656 lines
34 KiB
C++
656 lines
34 KiB
C++
/*
|
|
* SensorProcessing.cpp
|
|
*
|
|
* Created on: 7 Mar 2022
|
|
* Author: Robin Marquardt
|
|
*/
|
|
|
|
#include "SensorProcessing.h"
|
|
|
|
#include <fsfw/datapool/PoolReadGuard.h>
|
|
#include <fsfw/globalfunctions/constants.h>
|
|
#include <fsfw/globalfunctions/math/MatrixOperations.h>
|
|
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
|
|
#include <fsfw/globalfunctions/math/VectorOperations.h>
|
|
#include <fsfw/globalfunctions/timevalOperations.h>
|
|
#include <math.h>
|
|
|
|
#include "../controllerdefinitions/AcsCtrlDefinitions.h"
|
|
#include "Igrf13Model.h"
|
|
#include "util/MathOperations.h"
|
|
|
|
using namespace Math;
|
|
|
|
SensorProcessing::SensorProcessing(AcsParameters *acsParameters_) {}
|
|
|
|
SensorProcessing::~SensorProcessing() {}
|
|
|
|
void SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value,
|
|
bool mgm1valid, const float *mgm2Value, bool mgm2valid,
|
|
const float *mgm3Value, bool mgm3valid, const float *mgm4Value,
|
|
bool mgm4valid, timeval timeOfMgmMeasurement,
|
|
const AcsParameters::MgmHandlingParameters *mgmParameters,
|
|
acsctrl::GpsDataProcessed *gpsDataProcessed,
|
|
const double gpsAltitude, bool gpsValid,
|
|
acsctrl::MgmDataProcessed *mgmDataProcessed) {
|
|
// ---------------- IGRF- 13 Implementation here ------------------------------------------------
|
|
double magIgrfModel[3] = {0.0, 0.0, 0.0};
|
|
if (gpsValid) {
|
|
// Should be existing class object which will be called and modified here.
|
|
Igrf13Model igrf13;
|
|
// So the line above should not be done here. Update: Can be done here as long updated coffs
|
|
// stored in acsParameters ?
|
|
igrf13.schmidtNormalization();
|
|
igrf13.updateCoeffGH(timeOfMgmMeasurement);
|
|
// maybe put a condition here, to only update after a full day, this
|
|
// class function has around 700 steps to perform
|
|
igrf13.magFieldComp(gpsDataProcessed->gdLongitude.value, gpsDataProcessed->gcLatitude.value,
|
|
gpsAltitude, timeOfMgmMeasurement, magIgrfModel);
|
|
}
|
|
if (!mgm0valid && !mgm1valid && !mgm2valid && !mgm3valid && !mgm4valid) {
|
|
{
|
|
PoolReadGuard pg(mgmDataProcessed);
|
|
if (pg.getReadResult() == returnvalue::OK) {
|
|
float zeroVec[3] = {0.0, 0.0, 0.0};
|
|
std::memcpy(mgmDataProcessed->mgm0vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(mgmDataProcessed->mgm1vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(mgmDataProcessed->mgm2vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(mgmDataProcessed->mgm3vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(mgmDataProcessed->mgm4vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(mgmDataProcessed->mgmVecTot.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(mgmDataProcessed->mgmVecTotDerivative.value, zeroVec, 3 * sizeof(float));
|
|
mgmDataProcessed->setValidity(false, true);
|
|
std::memcpy(mgmDataProcessed->magIgrfModel.value, magIgrfModel, 3 * sizeof(double));
|
|
mgmDataProcessed->magIgrfModel.setValid(gpsValid);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
float mgm0ValueNoBias[3] = {0, 0, 0}, mgm1ValueNoBias[3] = {0, 0, 0},
|
|
mgm2ValueNoBias[3] = {0, 0, 0}, mgm3ValueNoBias[3] = {0, 0, 0},
|
|
mgm4ValueNoBias[3] = {0, 0, 0};
|
|
float mgm0ValueBody[3] = {0, 0, 0}, mgm1ValueBody[3] = {0, 0, 0}, mgm2ValueBody[3] = {0, 0, 0},
|
|
mgm3ValueBody[3] = {0, 0, 0}, mgm4ValueBody[3] = {0, 0, 0};
|
|
float mgm0ValueCalib[3] = {0, 0, 0}, mgm1ValueCalib[3] = {0, 0, 0}, mgm2ValueCalib[3] = {0, 0, 0},
|
|
mgm3ValueCalib[3] = {0, 0, 0}, mgm4ValueCalib[3] = {0, 0, 0};
|
|
float sensorFusionNumerator[3] = {0, 0, 0}, sensorFusionDenominator[3] = {0, 0, 0};
|
|
|
|
if (mgm0valid) {
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm0orientationMatrix[0], mgm0Value,
|
|
mgm0ValueBody, 3, 3, 1);
|
|
VectorOperations<float>::subtract(mgm0ValueBody, mgmParameters->mgm0hardIronOffset,
|
|
mgm0ValueNoBias, 3);
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm0softIronInverse[0], mgm0ValueNoBias,
|
|
mgm0ValueCalib, 3, 3, 1);
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += mgm0ValueCalib[i] / mgmParameters->mgm02variance[i];
|
|
sensorFusionDenominator[i] += 1 / mgmParameters->mgm02variance[i];
|
|
}
|
|
}
|
|
if (mgm1valid) {
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm1orientationMatrix[0], mgm1Value,
|
|
mgm1ValueBody, 3, 3, 1);
|
|
VectorOperations<float>::subtract(mgm1ValueBody, mgmParameters->mgm1hardIronOffset,
|
|
mgm1ValueNoBias, 3);
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm1softIronInverse[0], mgm1ValueNoBias,
|
|
mgm1ValueCalib, 3, 3, 1);
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += mgm1ValueCalib[i] / mgmParameters->mgm13variance[i];
|
|
sensorFusionDenominator[i] += 1 / mgmParameters->mgm13variance[i];
|
|
}
|
|
}
|
|
if (mgm2valid) {
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm2orientationMatrix[0], mgm2Value,
|
|
mgm2ValueBody, 3, 3, 1);
|
|
VectorOperations<float>::subtract(mgm2ValueBody, mgmParameters->mgm2hardIronOffset,
|
|
mgm2ValueNoBias, 3);
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm2softIronInverse[0], mgm2ValueNoBias,
|
|
mgm2ValueCalib, 3, 3, 1);
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += mgm2ValueCalib[i] / mgmParameters->mgm02variance[i];
|
|
sensorFusionDenominator[i] += 1 / mgmParameters->mgm02variance[i];
|
|
}
|
|
}
|
|
if (mgm3valid) {
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm3orientationMatrix[0], mgm3Value,
|
|
mgm3ValueBody, 3, 3, 1);
|
|
VectorOperations<float>::subtract(mgm3ValueBody, mgmParameters->mgm3hardIronOffset,
|
|
mgm3ValueNoBias, 3);
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm3softIronInverse[0], mgm3ValueNoBias,
|
|
mgm3ValueCalib, 3, 3, 1);
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += mgm3ValueCalib[i] / mgmParameters->mgm13variance[i];
|
|
sensorFusionDenominator[i] += 1 / mgmParameters->mgm13variance[i];
|
|
}
|
|
}
|
|
if (mgm4valid) {
|
|
float mgm4ValueUT[3];
|
|
VectorOperations<float>::mulScalar(mgm4Value, 1e-3, mgm4ValueUT, 3); // nT to uT
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm4orientationMatrix[0], mgm4ValueUT,
|
|
mgm4ValueBody, 3, 3, 1);
|
|
VectorOperations<float>::subtract(mgm4ValueBody, mgmParameters->mgm4hardIronOffset,
|
|
mgm4ValueNoBias, 3);
|
|
MatrixOperations<float>::multiply(mgmParameters->mgm4softIronInverse[0], mgm4ValueNoBias,
|
|
mgm4ValueCalib, 3, 3, 1);
|
|
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += mgm4ValueCalib[i] / mgmParameters->mgm4variance[i];
|
|
sensorFusionDenominator[i] += 1 / mgmParameters->mgm4variance[i];
|
|
}
|
|
}
|
|
double mgmVecTot[3] = {0.0, 0.0, 0.0};
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
mgmVecTot[i] = sensorFusionNumerator[i] / sensorFusionDenominator[i];
|
|
}
|
|
|
|
//-----------------------Mgm Rate Computation ---------------------------------------------------
|
|
double mgmVecTotDerivative[3] = {0.0, 0.0, 0.0};
|
|
bool mgmVecTotDerivativeValid = false;
|
|
double timeDiff = timevalOperations::toDouble(timeOfMgmMeasurement - timeOfSavedMagFieldEst);
|
|
if (timeOfSavedMagFieldEst.tv_sec != 0) {
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
mgmVecTotDerivative[i] = (mgmVecTot[i] - savedMgmVecTot[i]) / timeDiff;
|
|
savedMgmVecTot[i] = mgmVecTot[i];
|
|
mgmVecTotDerivativeValid = true;
|
|
}
|
|
}
|
|
timeOfSavedMagFieldEst = timeOfMgmMeasurement;
|
|
|
|
{
|
|
PoolReadGuard pg(mgmDataProcessed);
|
|
if (pg.getReadResult() == returnvalue::OK) {
|
|
std::memcpy(mgmDataProcessed->mgm0vec.value, mgm0ValueCalib, 3 * sizeof(float));
|
|
mgmDataProcessed->mgm0vec.setValid(mgm0valid);
|
|
std::memcpy(mgmDataProcessed->mgm1vec.value, mgm1ValueCalib, 3 * sizeof(float));
|
|
mgmDataProcessed->mgm1vec.setValid(mgm1valid);
|
|
std::memcpy(mgmDataProcessed->mgm2vec.value, mgm2ValueCalib, 3 * sizeof(float));
|
|
mgmDataProcessed->mgm2vec.setValid(mgm2valid);
|
|
std::memcpy(mgmDataProcessed->mgm3vec.value, mgm3ValueCalib, 3 * sizeof(float));
|
|
mgmDataProcessed->mgm3vec.setValid(mgm3valid);
|
|
std::memcpy(mgmDataProcessed->mgm4vec.value, mgm4ValueCalib, 3 * sizeof(float));
|
|
mgmDataProcessed->mgm4vec.setValid(mgm4valid);
|
|
std::memcpy(mgmDataProcessed->mgmVecTot.value, mgmVecTot, 3 * sizeof(double));
|
|
mgmDataProcessed->mgmVecTot.setValid(true);
|
|
std::memcpy(mgmDataProcessed->mgmVecTotDerivative.value, mgmVecTotDerivative,
|
|
3 * sizeof(double));
|
|
mgmDataProcessed->mgmVecTotDerivative.setValid(mgmVecTotDerivativeValid);
|
|
std::memcpy(mgmDataProcessed->magIgrfModel.value, magIgrfModel, 3 * sizeof(double));
|
|
mgmDataProcessed->magIgrfModel.setValid(gpsValid);
|
|
mgmDataProcessed->setValidity(true, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SensorProcessing::processSus(
|
|
const uint16_t *sus0Value, bool sus0valid, const uint16_t *sus1Value, bool sus1valid,
|
|
const uint16_t *sus2Value, bool sus2valid, const uint16_t *sus3Value, bool sus3valid,
|
|
const uint16_t *sus4Value, bool sus4valid, const uint16_t *sus5Value, bool sus5valid,
|
|
const uint16_t *sus6Value, bool sus6valid, const uint16_t *sus7Value, bool sus7valid,
|
|
const uint16_t *sus8Value, bool sus8valid, const uint16_t *sus9Value, bool sus9valid,
|
|
const uint16_t *sus10Value, bool sus10valid, const uint16_t *sus11Value, bool sus11valid,
|
|
timeval timeOfSusMeasurement, const AcsParameters::SusHandlingParameters *susParameters,
|
|
const AcsParameters::SunModelParameters *sunModelParameters,
|
|
acsctrl::SusDataProcessed *susDataProcessed) {
|
|
/* -------- Sun Model Direction (IJK frame) ------- */
|
|
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfSusMeasurement);
|
|
|
|
// Julean Centuries
|
|
double sunIjkModel[3] = {0.0, 0.0, 0.0};
|
|
double JC2000 = JD2000 / 36525.;
|
|
|
|
double meanLongitude =
|
|
sunModelParameters->omega_0 + (sunModelParameters->domega * JC2000) * PI / 180.;
|
|
double meanAnomaly = (sunModelParameters->m_0 + sunModelParameters->dm * JC2000) * PI / 180.;
|
|
|
|
double eclipticLongitude = meanLongitude + sunModelParameters->p1 * sin(meanAnomaly) +
|
|
sunModelParameters->p2 * sin(2 * meanAnomaly);
|
|
|
|
double epsilon = sunModelParameters->e - (sunModelParameters->e1) * JC2000;
|
|
|
|
sunIjkModel[0] = cos(eclipticLongitude);
|
|
sunIjkModel[1] = sin(eclipticLongitude) * cos(epsilon);
|
|
sunIjkModel[2] = sin(eclipticLongitude) * sin(epsilon);
|
|
if (sus0valid) {
|
|
sus0valid = susConverter.checkSunSensorData(sus0Value);
|
|
}
|
|
if (sus1valid) {
|
|
sus1valid = susConverter.checkSunSensorData(sus1Value);
|
|
}
|
|
if (sus2valid) {
|
|
sus2valid = susConverter.checkSunSensorData(sus2Value);
|
|
}
|
|
if (sus3valid) {
|
|
sus3valid = susConverter.checkSunSensorData(sus3Value);
|
|
}
|
|
if (sus4valid) {
|
|
sus4valid = susConverter.checkSunSensorData(sus4Value);
|
|
}
|
|
if (sus5valid) {
|
|
sus5valid = susConverter.checkSunSensorData(sus5Value);
|
|
}
|
|
if (sus6valid) {
|
|
sus6valid = susConverter.checkSunSensorData(sus6Value);
|
|
}
|
|
if (sus7valid) {
|
|
sus7valid = susConverter.checkSunSensorData(sus7Value);
|
|
}
|
|
if (sus8valid) {
|
|
sus8valid = susConverter.checkSunSensorData(sus8Value);
|
|
}
|
|
if (sus9valid) {
|
|
sus9valid = susConverter.checkSunSensorData(sus9Value);
|
|
}
|
|
if (sus10valid) {
|
|
sus10valid = susConverter.checkSunSensorData(sus10Value);
|
|
}
|
|
if (sus11valid) {
|
|
sus11valid = susConverter.checkSunSensorData(sus11Value);
|
|
}
|
|
|
|
if (!sus0valid && !sus1valid && !sus2valid && !sus3valid && !sus4valid && !sus5valid &&
|
|
!sus6valid && !sus7valid && !sus8valid && !sus9valid && !sus10valid && !sus11valid) {
|
|
{
|
|
PoolReadGuard pg(susDataProcessed);
|
|
if (pg.getReadResult() == returnvalue::OK) {
|
|
float zeroVec[3] = {0.0, 0.0, 0.0};
|
|
std::memcpy(susDataProcessed->sus0vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus1vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus2vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus3vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus4vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus5vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus6vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus7vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus8vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus9vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus10vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->sus11vec.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->susVecTot.value, zeroVec, 3 * sizeof(float));
|
|
std::memcpy(susDataProcessed->susVecTotDerivative.value, zeroVec, 3 * sizeof(float));
|
|
susDataProcessed->setValidity(false, true);
|
|
std::memcpy(susDataProcessed->sunIjkModel.value, sunIjkModel, 3 * sizeof(double));
|
|
susDataProcessed->sunIjkModel.setValid(true);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// WARNING: NOT TRANSFORMED IN BODY FRAME YET
|
|
// Transformation into Geomtry Frame
|
|
float sus0VecBody[3] = {0, 0, 0}, sus1VecBody[3] = {0, 0, 0}, sus2VecBody[3] = {0, 0, 0},
|
|
sus3VecBody[3] = {0, 0, 0}, sus4VecBody[3] = {0, 0, 0}, sus5VecBody[3] = {0, 0, 0},
|
|
sus6VecBody[3] = {0, 0, 0}, sus7VecBody[3] = {0, 0, 0}, sus8VecBody[3] = {0, 0, 0},
|
|
sus9VecBody[3] = {0, 0, 0}, sus10VecBody[3] = {0, 0, 0}, sus11VecBody[3] = {0, 0, 0};
|
|
|
|
if (sus0valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus0orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus0Value, susParameters->sus0coeffAlpha,
|
|
susParameters->sus0coeffBeta),
|
|
sus0VecBody, 3, 3, 1);
|
|
}
|
|
if (sus1valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus1orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus1Value, susParameters->sus1coeffAlpha,
|
|
susParameters->sus1coeffBeta),
|
|
sus1VecBody, 3, 3, 1);
|
|
}
|
|
if (sus2valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus2orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus2Value, susParameters->sus2coeffAlpha,
|
|
susParameters->sus2coeffBeta),
|
|
sus2VecBody, 3, 3, 1);
|
|
}
|
|
if (sus3valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus3orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus3Value, susParameters->sus3coeffAlpha,
|
|
susParameters->sus3coeffBeta),
|
|
sus3VecBody, 3, 3, 1);
|
|
}
|
|
if (sus4valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus4orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus4Value, susParameters->sus4coeffAlpha,
|
|
susParameters->sus4coeffBeta),
|
|
sus4VecBody, 3, 3, 1);
|
|
}
|
|
if (sus5valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus5orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus5Value, susParameters->sus5coeffAlpha,
|
|
susParameters->sus5coeffBeta),
|
|
sus5VecBody, 3, 3, 1);
|
|
}
|
|
if (sus6valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus6orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus6Value, susParameters->sus6coeffAlpha,
|
|
susParameters->sus6coeffBeta),
|
|
sus6VecBody, 3, 3, 1);
|
|
}
|
|
if (sus7valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus7orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus7Value, susParameters->sus7coeffAlpha,
|
|
susParameters->sus7coeffBeta),
|
|
sus7VecBody, 3, 3, 1);
|
|
}
|
|
if (sus8valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus8orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus8Value, susParameters->sus8coeffAlpha,
|
|
susParameters->sus8coeffBeta),
|
|
sus8VecBody, 3, 3, 1);
|
|
}
|
|
if (sus9valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus9orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus9Value, susParameters->sus9coeffAlpha,
|
|
susParameters->sus9coeffBeta),
|
|
sus9VecBody, 3, 3, 1);
|
|
}
|
|
if (sus10valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus10orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus10Value, susParameters->sus10coeffAlpha,
|
|
susParameters->sus10coeffBeta),
|
|
sus10VecBody, 3, 3, 1);
|
|
}
|
|
if (sus11valid) {
|
|
MatrixOperations<float>::multiply(
|
|
susParameters->sus11orientationMatrix[0],
|
|
susConverter.getSunVectorSensorFrame(sus11Value, susParameters->sus11coeffAlpha,
|
|
susParameters->sus11coeffBeta),
|
|
sus11VecBody, 3, 3, 1);
|
|
}
|
|
|
|
/* ------ Mean Value: susDirEst ------ */
|
|
bool validIds[12] = {sus0valid, sus1valid, sus2valid, sus3valid, sus4valid, sus5valid,
|
|
sus6valid, sus7valid, sus8valid, sus9valid, sus10valid, sus11valid};
|
|
float susVecBody[3][12] = {{sus0VecBody[0], sus1VecBody[0], sus2VecBody[0], sus3VecBody[0],
|
|
sus4VecBody[0], sus5VecBody[0], sus6VecBody[0], sus7VecBody[0],
|
|
sus8VecBody[0], sus9VecBody[0], sus10VecBody[0], sus11VecBody[0]},
|
|
{sus0VecBody[1], sus1VecBody[1], sus2VecBody[1], sus3VecBody[1],
|
|
sus4VecBody[1], sus5VecBody[1], sus6VecBody[1], sus7VecBody[1],
|
|
sus8VecBody[1], sus9VecBody[1], sus10VecBody[1], sus11VecBody[1]},
|
|
{sus0VecBody[2], sus1VecBody[2], sus2VecBody[2], sus3VecBody[2],
|
|
sus4VecBody[2], sus5VecBody[2], sus6VecBody[2], sus7VecBody[2],
|
|
sus8VecBody[2], sus9VecBody[2], sus10VecBody[2], sus11VecBody[2]}};
|
|
|
|
double susMeanValue[3] = {0, 0, 0};
|
|
for (uint8_t i = 0; i < 12; i++) {
|
|
if (validIds[i]) {
|
|
susMeanValue[0] += susVecBody[0][i];
|
|
susMeanValue[1] += susVecBody[1][i];
|
|
susMeanValue[2] += susVecBody[2][i];
|
|
}
|
|
}
|
|
double susVecTot[3] = {0.0, 0.0, 0.0};
|
|
VectorOperations<double>::normalize(susMeanValue, susVecTot, 3);
|
|
|
|
/* -------- Sun Derivatiative --------------------- */
|
|
|
|
double susVecTotDerivative[3] = {0.0, 0.0, 0.0};
|
|
bool susVecTotDerivativeValid = false;
|
|
double timeDiff = timevalOperations::toDouble(timeOfSusMeasurement - timeOfSavedSusDirEst);
|
|
if (timeOfSavedSusDirEst.tv_sec != 0) {
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
susVecTotDerivative[i] = (susVecTot[i] - savedSusVecTot[i]) / timeDiff;
|
|
savedSusVecTot[i] = susVecTot[i];
|
|
susVecTotDerivativeValid = true;
|
|
}
|
|
}
|
|
timeOfSavedSusDirEst = timeOfSusMeasurement;
|
|
{
|
|
PoolReadGuard pg(susDataProcessed);
|
|
if (pg.getReadResult() == returnvalue::OK) {
|
|
std::memcpy(susDataProcessed->sus0vec.value, sus0VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus0vec.setValid(sus0valid);
|
|
std::memcpy(susDataProcessed->sus1vec.value, sus1VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus1vec.setValid(sus1valid);
|
|
std::memcpy(susDataProcessed->sus2vec.value, sus2VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus2vec.setValid(sus2valid);
|
|
std::memcpy(susDataProcessed->sus3vec.value, sus3VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus3vec.setValid(sus3valid);
|
|
std::memcpy(susDataProcessed->sus4vec.value, sus4VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus4vec.setValid(sus4valid);
|
|
std::memcpy(susDataProcessed->sus5vec.value, sus5VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus5vec.setValid(sus5valid);
|
|
std::memcpy(susDataProcessed->sus6vec.value, sus6VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus6vec.setValid(sus6valid);
|
|
std::memcpy(susDataProcessed->sus7vec.value, sus7VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus7vec.setValid(sus7valid);
|
|
std::memcpy(susDataProcessed->sus8vec.value, sus8VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus8vec.setValid(sus8valid);
|
|
std::memcpy(susDataProcessed->sus9vec.value, sus9VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus9vec.setValid(sus9valid);
|
|
std::memcpy(susDataProcessed->sus10vec.value, sus10VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus10vec.setValid(sus10valid);
|
|
std::memcpy(susDataProcessed->sus11vec.value, sus11VecBody, 3 * sizeof(float));
|
|
susDataProcessed->sus11vec.setValid(sus11valid);
|
|
std::memcpy(susDataProcessed->susVecTot.value, susVecTot, 3 * sizeof(double));
|
|
susDataProcessed->susVecTot.setValid(true);
|
|
std::memcpy(susDataProcessed->susVecTotDerivative.value, susVecTotDerivative,
|
|
3 * sizeof(double));
|
|
susDataProcessed->susVecTotDerivative.setValid(susVecTotDerivativeValid);
|
|
std::memcpy(susDataProcessed->sunIjkModel.value, sunIjkModel, 3 * sizeof(double));
|
|
susDataProcessed->sunIjkModel.setValid(true);
|
|
susDataProcessed->setValidity(true, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SensorProcessing::processGyr(
|
|
const double gyr0axXvalue, bool gyr0axXvalid, const double gyr0axYvalue, bool gyr0axYvalid,
|
|
const double gyr0axZvalue, bool gyr0axZvalid, const double gyr1axXvalue, bool gyr1axXvalid,
|
|
const double gyr1axYvalue, bool gyr1axYvalid, const double gyr1axZvalue, bool gyr1axZvalid,
|
|
const double gyr2axXvalue, bool gyr2axXvalid, const double gyr2axYvalue, bool gyr2axYvalid,
|
|
const double gyr2axZvalue, bool gyr2axZvalid, const double gyr3axXvalue, bool gyr3axXvalid,
|
|
const double gyr3axYvalue, bool gyr3axYvalid, const double gyr3axZvalue, bool gyr3axZvalid,
|
|
timeval timeOfGyrMeasurement, const AcsParameters::GyrHandlingParameters *gyrParameters,
|
|
acsctrl::GyrDataProcessed *gyrDataProcessed) {
|
|
bool gyr0valid = (gyr0axXvalid && gyr0axYvalid && gyr0axZvalid);
|
|
bool gyr1valid = (gyr1axXvalid && gyr1axYvalid && gyr1axZvalid);
|
|
bool gyr2valid = (gyr2axXvalid && gyr2axYvalid && gyr2axZvalid);
|
|
bool gyr3valid = (gyr3axXvalid && gyr3axYvalid && gyr3axZvalid);
|
|
if (!gyr0valid && !gyr1valid && !gyr2valid && !gyr3valid) {
|
|
{
|
|
PoolReadGuard pg(gyrDataProcessed);
|
|
if (pg.getReadResult() == returnvalue::OK) {
|
|
double zeroVector[3] = {0.0, 0.0, 0.0};
|
|
std::memcpy(gyrDataProcessed->gyr0vec.value, zeroVector, 3 * sizeof(double));
|
|
std::memcpy(gyrDataProcessed->gyr1vec.value, zeroVector, 3 * sizeof(double));
|
|
std::memcpy(gyrDataProcessed->gyr2vec.value, zeroVector, 3 * sizeof(double));
|
|
std::memcpy(gyrDataProcessed->gyr3vec.value, zeroVector, 3 * sizeof(double));
|
|
std::memcpy(gyrDataProcessed->gyrVecTot.value, zeroVector, 3 * sizeof(double));
|
|
gyrDataProcessed->setValidity(false, true);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// Transforming Values to the Body Frame (actually it is the geometry frame atm)
|
|
double gyr0ValueBody[3] = {0, 0, 0}, gyr1ValueBody[3] = {0, 0, 0}, gyr2ValueBody[3] = {0, 0, 0},
|
|
gyr3ValueBody[3] = {0, 0, 0};
|
|
float sensorFusionNumerator[3] = {0, 0, 0}, sensorFusionDenominator[3] = {0, 0, 0};
|
|
|
|
if (gyr0valid) {
|
|
const double gyr0Value[3] = {gyr0axXvalue, gyr0axYvalue, gyr0axZvalue};
|
|
MatrixOperations<double>::multiply(gyrParameters->gyr0orientationMatrix[0], gyr0Value,
|
|
gyr0ValueBody, 3, 3, 1);
|
|
VectorOperations<double>::subtract(gyr0ValueBody, gyrParameters->gyr0bias, gyr0ValueBody, 3);
|
|
VectorOperations<double>::mulScalar(gyr0ValueBody, M_PI / 180, gyr0ValueBody, 3);
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += gyr0ValueBody[i] / gyrParameters->gyr02variance[i];
|
|
sensorFusionDenominator[i] += 1 / gyrParameters->gyr02variance[i];
|
|
}
|
|
}
|
|
if (gyr1valid) {
|
|
const double gyr1Value[3] = {gyr1axXvalue, gyr1axYvalue, gyr1axZvalue};
|
|
MatrixOperations<double>::multiply(gyrParameters->gyr1orientationMatrix[0], gyr1Value,
|
|
gyr1ValueBody, 3, 3, 1);
|
|
VectorOperations<double>::subtract(gyr1ValueBody, gyrParameters->gyr1bias, gyr1ValueBody, 3);
|
|
VectorOperations<double>::mulScalar(gyr1ValueBody, M_PI / 180, gyr1ValueBody, 3);
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += gyr1ValueBody[i] / gyrParameters->gyr13variance[i];
|
|
sensorFusionDenominator[i] += 1 / gyrParameters->gyr13variance[i];
|
|
}
|
|
}
|
|
if (gyr2valid) {
|
|
const double gyr2Value[3] = {gyr2axXvalue, gyr2axYvalue, gyr2axZvalue};
|
|
MatrixOperations<double>::multiply(gyrParameters->gyr2orientationMatrix[0], gyr2Value,
|
|
gyr2ValueBody, 3, 3, 1);
|
|
VectorOperations<double>::subtract(gyr2ValueBody, gyrParameters->gyr2bias, gyr2ValueBody, 3);
|
|
VectorOperations<double>::mulScalar(gyr2ValueBody, M_PI / 180, gyr2ValueBody, 3);
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += gyr2ValueBody[i] / gyrParameters->gyr02variance[i];
|
|
sensorFusionDenominator[i] += 1 / gyrParameters->gyr02variance[i];
|
|
}
|
|
}
|
|
if (gyr3valid) {
|
|
const double gyr3Value[3] = {gyr3axXvalue, gyr3axYvalue, gyr3axZvalue};
|
|
MatrixOperations<double>::multiply(gyrParameters->gyr3orientationMatrix[0], gyr3Value,
|
|
gyr3ValueBody, 3, 3, 1);
|
|
VectorOperations<double>::subtract(gyr3ValueBody, gyrParameters->gyr3bias, gyr3ValueBody, 3);
|
|
VectorOperations<double>::mulScalar(gyr3ValueBody, M_PI / 180, gyr3ValueBody, 3);
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
sensorFusionNumerator[i] += gyr3ValueBody[i] / gyrParameters->gyr13variance[i];
|
|
sensorFusionDenominator[i] += 1 / gyrParameters->gyr13variance[i];
|
|
}
|
|
}
|
|
|
|
/* -------- SatRateEst: Middle Value ------- */
|
|
// take ADIS measurements, if both avail
|
|
// if just one ADIS measurement avail, perform sensor fusion
|
|
double gyrVecTot[3] = {0.0, 0.0, 0.0};
|
|
if ((gyr0valid && gyr2valid) && gyrParameters->preferAdis == true) {
|
|
double gyr02ValuesSum[3];
|
|
VectorOperations<double>::add(gyr0ValueBody, gyr2ValueBody, gyr02ValuesSum, 3);
|
|
VectorOperations<double>::mulScalar(gyr02ValuesSum, .5, gyrVecTot, 3);
|
|
} else {
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
gyrVecTot[i] = sensorFusionNumerator[i] / sensorFusionDenominator[i];
|
|
}
|
|
}
|
|
{
|
|
PoolReadGuard pg(gyrDataProcessed);
|
|
if (pg.getReadResult() == returnvalue::OK) {
|
|
std::memcpy(gyrDataProcessed->gyr0vec.value, gyr0ValueBody, 3 * sizeof(double));
|
|
gyrDataProcessed->gyr0vec.setValid(gyr0valid);
|
|
std::memcpy(gyrDataProcessed->gyr1vec.value, gyr1ValueBody, 3 * sizeof(double));
|
|
gyrDataProcessed->gyr1vec.setValid(gyr1valid);
|
|
std::memcpy(gyrDataProcessed->gyr2vec.value, gyr2ValueBody, 3 * sizeof(double));
|
|
gyrDataProcessed->gyr2vec.setValid(gyr2valid);
|
|
std::memcpy(gyrDataProcessed->gyr3vec.value, gyr3ValueBody, 3 * sizeof(double));
|
|
gyrDataProcessed->gyr3vec.setValid(gyr3valid);
|
|
std::memcpy(gyrDataProcessed->gyrVecTot.value, gyrVecTot, 3 * sizeof(double));
|
|
gyrDataProcessed->gyrVecTot.setValid(true);
|
|
gyrDataProcessed->setValidity(true, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SensorProcessing::processGps(const double gpsLatitude, const double gpsLongitude,
|
|
const double gpsAltitude, const double gpsUnixSeconds,
|
|
const bool validGps,
|
|
const AcsParameters::GpsParameters *gpsParameters,
|
|
acsctrl::GpsDataProcessed *gpsDataProcessed) {
|
|
// name to convert not process
|
|
double gdLongitude = 0, gcLatitude = 0, posSatE[3] = {0, 0, 0}, gpsVelocityE[3] = {0, 0, 0};
|
|
if (validGps) {
|
|
// Transforming from Degree to Radians and calculation geocentric lattitude from geodetic
|
|
gdLongitude = gpsLongitude * PI / 180.;
|
|
double latitudeRad = gpsLatitude * PI / 180.;
|
|
double eccentricityWgs84 = 0.0818195;
|
|
double factor = 1 - pow(eccentricityWgs84, 2);
|
|
gcLatitude = atan(factor * tan(latitudeRad));
|
|
|
|
// Calculation of the satellite velocity in earth fixed frame
|
|
double deltaDistance[3] = {0, 0, 0};
|
|
MathOperations<double>::cartesianFromLatLongAlt(latitudeRad, gdLongitude, gpsAltitude, posSatE);
|
|
if (validSavedPosSatE &&
|
|
(gpsUnixSeconds - timeOfSavedPosSatE) < (gpsParameters->timeDiffVelocityMax)) {
|
|
VectorOperations<double>::subtract(posSatE, savedPosSatE, deltaDistance, 3);
|
|
double timeDiffGpsMeas = gpsUnixSeconds - timeOfSavedPosSatE;
|
|
VectorOperations<double>::mulScalar(deltaDistance, 1. / timeDiffGpsMeas, gpsVelocityE, 3);
|
|
}
|
|
savedPosSatE[0] = posSatE[0];
|
|
savedPosSatE[1] = posSatE[1];
|
|
savedPosSatE[2] = posSatE[2];
|
|
|
|
timeOfSavedPosSatE = gpsUnixSeconds;
|
|
validSavedPosSatE = true;
|
|
}
|
|
{
|
|
PoolReadGuard pg(gpsDataProcessed);
|
|
if (pg.getReadResult() == returnvalue::OK) {
|
|
gpsDataProcessed->gdLongitude.value = gdLongitude;
|
|
gpsDataProcessed->gcLatitude.value = gcLatitude;
|
|
std::memcpy(gpsDataProcessed->gpsPosition.value, posSatE, 3 * sizeof(double));
|
|
std::memcpy(gpsDataProcessed->gpsVelocity.value, gpsVelocityE, 3 * sizeof(double));
|
|
gpsDataProcessed->setValidity(validGps, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
|
|
acsctrl::MgmDataProcessed *mgmDataProcessed,
|
|
acsctrl::SusDataProcessed *susDataProcessed,
|
|
acsctrl::GyrDataProcessed *gyrDataProcessed,
|
|
acsctrl::GpsDataProcessed *gpsDataProcessed,
|
|
const AcsParameters *acsParameters) {
|
|
sensorValues->update();
|
|
processGps(
|
|
sensorValues->gpsSet.latitude.value, sensorValues->gpsSet.longitude.value,
|
|
sensorValues->gpsSet.altitude.value, sensorValues->gpsSet.unixSeconds.value,
|
|
(sensorValues->gpsSet.latitude.isValid() && sensorValues->gpsSet.longitude.isValid() &&
|
|
sensorValues->gpsSet.altitude.isValid() && sensorValues->gpsSet.unixSeconds.isValid()),
|
|
&acsParameters->gpsParameters, gpsDataProcessed);
|
|
|
|
processMgm(sensorValues->mgm0Lis3Set.fieldStrengths.value,
|
|
sensorValues->mgm0Lis3Set.fieldStrengths.isValid(),
|
|
sensorValues->mgm1Rm3100Set.fieldStrengths.value,
|
|
sensorValues->mgm1Rm3100Set.fieldStrengths.isValid(),
|
|
sensorValues->mgm2Lis3Set.fieldStrengths.value,
|
|
sensorValues->mgm2Lis3Set.fieldStrengths.isValid(),
|
|
sensorValues->mgm3Rm3100Set.fieldStrengths.value,
|
|
sensorValues->mgm3Rm3100Set.fieldStrengths.isValid(),
|
|
sensorValues->imtqMgmSet.mtmRawNt.value, sensorValues->imtqMgmSet.mtmRawNt.isValid(),
|
|
now, &acsParameters->mgmHandlingParameters, gpsDataProcessed,
|
|
sensorValues->gpsSet.altitude.value,
|
|
(sensorValues->gpsSet.latitude.isValid() && sensorValues->gpsSet.longitude.isValid() &&
|
|
sensorValues->gpsSet.altitude.isValid()),
|
|
mgmDataProcessed);
|
|
|
|
processSus(sensorValues->susSets[0].channels.value, sensorValues->susSets[0].channels.isValid(),
|
|
sensorValues->susSets[1].channels.value, sensorValues->susSets[1].channels.isValid(),
|
|
sensorValues->susSets[2].channels.value, sensorValues->susSets[2].channels.isValid(),
|
|
sensorValues->susSets[3].channels.value, sensorValues->susSets[3].channels.isValid(),
|
|
sensorValues->susSets[4].channels.value, sensorValues->susSets[4].channels.isValid(),
|
|
sensorValues->susSets[5].channels.value, sensorValues->susSets[5].channels.isValid(),
|
|
sensorValues->susSets[6].channels.value, sensorValues->susSets[6].channels.isValid(),
|
|
sensorValues->susSets[7].channels.value, sensorValues->susSets[7].channels.isValid(),
|
|
sensorValues->susSets[8].channels.value, sensorValues->susSets[8].channels.isValid(),
|
|
sensorValues->susSets[9].channels.value, sensorValues->susSets[9].channels.isValid(),
|
|
sensorValues->susSets[10].channels.value, sensorValues->susSets[10].channels.isValid(),
|
|
sensorValues->susSets[11].channels.value, sensorValues->susSets[11].channels.isValid(),
|
|
now, &acsParameters->susHandlingParameters, &acsParameters->sunModelParameters,
|
|
susDataProcessed);
|
|
|
|
processGyr(
|
|
sensorValues->gyr0AdisSet.angVelocX.value, sensorValues->gyr0AdisSet.angVelocX.isValid(),
|
|
sensorValues->gyr0AdisSet.angVelocY.value, sensorValues->gyr0AdisSet.angVelocY.isValid(),
|
|
sensorValues->gyr0AdisSet.angVelocZ.value, sensorValues->gyr0AdisSet.angVelocZ.isValid(),
|
|
sensorValues->gyr1L3gSet.angVelocX.value, sensorValues->gyr1L3gSet.angVelocX.isValid(),
|
|
sensorValues->gyr1L3gSet.angVelocY.value, sensorValues->gyr1L3gSet.angVelocY.isValid(),
|
|
sensorValues->gyr1L3gSet.angVelocZ.value, sensorValues->gyr1L3gSet.angVelocZ.isValid(),
|
|
sensorValues->gyr2AdisSet.angVelocX.value, sensorValues->gyr2AdisSet.angVelocX.isValid(),
|
|
sensorValues->gyr2AdisSet.angVelocY.value, sensorValues->gyr2AdisSet.angVelocY.isValid(),
|
|
sensorValues->gyr2AdisSet.angVelocZ.value, sensorValues->gyr2AdisSet.angVelocZ.isValid(),
|
|
sensorValues->gyr3L3gSet.angVelocX.value, sensorValues->gyr3L3gSet.angVelocX.isValid(),
|
|
sensorValues->gyr3L3gSet.angVelocY.value, sensorValues->gyr3L3gSet.angVelocY.isValid(),
|
|
sensorValues->gyr3L3gSet.angVelocZ.value, sensorValues->gyr3L3gSet.angVelocZ.isValid(), now,
|
|
&acsParameters->gyrHandlingParameters, gyrDataProcessed);
|
|
}
|