer needed
|
||||
guidance.comparePtg(targetQuat, &mekfData, refSatRate, quatErrorComplete, quatError, deltaRate);
|
||||
guidance.comparePtg(targetQuat, &mekfData, quatRef, refSatRate, quatErrorComplete, quatError, deltaRate);
|
||||
double rwPseudoInv[4][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
guidance.getDistributionMatrixRw(&sensorValues, *rwPseudoInv);
|
||||
double torquePtgRws[4] = {0, 0, 0, 0}, mode = 0;
|
||||
@ -305,7 +331,7 @@ void AcsController::performControlOperation() {
|
||||
VectorOperations<double>::add(torquePtgRws, rwTrqNs, torqueRws, 4);
|
||||
actuatorCmd.scalingTorqueRws(torqueRws, torqueRwsScaled);
|
||||
|
||||
if (acsParameters.pointingModeControllerParameters.enableAntiStiction) {
|
||||
if ( enableAntiStiction ) {
|
||||
bool rwAvailable[4] = {true, true, true, true}; // WHICH INPUT SENSOR SET?
|
||||
int32_t rwSpeed[4] = {
|
||||
(sensorValues.rw1Set.currSpeed.value), (sensorValues.rw2Set.currSpeed.value),
|
||||
|
@ -372,21 +372,6 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
|
||||
case 0xE:
|
||||
parameterWrapper->set(targetModeControllerParameters.desatOn);
|
||||
break;
|
||||
case 0xF:
|
||||
parameterWrapper->set(targetModeControllerParameters.omegaEarth);
|
||||
break;
|
||||
case 0x10:
|
||||
parameterWrapper->set(targetModeControllerParameters.nadirRefDirection);
|
||||
break;
|
||||
case 0x11:
|
||||
parameterWrapper->set(targetModeControllerParameters.tgtQuatInertial);
|
||||
break;
|
||||
case 0x12:
|
||||
parameterWrapper->set(targetModeControllerParameters.tgtRotRateInertial);
|
||||
break;
|
||||
case 0x13:
|
||||
parameterWrapper->set(targetModeControllerParameters.nadirTimeElapsedMax);
|
||||
break;
|
||||
default:
|
||||
return INVALID_IDENTIFIER_ID;
|
||||
}
|
||||
|
@ -815,15 +815,7 @@ class AcsParameters : public HasParametersIF {
|
||||
|
||||
} safeModeControllerParameters;
|
||||
|
||||
// ToDo: mutiple structs for different pointing mode controllers?
|
||||
struct PointingModeControllerParameters {
|
||||
double refDirection[3] = {-1, 0, 0}; // Antenna
|
||||
double refRotRate[3] = {0, 0, 0};
|
||||
double quatRef[4] = {0, 0, 0, 1};
|
||||
uint8_t avoidBlindStr = true;
|
||||
double blindAvoidStart = 1.5;
|
||||
double blindAvoidStop = 2.5;
|
||||
double blindRotRate = 1 * M_PI / 180;
|
||||
struct PointingLawParameters {
|
||||
|
||||
double zeta = 0.3;
|
||||
double om = 0.3;
|
||||
@ -836,14 +828,38 @@ class AcsParameters : public HasParametersIF {
|
||||
uint8_t desatOn = true;
|
||||
uint8_t enableAntiStiction = true;
|
||||
|
||||
double omegaEarth = 0.000072921158553;
|
||||
} pointingLawParameters;
|
||||
|
||||
double nadirRefDirection[3] = {-1, 0, 0}; // Camera
|
||||
double tgtQuatInertial[4] = {0, 0, 0, 1};
|
||||
double tgtRotRateInertial[3] = {0, 0, 0};
|
||||
int8_t nadirTimeElapsedMax = 10;
|
||||
} pointingModeControllerParameters, inertialModeControllerParameters,
|
||||
nadirModeControllerParameters, targetModeControllerParameters;
|
||||
struct TargetModeControllerParameters : PointingLawParameters {
|
||||
double refDirection[3] = {-1, 0, 0}; // Antenna
|
||||
double refRotRate[3] = {0, 0, 0}; // Not used atm, do we want an option to
|
||||
// give this as an input- currently en calculation is done
|
||||
double quatRef[4] = {0, 0, 0, 1};
|
||||
int8_t timeElapsedMax = 10; // rot rate calculations
|
||||
|
||||
// Default is Stuttgart GS
|
||||
double latitudeTgt = 48.7495 * M_PI / 180.; // [rad] Latitude
|
||||
double longitudeTgt = 9.10384 * M_PI / 180.; // [rad] Longitude
|
||||
double altitudeTgt = 500; // [m]
|
||||
|
||||
// For one-axis control:
|
||||
uint8_t avoidBlindStr = true;
|
||||
double blindAvoidStart = 1.5;
|
||||
double blindAvoidStop = 2.5;
|
||||
double blindRotRate = 1 * M_PI / 180;
|
||||
} targetModeControllerParameters;
|
||||
|
||||
struct NadirModeControllerParameters : PointingLawParameters {
|
||||
double refDirection[3] = {-1, 0, 0}; // Antenna
|
||||
double quatRef[4] = {0, 0, 0, 1};
|
||||
int8_t timeElapsedMax = 10; // rot rate calculations
|
||||
} nadirModeControllerParameters;
|
||||
|
||||
struct InertialModeControllerParameters : PointingLawParameters {
|
||||
double tgtQuat[4] = {0, 0, 0, 1};
|
||||
double refRotRate[3] = {0, 0, 0};
|
||||
double quatRef[4] = {0, 0, 0, 1};
|
||||
} inertialModeControllerParameters;
|
||||
|
||||
struct StrParameters {
|
||||
double exclusionAngle = 20 * M_PI / 180;
|
||||
|
@ -42,8 +42,8 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
|
||||
double targetCart[3] = {0, 0, 0};
|
||||
|
||||
MathOperations<double>::cartesianFromLatLongAlt(
|
||||
acsParameters.ptgTargetParameters.latitudeTgt, acsParameters.ptgTargetParameters.longitudeTgt,
|
||||
acsParameters.ptgTargetParameters.altitudeTgt, targetCart);
|
||||
acsParameters.targetModeControllerParameters.latitudeTgt, acsParameters.targetModeControllerParameters.longitudeTgt,
|
||||
acsParameters.targetModeControllerParameters.altitudeTgt, targetCart);
|
||||
|
||||
// Position of the satellite in the earth/fixed frame via GPS
|
||||
double posSatE[3] = {0, 0, 0};
|
||||
@ -172,17 +172,17 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
|
||||
}
|
||||
}
|
||||
|
||||
void Guidance::refRotationRate(timeval now, double quatInertialTarget[4], double *refSatRate) {
|
||||
void Guidance::refRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4], double *refSatRate) {
|
||||
//-------------------------------------------------------------------------------------
|
||||
// Calculation of reference rotation rate
|
||||
//-------------------------------------------------------------------------------------
|
||||
double timeElapsed =
|
||||
now.tv_sec + now.tv_usec * pow(10, -6) -
|
||||
(timeSavedQuaternionNadir.tv_sec +
|
||||
timeSavedQuaternionNadir.tv_usec * pow((double)timeSavedQuaternionNadir.tv_usec, -6));
|
||||
if (timeElapsed < acsParameters.pointingModeControllerParameters.nadirTimeElapsedMax) {
|
||||
(timeSavedQuaternion.tv_sec +
|
||||
timeSavedQuaternion.tv_usec * pow((double)timeSavedQuaternion.tv_usec, -6));
|
||||
if (timeElapsed < timeElapsedMax) {
|
||||
double qDiff[4] = {0, 0, 0, 0};
|
||||
VectorOperations<double>::subtract(quatInertialTarget, savedQuaternionNadir, qDiff, 4);
|
||||
VectorOperations<double>::subtract(quatInertialTarget, savedQuaternion, qDiff, 4);
|
||||
VectorOperations<double>::mulScalar(qDiff, 1 / timeElapsed, qDiff, 4);
|
||||
|
||||
double tgtQuatVec[3] = {quatInertialTarget[0], quatInertialTarget[1], quatInertialTarget[2]},
|
||||
@ -197,21 +197,21 @@ void Guidance::refRotationRate(timeval now, double quatInertialTarget[4], double
|
||||
VectorOperations<double>::mulScalar(sum, -2, omegaRefNew, 3);
|
||||
|
||||
VectorOperations<double>::mulScalar(omegaRefNew, 2, refSatRate, 3);
|
||||
VectorOperations<double>::subtract(refSatRate, omegaRefSavedNadir, refSatRate, 3);
|
||||
omegaRefSavedNadir[0] = omegaRefNew[0];
|
||||
omegaRefSavedNadir[1] = omegaRefNew[1];
|
||||
omegaRefSavedNadir[2] = omegaRefNew[2];
|
||||
VectorOperations<double>::subtract(refSatRate, omegaRefSaved, refSatRate, 3);
|
||||
omegaRefSaved[0] = omegaRefNew[0];
|
||||
omegaRefSaved[1] = omegaRefNew[1];
|
||||
omegaRefSaved[2] = omegaRefNew[2];
|
||||
} else {
|
||||
refSatRate[0] = 0;
|
||||
refSatRate[1] = 0;
|
||||
refSatRate[2] = 0;
|
||||
}
|
||||
|
||||
timeSavedQuaternionNadir = now;
|
||||
savedQuaternionNadir[0] = quatInertialTarget[0];
|
||||
savedQuaternionNadir[1] = quatInertialTarget[1];
|
||||
savedQuaternionNadir[2] = quatInertialTarget[2];
|
||||
savedQuaternionNadir[3] = quatInertialTarget[3];
|
||||
timeSavedQuaternion = now;
|
||||
savedQuaternion[0] = quatInertialTarget[0];
|
||||
savedQuaternion[1] = quatInertialTarget[1];
|
||||
savedQuaternion[2] = quatInertialTarget[2];
|
||||
savedQuaternion[3] = quatInertialTarget[3];
|
||||
}
|
||||
|
||||
void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
|
||||
@ -226,8 +226,8 @@ void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
|
||||
double targetCart[3] = {0, 0, 0};
|
||||
|
||||
MathOperations<double>::cartesianFromLatLongAlt(
|
||||
acsParameters.ptgTargetParameters.latitudeTgt, acsParameters.ptgTargetParameters.longitudeTgt,
|
||||
acsParameters.ptgTargetParameters.altitudeTgt, targetCart);
|
||||
acsParameters.targetModeControllerParameters.latitudeTgt, acsParameters.targetModeControllerParameters.longitudeTgt,
|
||||
acsParameters.targetModeControllerParameters.altitudeTgt, targetCart);
|
||||
// Position of the satellite in the earth/fixed frame via GPS
|
||||
double posSatE[3] = {0, 0, 0};
|
||||
double geodeticLatRad = (sensorValues->gpsSet.latitude.value) * PI / 180;
|
||||
@ -286,7 +286,8 @@ void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
|
||||
double quatInertialTarget[4] = {0, 0, 0, 0};
|
||||
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
|
||||
|
||||
refRotationRate(now, quatInertialTarget, refSatRate);
|
||||
int8_t timeElapsedMax = acsParameters.targetModeControllerParameters.timeElapsedMax;
|
||||
refRotationRate(timeElapsedMax, now, quatInertialTarget, refSatRate);
|
||||
|
||||
// Transform in system relative to satellite frame
|
||||
double quatBJ[4] = {0, 0, 0, 0};
|
||||
@ -306,8 +307,8 @@ void Guidance::targetQuatPtgGs(ACS::SensorValues *sensorValues, acsctrl::MekfDat
|
||||
double groundStationCart[3] = {0, 0, 0};
|
||||
|
||||
MathOperations<double>::cartesianFromLatLongAlt(
|
||||
acsParameters.ptgTargetParameters.latitudeTgt, acsParameters.ptgTargetParameters.longitudeTgt,
|
||||
acsParameters.ptgTargetParameters.altitudeTgt, groundStationCart);
|
||||
acsParameters.targetModeControllerParameters.latitudeTgt, acsParameters.targetModeControllerParameters.longitudeTgt,
|
||||
acsParameters.targetModeControllerParameters.altitudeTgt, groundStationCart);
|
||||
// Position of the satellite in the earth/fixed frame via GPS
|
||||
double posSatE[3] = {0, 0, 0};
|
||||
double geodeticLatRad = (sensorValues->gpsSet.latitude.value) * PI / 180;
|
||||
@ -363,7 +364,8 @@ void Guidance::targetQuatPtgGs(ACS::SensorValues *sensorValues, acsctrl::MekfDat
|
||||
double quatInertialTarget[4] = {0, 0, 0, 0};
|
||||
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
|
||||
|
||||
refRotationRate(now, quatInertialTarget, refSatRate);
|
||||
int8_t timeElapsedMax = acsParameters.targetModeControllerParameters.timeElapsedMax;
|
||||
refRotationRate(timeElapsedMax, now, quatInertialTarget, refSatRate);
|
||||
|
||||
// Transform in system relative to satellite frame
|
||||
double quatBJ[4] = {0, 0, 0, 0};
|
||||
@ -495,9 +497,9 @@ void Guidance::quatNadirPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl::
|
||||
|
||||
// rotation quaternion from two vectors
|
||||
double refDir[3] = {0, 0, 0};
|
||||
refDir[0] = acsParameters.targetModeControllerParameters.nadirRefDirection[0];
|
||||
refDir[1] = acsParameters.targetModeControllerParameters.nadirRefDirection[1];
|
||||
refDir[2] = acsParameters.targetModeControllerParameters.nadirRefDirection[2];
|
||||
refDir[0] = acsParameters.nadirModeControllerParameters.refDirection[0];
|
||||
refDir[1] = acsParameters.nadirModeControllerParameters.refDirection[1];
|
||||
refDir[2] = acsParameters.nadirModeControllerParameters.refDirection[2];
|
||||
double noramlizedTargetDirB[3] = {0, 0, 0};
|
||||
VectorOperations<double>::normalize(targetDirB, noramlizedTargetDirB, 3);
|
||||
VectorOperations<double>::normalize(refDir, refDir, 3);
|
||||
@ -576,7 +578,8 @@ void Guidance::quatNadirPtgThreeAxes(ACS::SensorValues *sensorValues,
|
||||
double quatInertialTarget[4] = {0, 0, 0, 0};
|
||||
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
|
||||
|
||||
refRotationRate(now, quatInertialTarget, refSatRate);
|
||||
int8_t timeElapsedMax = acsParameters.nadirModeControllerParameters.timeElapsedMax;
|
||||
refRotationRate(timeElapsedMax, now, quatInertialTarget, refSatRate);
|
||||
|
||||
// Transform in system relative to satellite frame
|
||||
double quatBJ[4] = {0, 0, 0, 0};
|
||||
@ -586,20 +589,15 @@ void Guidance::quatNadirPtgThreeAxes(ACS::SensorValues *sensorValues,
|
||||
|
||||
void Guidance::inertialQuatPtg(double targetQuat[4], double refSatRate[3]) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
targetQuat[i] = acsParameters.inertialModeControllerParameters.tgtQuatInertial[i];
|
||||
targetQuat[i] = acsParameters.inertialModeControllerParameters.tgtQuat[i];
|
||||
}
|
||||
for (int i = 0; i < 3; i++) {
|
||||
refSatRate[i] = acsParameters.inertialModeControllerParameters.tgtRotRateInertial[i];
|
||||
refSatRate[i] = acsParameters.inertialModeControllerParameters.refRotRate[i];
|
||||
}
|
||||
}
|
||||
|
||||
void Guidance::comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double refSatRate[3],
|
||||
void Guidance::comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double quatRef[4], double refSatRate[3],
|
||||
double quatErrorComplete[4], double quatError[3], double deltaRate[3]) {
|
||||
double quatRef[4] = {0, 0, 0, 0};
|
||||
quatRef[0] = acsParameters.targetModeControllerParameters.quatRef[0];
|
||||
quatRef[1] = acsParameters.targetModeControllerParameters.quatRef[1];
|
||||
quatRef[2] = acsParameters.targetModeControllerParameters.quatRef[2];
|
||||
quatRef[3] = acsParameters.targetModeControllerParameters.quatRef[3];
|
||||
|
||||
double satRate[3] = {0, 0, 0};
|
||||
std::memcpy(satRate, mekfData->satRotRateMekf.value, 3 * sizeof(double));
|
||||
|
@ -58,10 +58,10 @@ class Guidance {
|
||||
|
||||
// @note: compares target Quaternion and reference quaternion, also actual satellite rate and
|
||||
// desired
|
||||
void comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double refSatRate[3],
|
||||
void comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double quatRef[4], double refSatRate[3],
|
||||
double quatErrorComplete[4], double quatError[3], double deltaRate[3]);
|
||||
|
||||
void refRotationRate(timeval now, double quatInertialTarget[4], double *refSatRate);
|
||||
void refRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4], double *refSatRate);
|
||||
|
||||
// @note: will give back the pseudoinverse matrix for the reaction wheel depending on the valid
|
||||
// reation wheel maybe can be done in "commanding.h"
|
||||
@ -70,9 +70,9 @@ class Guidance {
|
||||
private:
|
||||
AcsParameters acsParameters;
|
||||
bool strBlindAvoidFlag = false;
|
||||
timeval timeSavedQuaternionNadir;
|
||||
double savedQuaternionNadir[4] = {0, 0, 0, 0};
|
||||
double omegaRefSavedNadir[3] = {0, 0, 0};
|
||||
timeval timeSavedQuaternion;
|
||||
double savedQuaternion[4] = {0, 0, 0, 0};
|
||||
double omegaRefSaved[3] = {0, 0, 0};
|
||||
};
|
||||
|
||||
#endif /* ACS_GUIDANCE_H_ */
|
||||
|
@ -21,7 +21,8 @@ PtgCtrl::PtgCtrl(AcsParameters *acsParameters_) { loadAcsParameters(acsParameter
|
||||
PtgCtrl::~PtgCtrl() {}
|
||||
|
||||
void PtgCtrl::loadAcsParameters(AcsParameters *acsParameters_) {
|
||||
pointingModeControllerParameters = &(acsParameters_->targetModeControllerParameters);
|
||||
// TODO: Here correct Parameters have to be loaded according to current submode
|
||||
pointingLawParameters = &(acsParameters_->targetModeControllerParameters);
|
||||
inertiaEIVE = &(acsParameters_->inertiaEIVE);
|
||||
rwHandlingParameters = &(acsParameters_->rwHandlingParameters);
|
||||
rwMatrices = &(acsParameters_->rwMatrices);
|
||||
@ -32,10 +33,10 @@ void PtgCtrl::ptgLaw(const double mode, const double *qError, const double *delt
|
||||
//------------------------------------------------------------------------------------------------
|
||||
// Compute gain matrix K and P matrix
|
||||
//------------------------------------------------------------------------------------------------
|
||||
double om = pointingModeControllerParameters->om;
|
||||
double zeta = pointingModeControllerParameters->zeta;
|
||||
double qErrorMin = pointingModeControllerParameters->qiMin;
|
||||
double omMax = pointingModeControllerParameters->omMax;
|
||||
double om = pointingLawParameters->om;
|
||||
double zeta = pointingLawParameters->zeta;
|
||||
double qErrorMin = pointingLawParameters->qiMin;
|
||||
double omMax = pointingLawParameters->omMax;
|
||||
|
||||
double cInt = 2 * om * zeta;
|
||||
double kInt = 2 * pow(om, 2);
|
||||
@ -110,7 +111,7 @@ void PtgCtrl::ptgLaw(const double mode, const double *qError, const double *delt
|
||||
void PtgCtrl::ptgDesaturation(double *magFieldEst, bool magFieldEstValid, double *satRate,
|
||||
int32_t *speedRw0, int32_t *speedRw1, int32_t *speedRw2,
|
||||
int32_t *speedRw3, double *mgtDpDes) {
|
||||
if (!(magFieldEstValid) || !(pointingModeControllerParameters->desatOn)) {
|
||||
if (!(magFieldEstValid) || !(pointingLawParameters->desatOn)) {
|
||||
mgtDpDes[0] = 0;
|
||||
mgtDpDes[1] = 0;
|
||||
mgtDpDes[2] = 0;
|
||||
@ -129,12 +130,12 @@ void PtgCtrl::ptgDesaturation(double *magFieldEst, bool magFieldEstValid, double
|
||||
// calculating momentum error
|
||||
double deltaMomentum[3] = {0, 0, 0};
|
||||
VectorOperations<double>::subtract(
|
||||
momentumTotal, pointingModeControllerParameters->desatMomentumRef, deltaMomentum, 3);
|
||||
momentumTotal, pointingLawParameters->desatMomentumRef, deltaMomentum, 3);
|
||||
// resulting magnetic dipole command
|
||||
double crossMomentumMagField[3] = {0, 0, 0};
|
||||
VectorOperations<double>::cross(deltaMomentum, magFieldEst, crossMomentumMagField);
|
||||
double normMag = VectorOperations<double>::norm(magFieldEst, 3), factor = 0;
|
||||
factor = (pointingModeControllerParameters->deSatGainFactor) / normMag;
|
||||
factor = (pointingLawParameters->deSatGainFactor) / normMag;
|
||||
VectorOperations<double>::mulScalar(crossMomentumMagField, factor, mgtDpDes, 3);
|
||||
}
|
||||
|
||||
@ -150,7 +151,7 @@ void PtgCtrl::ptgNullspace(const int32_t *speedRw0, const int32_t *speedRw1,
|
||||
VectorOperations<double>::subtract(speedRws, rpmOffset, diffRwSpeed, 4);
|
||||
VectorOperations<double>::mulScalar(diffRwSpeed, rwHandlingParameters->inertiaWheel,
|
||||
wheelMomentum, 4);
|
||||
double gainNs = pointingModeControllerParameters->gainNullspace;
|
||||
double gainNs = pointingLawParameters->gainNullspace;
|
||||
double nullSpaceMatrix[4][4] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
MathOperations<double>::vecTransposeVecMatrix(rwMatrices->nullspace, rwMatrices->nullspace,
|
||||
*nullSpaceMatrix, 4);
|
||||
|
@ -59,7 +59,7 @@ class PtgCtrl {
|
||||
void rwAntistiction(const bool *rwAvailable, const int32_t *omegaRw, double *torqueCommand);
|
||||
|
||||
private:
|
||||
AcsParameters::PointingModeControllerParameters *pointingModeControllerParameters;
|
||||
AcsParameters::PointingLawParameters *pointingLawParameters;
|
||||
AcsParameters::RwHandlingParameters *rwHandlingParameters;
|
||||
AcsParameters::InertiaEIVE *inertiaEIVE;
|
||||
AcsParameters::RwMatrices *rwMatrices;
|
||||
|
Loading…
Reference in New Issue
Block a user