eive-obsw/mission/devices/GyroADIS1650XHandler.cpp

524 lines
20 KiB
C++

#include "GyroADIS1650XHandler.h"
#include <fsfw/action/HasActionsIF.h>
#include <fsfw/datapool/PoolReadGuard.h>
#include "fsfw/FSFW.h"
#ifdef FSFW_OSAL_LINUX
#include <sys/ioctl.h>
#include <unistd.h>
#include "fsfw_hal/linux/UnixFileGuard.h"
#include "fsfw_hal/linux/spi/SpiComIF.h"
#include "fsfw_hal/linux/spi/SpiCookie.h"
#include "fsfw_hal/linux/utility.h"
#endif
GyroADIS1650XHandler::GyroADIS1650XHandler(object_id_t objectId, object_id_t deviceCommunication,
CookieIF *comCookie, ADIS1650X::Type type)
: DeviceHandlerBase(objectId, deviceCommunication, comCookie),
adisType(type),
primaryDataset(this),
configDataset(this),
breakCountdown() {
#ifdef FSFW_OSAL_LINUX
SpiCookie *cookie = dynamic_cast<SpiCookie *>(comCookie);
if (cookie != nullptr) {
cookie->setCallbackMode(&spiSendCallback, this);
}
#endif
}
void GyroADIS1650XHandler::doStartUp() {
// Initial 310 ms start up time after power-up
if (internalState == InternalState::STARTUP) {
if (not commandExecuted) {
warningSwitch = true;
breakCountdown.setTimeout(ADIS1650X::START_UP_TIME);
commandExecuted = true;
}
if (breakCountdown.hasTimedOut()) {
internalState = InternalState::CONFIG;
commandExecuted = false;
}
}
// Read all configuration registers first
if (internalState == InternalState::CONFIG) {
if (commandExecuted) {
commandExecuted = false;
internalState = InternalState::IDLE;
}
}
if (internalState == InternalState::IDLE) {
if (goToNormalMode) {
setMode(MODE_NORMAL);
} else {
setMode(MODE_ON);
}
}
}
void GyroADIS1650XHandler::doShutDown() {
commandExecuted = false;
internalState = InternalState::STARTUP;
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t GyroADIS1650XHandler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
*id = ADIS1650X::READ_SENSOR_DATA;
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t GyroADIS1650XHandler::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
switch (internalState) {
case (InternalState::CONFIG): {
*id = ADIS1650X::READ_OUT_CONFIG;
buildCommandFromCommand(*id, nullptr, 0);
break;
}
case (InternalState::STARTUP): {
return NOTHING_TO_SEND;
break;
}
default: {
// Might be a configuration error
sif::debug << "GyroADIS16507Handler::buildTransitionDeviceCommand: "
"Unknown internal state!"
<< std::endl;
return returnvalue::OK;
}
}
return returnvalue::OK;
}
ReturnValue_t GyroADIS1650XHandler::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData,
size_t commandDataLen) {
switch (deviceCommand) {
case (ADIS1650X::READ_OUT_CONFIG): {
this->rawPacketLen = ADIS1650X::CONFIG_READOUT_SIZE;
uint8_t regList[6] = {};
regList[0] = ADIS1650X::DIAG_STAT_REG;
regList[1] = ADIS1650X::FILTER_CTRL_REG;
regList[2] = ADIS1650X::RANG_MDL_REG;
regList[3] = ADIS1650X::MSC_CTRL_REG;
regList[4] = ADIS1650X::DEC_RATE_REG;
regList[5] = ADIS1650X::PROD_ID_REG;
prepareReadCommand(regList, sizeof(regList));
this->rawPacket = commandBuffer.data();
break;
}
case (ADIS1650X::READ_SENSOR_DATA): {
if (breakCountdown.isBusy()) {
// A glob command is pending and sensor data can't be read currently
return NO_REPLY_EXPECTED;
}
std::memcpy(commandBuffer.data(), ADIS1650X::BURST_READ_ENABLE.data(),
ADIS1650X::BURST_READ_ENABLE.size());
std::memset(commandBuffer.data() + 2, 0, 10 * 2);
this->rawPacketLen = ADIS1650X::SENSOR_READOUT_SIZE;
this->rawPacket = commandBuffer.data();
break;
}
case (ADIS1650X::SELF_TEST_SENSORS): {
if (breakCountdown.isBusy()) {
// Another glob command is pending
return HasActionsIF::IS_BUSY;
}
prepareWriteCommand(ADIS1650X::GLOB_CMD, ADIS1650X::GlobCmds::SENSOR_SELF_TEST, 0x00);
breakCountdown.setTimeout(ADIS1650X::SELF_TEST_BREAK);
break;
}
case (ADIS1650X::SELF_TEST_MEMORY): {
if (breakCountdown.isBusy()) {
// Another glob command is pending
return HasActionsIF::IS_BUSY;
}
prepareWriteCommand(ADIS1650X::GLOB_CMD, ADIS1650X::GlobCmds::FLASH_MEMORY_TEST, 0x00);
breakCountdown.setTimeout(ADIS1650X::FLASH_MEMORY_TEST_BREAK);
break;
}
case (ADIS1650X::UPDATE_NV_CONFIGURATION): {
if (breakCountdown.isBusy()) {
// Another glob command is pending
return HasActionsIF::IS_BUSY;
}
prepareWriteCommand(ADIS1650X::GLOB_CMD, ADIS1650X::GlobCmds::FLASH_MEMORY_UPDATE, 0x00);
breakCountdown.setTimeout(ADIS1650X::FLASH_MEMORY_UPDATE_BREAK);
break;
}
case (ADIS1650X::RESET_SENSOR_CONFIGURATION): {
if (breakCountdown.isBusy()) {
// Another glob command is pending
return HasActionsIF::IS_BUSY;
}
prepareWriteCommand(ADIS1650X::GLOB_CMD, ADIS1650X::GlobCmds::FACTORY_CALIBRATION, 0x00);
breakCountdown.setTimeout(ADIS1650X::FACTORY_CALIBRATION_BREAK);
break;
}
case (ADIS1650X::SW_RESET): {
if (breakCountdown.isBusy()) {
// Another glob command is pending
return HasActionsIF::IS_BUSY;
}
prepareWriteCommand(ADIS1650X::GLOB_CMD, ADIS1650X::GlobCmds::SOFTWARE_RESET, 0x00);
breakCountdown.setTimeout(ADIS1650X::SW_RESET_BREAK);
break;
}
case (ADIS1650X::PRINT_CURRENT_CONFIGURATION): {
#if OBSW_VERBOSE_LEVEL >= 1
PoolReadGuard pg(&configDataset);
sif::info << "ADIS16507 Sensor configuration: DIAG_STAT: 0x" << std::hex << std::setw(4)
<< std::setfill('0') << "0x" << configDataset.diagStatReg.value << std::endl;
sif::info << "MSC_CTRL: " << std::hex << std::setw(4) << "0x"
<< configDataset.mscCtrlReg.value << " | FILT_CTRL: 0x"
<< configDataset.filterSetting.value << " | DEC_RATE: 0x"
<< configDataset.decRateReg.value << std::setfill(' ') << std::endl;
#endif /* OBSW_VERBOSE_LEVEL >= 1 */
}
}
return returnvalue::OK;
}
void GyroADIS1650XHandler::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(ADIS1650X::READ_SENSOR_DATA, 1, &primaryDataset);
insertInCommandAndReplyMap(ADIS1650X::READ_OUT_CONFIG, 1, &configDataset);
insertInCommandAndReplyMap(ADIS1650X::SELF_TEST_SENSORS, 1);
insertInCommandAndReplyMap(ADIS1650X::SELF_TEST_MEMORY, 1);
insertInCommandAndReplyMap(ADIS1650X::UPDATE_NV_CONFIGURATION, 1);
insertInCommandAndReplyMap(ADIS1650X::RESET_SENSOR_CONFIGURATION, 1);
insertInCommandAndReplyMap(ADIS1650X::SW_RESET, 1);
insertInCommandAndReplyMap(ADIS1650X::PRINT_CURRENT_CONFIGURATION, 1);
}
ReturnValue_t GyroADIS1650XHandler::scanForReply(const uint8_t *start, size_t remainingSize,
DeviceCommandId_t *foundId, size_t *foundLen) {
// For SPI, the ID will always be the one of the last sent command
*foundId = this->getPendingCommand();
*foundLen = this->rawPacketLen;
return returnvalue::OK;
}
ReturnValue_t GyroADIS1650XHandler::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
using namespace ADIS1650X;
switch (id) {
case (ADIS1650X::READ_OUT_CONFIG): {
uint16_t readProdId = packet[12] << 8 | packet[13];
if (((adisType == ADIS1650X::Type::ADIS16507) and (readProdId != ADIS1650X::PROD_ID_16507)) or
((adisType == ADIS1650X::Type::ADIS16505) and (readProdId != ADIS1650X::PROD_ID_16505))) {
#if OBSW_VERBOSE_LEVEL >= 1
if (warningSwitch) {
sif::warning << "GyroADIS1650XHandler::interpretDeviceReply: Invalid product ID "
<< readProdId << std::endl;
}
warningSwitch = false;
#endif
return returnvalue::FAILED;
}
PoolReadGuard rg(&configDataset);
configDataset.diagStatReg.value = packet[2] << 8 | packet[3];
configDataset.filterSetting.value = packet[4] << 8 | packet[5];
uint16_t rangMdlRaw = packet[6] << 8 | packet[7];
ADIS1650X::RangMdlBitfield bitfield =
static_cast<ADIS1650X::RangMdlBitfield>((rangMdlRaw >> 2) & 0b11);
switch (bitfield) {
case (ADIS1650X::RangMdlBitfield::RANGE_125_1BMLZ): {
sensitivity = SENSITIVITY_1BMLZ;
break;
}
case (ADIS1650X::RangMdlBitfield::RANGE_500_2BMLZ): {
sensitivity = SENSITIVITY_2BMLZ;
break;
}
case (ADIS1650X::RangMdlBitfield::RANGE_2000_3BMLZ): {
sensitivity = SENSITIVITY_3BMLZ;
break;
}
case (RangMdlBitfield::RESERVED): {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "ADIS1650X: Unexpected value for RANG_MDL register" << std::endl;
#endif
break;
}
}
configDataset.rangMdl.value = rangMdlRaw;
configDataset.mscCtrlReg.value = packet[8] << 8 | packet[9];
configDataset.decRateReg.value = packet[10] << 8 | packet[11];
configDataset.setValidity(true, true);
if (internalState == InternalState::CONFIG) {
commandExecuted = true;
}
break;
}
case (ADIS1650X::READ_SENSOR_DATA): {
return handleSensorData(packet);
}
}
return returnvalue::OK;
}
ReturnValue_t GyroADIS1650XHandler::handleSensorData(const uint8_t *packet) {
BurstModes burstMode = getBurstMode();
switch (burstMode) {
case (BurstModes::BURST_16_BURST_SEL_1):
case (BurstModes::BURST_32_BURST_SEL_1): {
sif::warning << "GyroADIS1650XHandler::interpretDeviceReply: Analysis with BURST_SEL1"
" not implemented!"
<< std::endl;
return returnvalue::OK;
}
case (BurstModes::BURST_16_BURST_SEL_0): {
uint16_t checksum = packet[20] << 8 | packet[21];
// Now verify the read checksum with the expected checksum according to datasheet p. 20
uint16_t calcChecksum = 0;
for (size_t idx = 2; idx < 20; idx++) {
calcChecksum += packet[idx];
}
if (checksum != calcChecksum) {
#if OBSW_VERBOSE_LEVEL >= 1
sif::warning << "GyroADIS1650XHandler::interpretDeviceReply: "
"Invalid checksum detected!"
<< std::endl;
#endif
return returnvalue::FAILED;
}
ReturnValue_t result = configDataset.diagStatReg.read();
if (result == returnvalue::OK) {
configDataset.diagStatReg.value = packet[2] << 8 | packet[3];
configDataset.diagStatReg.setValid(true);
}
configDataset.diagStatReg.commit();
{
PoolReadGuard pg(&primaryDataset);
int16_t angVelocXRaw = packet[4] << 8 | packet[5];
primaryDataset.angVelocX.value = static_cast<float>(angVelocXRaw) * sensitivity;
int16_t angVelocYRaw = packet[6] << 8 | packet[7];
primaryDataset.angVelocY.value = static_cast<float>(angVelocYRaw) * sensitivity;
int16_t angVelocZRaw = packet[8] << 8 | packet[9];
primaryDataset.angVelocZ.value = static_cast<float>(angVelocZRaw) * sensitivity;
float accelScaling = 0;
if (adisType == ADIS1650X::Type::ADIS16507) {
accelScaling = ADIS1650X::ACCELEROMETER_RANGE_16507;
} else if (adisType == ADIS1650X::Type::ADIS16505) {
accelScaling = ADIS1650X::ACCELEROMETER_RANGE_16505;
} else {
sif::warning << "GyroADIS1650XHandler::handleSensorData: "
"Unknown ADIS type"
<< std::endl;
}
int16_t accelXRaw = packet[10] << 8 | packet[11];
primaryDataset.accelX.value = static_cast<float>(accelXRaw) / INT16_MAX * accelScaling;
int16_t accelYRaw = packet[12] << 8 | packet[13];
primaryDataset.accelY.value = static_cast<float>(accelYRaw) / INT16_MAX * accelScaling;
int16_t accelZRaw = packet[14] << 8 | packet[15];
primaryDataset.accelZ.value = static_cast<float>(accelZRaw) / INT16_MAX * accelScaling;
int16_t temperatureRaw = packet[16] << 8 | packet[17];
primaryDataset.temperature.value = static_cast<float>(temperatureRaw) * 0.1;
// Ignore data counter for now
primaryDataset.setValidity(true, true);
}
if (periodicPrintout) {
if (debugDivider.checkAndIncrement()) {
sif::info << "GyroADIS1650XHandler: Angular velocities in deg / s" << std::endl;
sif::info << "X: " << primaryDataset.angVelocX.value << std::endl;
sif::info << "Y: " << primaryDataset.angVelocY.value << std::endl;
sif::info << "Z: " << primaryDataset.angVelocZ.value << std::endl;
sif::info << "GyroADIS1650XHandler: Accelerations in m / s^2: " << std::endl;
sif::info << "X: " << primaryDataset.accelX.value << std::endl;
sif::info << "Y: " << primaryDataset.accelY.value << std::endl;
sif::info << "Z: " << primaryDataset.accelZ.value << std::endl;
}
}
break;
}
case (BurstModes::BURST_32_BURST_SEL_0): {
break;
}
}
return returnvalue::OK;
}
uint32_t GyroADIS1650XHandler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) { return 6000; }
void GyroADIS1650XHandler::prepareWriteCommand(uint8_t startReg, uint8_t valueOne,
uint8_t valueTwo) {
uint8_t secondReg = startReg + 1;
startReg |= ADIS1650X::WRITE_MASK;
secondReg |= ADIS1650X::WRITE_MASK;
commandBuffer[0] = startReg;
commandBuffer[1] = valueOne;
commandBuffer[2] = secondReg;
commandBuffer[3] = valueTwo;
this->rawPacketLen = 4;
this->rawPacket = commandBuffer.data();
}
void GyroADIS1650XHandler::prepareReadCommand(uint8_t *regList, size_t len) {
for (size_t idx = 0; idx < len; idx++) {
commandBuffer[idx * 2] = regList[idx];
commandBuffer[idx * 2 + 1] = 0x00;
}
commandBuffer[len * 2] = 0x00;
commandBuffer[len * 2 + 1] = 0x00;
}
ReturnValue_t GyroADIS1650XHandler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(ADIS1650X::ANG_VELOC_X, new PoolEntry<double>({0.0}));
localDataPoolMap.emplace(ADIS1650X::ANG_VELOC_Y, new PoolEntry<double>({0.0}));
localDataPoolMap.emplace(ADIS1650X::ANG_VELOC_Z, new PoolEntry<double>({0.0}));
localDataPoolMap.emplace(ADIS1650X::ACCELERATION_X, new PoolEntry<double>({0.0}));
localDataPoolMap.emplace(ADIS1650X::ACCELERATION_Y, new PoolEntry<double>({0.0}));
localDataPoolMap.emplace(ADIS1650X::ACCELERATION_Z, new PoolEntry<double>({0.0}));
localDataPoolMap.emplace(ADIS1650X::TEMPERATURE, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(ADIS1650X::DIAG_STAT_REGISTER, new PoolEntry<uint16_t>());
localDataPoolMap.emplace(ADIS1650X::FILTER_SETTINGS, new PoolEntry<uint8_t>());
localDataPoolMap.emplace(ADIS1650X::MSC_CTRL_REGISTER, new PoolEntry<uint16_t>());
localDataPoolMap.emplace(ADIS1650X::DEC_RATE_REGISTER, new PoolEntry<uint16_t>());
poolManager.subscribeForRegularPeriodicPacket(
subdp::RegularHkPeriodicParams(primaryDataset.getSid(), false, 5.0));
return returnvalue::OK;
}
GyroADIS1650XHandler::BurstModes GyroADIS1650XHandler::getBurstMode() {
configDataset.mscCtrlReg.read();
uint16_t currentCtrlReg = configDataset.mscCtrlReg.value;
configDataset.mscCtrlReg.commit();
if ((currentCtrlReg & ADIS1650X::BURST_32_BIT) == ADIS1650X::BURST_32_BIT) {
if ((currentCtrlReg & ADIS1650X::BURST_SEL_BIT) == ADIS1650X::BURST_SEL_BIT) {
return BurstModes::BURST_32_BURST_SEL_1;
} else {
return BurstModes::BURST_32_BURST_SEL_0;
}
} else {
if ((currentCtrlReg & ADIS1650X::BURST_SEL_BIT) == ADIS1650X::BURST_SEL_BIT) {
return BurstModes::BURST_16_BURST_SEL_1;
} else {
return BurstModes::BURST_16_BURST_SEL_0;
}
}
}
#ifdef FSFW_OSAL_LINUX
ReturnValue_t GyroADIS1650XHandler::spiSendCallback(SpiComIF *comIf, SpiCookie *cookie,
const uint8_t *sendData, size_t sendLen,
void *args) {
GyroADIS1650XHandler *handler = reinterpret_cast<GyroADIS1650XHandler *>(args);
if (handler == nullptr) {
sif::error << "GyroADIS16507Handler::spiSendCallback: Passed handler pointer is invalid!"
<< std::endl;
return returnvalue::FAILED;
}
DeviceCommandId_t currentCommand = handler->getPendingCommand();
switch (currentCommand) {
case (ADIS1650X::READ_SENSOR_DATA): {
return comIf->performRegularSendOperation(cookie, sendData, sendLen);
}
case (ADIS1650X::READ_OUT_CONFIG):
default: {
ReturnValue_t result = returnvalue::OK;
int retval = 0;
// Prepare transfer
int fileDescriptor = 0;
std::string device = comIf->getSpiDev();
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::sendMessage");
if (fileHelper.getOpenResult() != returnvalue::OK) {
return SpiComIF::OPENING_FILE_FAILED;
}
spi::SpiModes spiMode = spi::SpiModes::MODE_0;
uint32_t spiSpeed = 0;
cookie->getSpiParameters(spiMode, spiSpeed, nullptr);
comIf->setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed);
cookie->assignWriteBuffer(sendData);
cookie->setTransferSize(2);
gpioId_t gpioId = cookie->getChipSelectPin();
GpioIF &gpioIF = comIf->getGpioInterface();
MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING;
uint32_t timeoutMs = 0;
MutexIF *mutex = comIf->getCsMutex();
cookie->getMutexParams(timeoutType, timeoutMs);
if (mutex == nullptr) {
#if OBSW_VERBOSE_LEVEL >= 1
sif::warning << "GyroADIS16507Handler::spiSendCallback: "
"Mutex or GPIO interface invalid"
<< std::endl;
return returnvalue::FAILED;
#endif
}
if (gpioId != gpio::NO_GPIO) {
result = mutex->lockMutex(timeoutType, timeoutMs);
if (result != returnvalue::OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to lock mutex" << std::endl;
#endif
return result;
}
}
size_t idx = 0;
spi_ioc_transfer *transferStruct = cookie->getTransferStructHandle();
uint64_t origTx = transferStruct->tx_buf;
uint64_t origRx = transferStruct->rx_buf;
while (idx < sendLen) {
// Pull SPI CS low. For now, no support for active high given
if (gpioId != gpio::NO_GPIO) {
gpioIF.pullLow(gpioId);
}
// Execute transfer
// Initiate a full duplex SPI transfer.
retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), cookie->getTransferStructHandle());
if (retval < 0) {
utility::handleIoctlError("SpiComIF::sendMessage: ioctl error.");
result = SpiComIF::FULL_DUPLEX_TRANSFER_FAILED;
}
#if FSFW_HAL_SPI_WIRETAPPING == 1
comIf->performSpiWiretapping(cookie);
#endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */
if (gpioId != gpio::NO_GPIO) {
gpioIF.pullHigh(gpioId);
}
idx += 2;
if (idx < sendLen) {
usleep(ADIS1650X::STALL_TIME_MICROSECONDS);
}
transferStruct->tx_buf += 2;
transferStruct->rx_buf += 2;
}
transferStruct->tx_buf = origTx;
transferStruct->rx_buf = origRx;
if (gpioId != gpio::NO_GPIO) {
mutex->unlockMutex();
}
}
}
return returnvalue::OK;
}
void GyroADIS1650XHandler::setToGoToNormalModeImmediately() { goToNormalMode = true; }
void GyroADIS1650XHandler::enablePeriodicPrintouts(bool enable, uint8_t divider) {
periodicPrintout = enable;
debugDivider.setDivider(divider);
}
#endif /* OBSW_ADIS1650X_LINUX_COM_IF == 1 */