added hal folder

This commit is contained in:
Robin Müller 2021-07-13 19:19:25 +02:00
parent 3a9add82fe
commit ca297a7dcd
No known key found for this signature in database
GPG Key ID: 71B58F8A3CDFA9AC
67 changed files with 6153 additions and 1 deletions

89
hal/CMakeLists.txt Normal file
View File

@ -0,0 +1,89 @@
cmake_minimum_required(VERSION 3.13)
# Can also be changed by upper CMakeLists.txt file
find_library(LIB_FSFW_NAME fsfw REQUIRED)
option(FSFW_HAL_ADD_LINUX "Add the Linux HAL to the sources. Required gpiod library" OFF)
option(FSFW_HAL_ADD_RASPBERRY_PI "Add Raspberry Pi specific code to the sources" OFF)
option(FSFW_HAL_ADD_STM32H7 "Add the STM32H7 HAL to the sources" OFF)
option(FSFW_HAL_WARNING_SHADOW_LOCAL_GCC "Enable -Wshadow=local warning in GCC" ON)
set(LIB_FSFW_HAL_NAME fsfw_hal)
set(LINUX_HAL_PATH_NAME linux)
set(STM32H7_PATH_NAME stm32h7)
add_library(${LIB_FSFW_HAL_NAME})
if(NOT LIB_FSFW_NAME)
message(ERROR "LIB_FSFW_NAME needs to be set as a linkable target")
endif()
add_subdirectory(devicehandlers)
add_subdirectory(common)
if(FSFW_HAL_ADD_LINUX)
add_subdirectory(${LINUX_HAL_PATH_NAME})
endif()
if(FSFW_HAL_ADD_STM32H7)
add_subdirectory(${STM32H7_PATH_NAME})
endif()
target_link_libraries(${LIB_FSFW_HAL_NAME} PRIVATE
${LIB_FSFW_NAME}
)
foreach(INCLUDE_PATH ${FSFW_HAL_ADDITIONAL_INC_PATHS})
if(IS_ABSOLUTE ${INCLUDE_PATH})
set(CURR_ABS_INC_PATH "${INCLUDE_PATH}")
else()
get_filename_component(CURR_ABS_INC_PATH
${INCLUDE_PATH} REALPATH BASE_DIR ${CMAKE_SOURCE_DIR})
endif()
if(CMAKE_VERBOSE)
message(STATUS "FSFW include path: ${CURR_ABS_INC_PATH}")
endif()
list(APPEND FSFW_HAL_ADD_INC_PATHS_ABS ${CURR_ABS_INC_PATH})
endforeach()
target_include_directories(${LIB_FSFW_HAL_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
${FSFW_HAL_ADD_INC_PATHS_ABS}
)
target_compile_definitions(${LIB_FSFW_HAL_NAME} PRIVATE
${FSFW_HAL_DEFINES}
)
target_link_libraries(${LIB_FSFW_HAL_NAME} PRIVATE
${FSFW_HAL_LINK_LIBS}
)
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if(NOT DEFINED FSFW_WARNING_FLAGS)
set(FSFW_WARNING_FLAGS
-Wall
-Wextra
-Wimplicit-fallthrough=1
-Wno-unused-parameter
)
endif()
target_compile_options(${LIB_FSFW_NAME} PRIVATE
"-ffunction-sections"
"-fdata-sections"
)
target_link_options(${LIB_FSFW_NAME} PRIVATE
"Wl,--gc-sections"
)
if(FSFW_HAL_WARNING_SHADOW_LOCAL_GCC)
list(APPEND WARNING_FLAGS "-Wshadow=local")
endif()
endif()

View File

@ -0,0 +1,41 @@
#ifndef COMMON_GPIO_GPIOCOOKIE_H_
#define COMMON_GPIO_GPIOCOOKIE_H_
#include "GpioIF.h"
#include "gpioDefinitions.h"
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
/**
* @brief Cookie for the GpioIF. Allows the GpioIF to determine which
* GPIOs to initialize and whether they should be configured as in- or
* output.
* @details One GpioCookie can hold multiple GPIO configurations. To add a new
* GPIO configuration to a GpioCookie use the GpioCookie::addGpio
* function.
*
* @author J. Meier
*/
class GpioCookie: public CookieIF {
public:
GpioCookie();
virtual ~GpioCookie();
ReturnValue_t addGpio(gpioId_t gpioId, GpioBase* gpioConfig);
/**
* @brief Get map with registered GPIOs.
*/
GpioMap getGpioMap() const;
private:
/**
* Returns a copy of the internal GPIO map.
*/
GpioMap gpioMap;
};
#endif /* COMMON_GPIO_GPIOCOOKIE_H_ */

View File

@ -0,0 +1,54 @@
#ifndef COMMON_GPIO_GPIOIF_H_
#define COMMON_GPIO_GPIOIF_H_
#include "gpioDefinitions.h"
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/devicehandlers/CookieIF.h>
class GpioCookie;
/**
* @brief This class defines the interface for objects requiring the control
* over GPIOs.
* @author J. Meier
*/
class GpioIF : public HasReturnvaluesIF {
public:
virtual ~GpioIF() {};
/**
* @brief Called by the GPIO using object.
* @param cookie Cookie specifying informations of the GPIOs required
* by a object.
*/
virtual ReturnValue_t addGpios(GpioCookie* cookie) = 0;
/**
* @brief By implementing this function a child must provide the
* functionality to pull a certain GPIO to high logic level.
*
* @param gpioId A unique number which specifies the GPIO to drive.
* @return Returns RETURN_OK for success. This should never return RETURN_FAILED.
*/
virtual ReturnValue_t pullHigh(gpioId_t gpioId) = 0;
/**
* @brief By implementing this function a child must provide the
* functionality to pull a certain GPIO to low logic level.
*
* @param gpioId A unique number which specifies the GPIO to drive.
*/
virtual ReturnValue_t pullLow(gpioId_t gpioId) = 0;
/**
* @brief This function requires a child to implement the functionality to read the state of
* an ouput or input gpio.
*
* @param gpioId A unique number which specifies the GPIO to read.
* @param gpioState State of GPIO will be written to this pointer.
*/
virtual ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) = 0;
};
#endif /* COMMON_GPIO_GPIOIF_H_ */

View File

@ -0,0 +1,110 @@
#ifndef COMMON_GPIO_GPIODEFINITIONS_H_
#define COMMON_GPIO_GPIODEFINITIONS_H_
#include <string>
#include <unordered_map>
#include <map>
using gpioId_t = uint16_t;
namespace gpio {
enum Levels {
LOW = 0,
HIGH = 1
};
enum Direction {
IN = 0,
OUT = 1
};
enum GpioOperation {
READ,
WRITE
};
enum GpioTypes {
NONE,
GPIO_REGULAR,
CALLBACK
};
static constexpr gpioId_t NO_GPIO = -1;
using gpio_cb_t = void (*) (gpioId_t gpioId, gpio::GpioOperation gpioOp, int value, void* args);
}
/**
* @brief Struct containing information about the GPIO to use. This is
* required by the libgpiod to access and drive a GPIO.
* @param chipname String of the chipname specifying the group which contains the GPIO to
* access. E.g. gpiochip0. To detect names of GPIO groups run gpiodetect on
* the linux command line.
* @param lineNum The offset of the GPIO within the GPIO group.
* @param consumer Name of the consumer. Simply a description of the GPIO configuration.
* @param direction Specifies whether the GPIO should be used as in- or output.
* @param initValue Defines the initial state of the GPIO when configured as output.
* Only required for output GPIOs.
* @param lineHandle The handle returned by gpiod_chip_get_line will be later written to this
* pointer.
*/
class GpioBase {
public:
GpioBase() = default;
GpioBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction,
int initValue):
gpioType(gpioType), consumer(consumer),direction(direction), initValue(initValue) {}
virtual~ GpioBase() {};
// Can be used to cast GpioBase to a concrete child implementation
gpio::GpioTypes gpioType = gpio::GpioTypes::NONE;
std::string consumer;
gpio::Direction direction = gpio::Direction::IN;
int initValue = 0;
};
class GpiodRegular: public GpioBase {
public:
GpiodRegular() :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, std::string(), gpio::Direction::IN, 0) {
}
;
GpiodRegular(std::string chipname_, int lineNum_, std::string consumer_,
gpio::Direction direction_, int initValue_) :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, consumer_, direction_, initValue_),
chipname(chipname_), lineNum(lineNum_) {
}
GpiodRegular(std::string chipname_, int lineNum_, std::string consumer_) :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, consumer_, gpio::Direction::IN, 0),
chipname(chipname_), lineNum(lineNum_) {
}
std::string chipname;
int lineNum = 0;
struct gpiod_line* lineHandle = nullptr;
};
class GpioCallback: public GpioBase {
public:
GpioCallback(std::string consumer, gpio::Direction direction_, int initValue_,
gpio::gpio_cb_t callback, void* callbackArgs):
GpioBase(gpio::GpioTypes::CALLBACK, consumer, direction_, initValue_),
callback(callback), callbackArgs(callbackArgs) {}
gpio::gpio_cb_t callback = nullptr;
void* callbackArgs = nullptr;
};
using GpioMap = std::map<gpioId_t, GpioBase*>;
using GpioUnorderedMap = std::unordered_map<gpioId_t, GpioBase*>;
using GpioMapIter = GpioMap::iterator;
using GpioUnorderedMapIter = GpioUnorderedMap::iterator;
#endif /* LINUX_GPIO_GPIODEFINITIONS_H_ */

View File

@ -0,0 +1,17 @@
#ifndef FSFW_HAL_COMMON_SPI_SPICOMMON_H_
#define FSFW_HAL_COMMON_SPI_SPICOMMON_H_
#include <cstdint>
namespace spi {
enum SpiModes: uint8_t {
MODE_0,
MODE_1,
MODE_2,
MODE_3
};
}
#endif /* FSFW_HAL_COMMON_SPI_SPICOMMON_H_ */

View File

@ -0,0 +1,86 @@
#ifndef MISSION_DEVICES_GYROL3GD20HANDLER_H_
#define MISSION_DEVICES_GYROL3GD20HANDLER_H_
#include "OBSWConfig.h"
#include "devicedefinitions/GyroL3GD20Definitions.h"
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
#ifndef FSFW_HAL_L3GD20_GYRO_DEBUG
#define FSFW_HAL_L3GD20_GYRO_DEBUG 1
#endif /* FSFW_HAL_L3GD20_GYRO_DEBUG */
/**
* @brief Device Handler for the L3GD20H gyroscope sensor
* (https://www.st.com/en/mems-and-sensors/l3gd20h.html)
* @details
* Advanced documentation:
* https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/L3GD20H_Gyro
*
* Data is read big endian with the smallest possible range of 245 degrees per second.
*/
class GyroHandlerL3GD20H: public DeviceHandlerBase {
public:
GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF* comCookie);
virtual ~GyroHandlerL3GD20H();
void setGoNormalModeAtStartup();
protected:
/* DeviceHandlerBase overrides */
ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t *id) override;
void doStartUp() override;
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
void fillCommandAndReplyMap() override;
void modeChanged() override;
uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
private:
GyroPrimaryDataset dataset;
enum class InternalState {
NONE,
CONFIGURE,
CHECK_REGS,
NORMAL
};
InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
uint8_t statusReg = 0;
bool goNormalModeImmediately = false;
uint8_t ctrlReg1Value = L3GD20H::CTRL_REG_1_VAL;
uint8_t ctrlReg2Value = L3GD20H::CTRL_REG_2_VAL;
uint8_t ctrlReg3Value = L3GD20H::CTRL_REG_3_VAL;
uint8_t ctrlReg4Value = L3GD20H::CTRL_REG_4_VAL;
uint8_t ctrlReg5Value = L3GD20H::CTRL_REG_5_VAL;
uint8_t commandBuffer[L3GD20H::READ_LEN + 1];
// Set default value
float sensitivity = L3GD20H::SENSITIVITY_00;
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
PeriodicOperationDivider* debugDivider = nullptr;
#endif
};
#endif /* MISSION_DEVICES_GYROL3GD20HANDLER_H_ */

View File

@ -0,0 +1,143 @@
#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <cstdint>
namespace L3GD20H {
/* Actual size is 15 but we round up a bit */
static constexpr size_t MAX_BUFFER_SIZE = 16;
static constexpr uint8_t READ_MASK = 0b10000000;
static constexpr uint8_t AUTO_INCREMENT_MASK = 0b01000000;
static constexpr uint8_t WHO_AM_I_REG = 0b00001111;
static constexpr uint8_t WHO_AM_I_VAL = 0b11010111;
/*------------------------------------------------------------------------*/
/* Control registers */
/*------------------------------------------------------------------------*/
static constexpr uint8_t CTRL_REG_1 = 0b00100000;
static constexpr uint8_t CTRL_REG_2 = 0b00100001;
static constexpr uint8_t CTRL_REG_3 = 0b00100010;
static constexpr uint8_t CTRL_REG_4 = 0b00100011;
static constexpr uint8_t CTRL_REG_5 = 0b00100100;
/* Register 1 */
static constexpr uint8_t SET_DR_1 = 1 << 7;
static constexpr uint8_t SET_DR_0 = 1 << 6;
static constexpr uint8_t SET_BW_1 = 1 << 5;
static constexpr uint8_t SET_BW_0 = 1 << 4;
static constexpr uint8_t SET_POWER_NORMAL_MODE = 1 << 3;
static constexpr uint8_t SET_Z_ENABLE = 1 << 2;
static constexpr uint8_t SET_X_ENABLE = 1 << 1;
static constexpr uint8_t SET_Y_ENABLE = 1;
static constexpr uint8_t CTRL_REG_1_VAL = SET_POWER_NORMAL_MODE | SET_Z_ENABLE |
SET_Y_ENABLE | SET_X_ENABLE;
/* Register 2 */
static constexpr uint8_t EXTERNAL_EDGE_ENB = 1 << 7;
static constexpr uint8_t LEVEL_SENSITIVE_TRIGGER = 1 << 6;
static constexpr uint8_t SET_HPM_1 = 1 << 5;
static constexpr uint8_t SET_HPM_0 = 1 << 4;
static constexpr uint8_t SET_HPCF_3 = 1 << 3;
static constexpr uint8_t SET_HPCF_2 = 1 << 2;
static constexpr uint8_t SET_HPCF_1 = 1 << 1;
static constexpr uint8_t SET_HPCF_0 = 1;
static constexpr uint8_t CTRL_REG_2_VAL = 0b00000000;
/* Register 3 */
static constexpr uint8_t CTRL_REG_3_VAL = 0b00000000;
/* Register 4 */
static constexpr uint8_t SET_BNU = 1 << 7;
static constexpr uint8_t SET_BLE = 1 << 6;
static constexpr uint8_t SET_FS_1 = 1 << 5;
static constexpr uint8_t SET_FS_0 = 1 << 4;
static constexpr uint8_t SET_IMP_ENB = 1 << 3;
static constexpr uint8_t SET_SELF_TEST_ENB_1 = 1 << 2;
static constexpr uint8_t SET_SELF_TEST_ENB_0 = 1 << 1;
static constexpr uint8_t SET_SPI_IF_SELECT = 1;
/* Enable big endian data format */
static constexpr uint8_t CTRL_REG_4_VAL = SET_BLE;
/* Register 5 */
static constexpr uint8_t SET_REBOOT_MEM = 1 << 7;
static constexpr uint8_t SET_FIFO_ENB = 1 << 6;
static constexpr uint8_t CTRL_REG_5_VAL = 0b00000000;
/* Possible range values in degrees per second (DPS). */
static constexpr uint16_t RANGE_DPS_00 = 245;
static constexpr float SENSITIVITY_00 = 8.75 * 0.001;
static constexpr uint16_t RANGE_DPS_01 = 500;
static constexpr float SENSITIVITY_01 = 17.5 * 0.001;
static constexpr uint16_t RANGE_DPS_11 = 2000;
static constexpr float SENSITIVITY_11 = 70.0 * 0.001;
static constexpr uint8_t READ_START = CTRL_REG_1;
static constexpr size_t READ_LEN = 14;
/* Indexing */
static constexpr uint8_t REFERENCE_IDX = 6;
static constexpr uint8_t TEMPERATURE_IDX = 7;
static constexpr uint8_t STATUS_IDX = 8;
static constexpr uint8_t OUT_X_H = 9;
static constexpr uint8_t OUT_X_L = 10;
static constexpr uint8_t OUT_Y_H = 11;
static constexpr uint8_t OUT_Y_L = 12;
static constexpr uint8_t OUT_Z_H = 13;
static constexpr uint8_t OUT_Z_L = 14;
/*------------------------------------------------------------------------*/
/* Device Handler specific */
/*------------------------------------------------------------------------*/
static constexpr DeviceCommandId_t READ_REGS = 0;
static constexpr DeviceCommandId_t CONFIGURE_CTRL_REGS = 1;
static constexpr DeviceCommandId_t READ_CTRL_REGS = 2;
static constexpr uint32_t GYRO_DATASET_ID = READ_REGS;
enum GyroPoolIds: lp_id_t {
ANG_VELOC_X,
ANG_VELOC_Y,
ANG_VELOC_Z,
TEMPERATURE
};
}
class GyroPrimaryDataset: public StaticLocalDataSet<5> {
public:
/** Constructor for data users like controllers */
GyroPrimaryDataset(object_id_t mgmId):
StaticLocalDataSet(sid_t(mgmId, L3GD20H::GYRO_DATASET_ID)) {
setAllVariablesReadOnly();
}
/* Angular velocities in degrees per second (DPS) */
lp_var_t<float> angVelocX = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_X, this);
lp_var_t<float> angVelocY = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_Y, this);
lp_var_t<float> angVelocZ = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_Z, this);
lp_var_t<float> temperature = lp_var_t<float>(sid.objectId,
L3GD20H::TEMPERATURE, this);
private:
friend class GyroHandlerL3GD20H;
/** Constructor for the data creator */
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, L3GD20H::GYRO_DATASET_ID) {}
};
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_ */

View File

@ -0,0 +1,33 @@
#ifndef LINUX_UTILITY_UNIXFILEGUARD_H_
#define LINUX_UTILITY_UNIXFILEGUARD_H_
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <string>
#include <fcntl.h>
#include <unistd.h>
class UnixFileGuard {
public:
static constexpr int READ_WRITE_FLAG = O_RDWR;
static constexpr int READ_ONLY_FLAG = O_RDONLY;
static constexpr int NON_BLOCKING_IO_FLAG = O_NONBLOCK;
static constexpr ReturnValue_t OPEN_FILE_FAILED = 1;
UnixFileGuard(std::string device, int* fileDescriptor, int flags,
std::string diagnosticPrefix = "");
virtual~ UnixFileGuard();
ReturnValue_t getOpenResult() const;
private:
int* fileDescriptor = nullptr;
ReturnValue_t openStatus = HasReturnvaluesIF::RETURN_OK;
};
#endif /* LINUX_UTILITY_UNIXFILEGUARD_H_ */

View File

@ -0,0 +1,77 @@
#ifndef LINUX_GPIO_LINUXLIBGPIOIF_H_
#define LINUX_GPIO_LINUXLIBGPIOIF_H_
#include "../../common/gpio/GpioIF.h"
#include <returnvalues/classIds.h>
#include <fsfw/objectmanager/SystemObject.h>
class GpioCookie;
/**
* @brief This class implements the GpioIF for a linux based system. The
* implementation is based on the libgpiod lib which requires linux 4.8
* or higher.
* @note The Petalinux SDK from Xilinx supports libgpiod since Petalinux
* 2019.1.
*/
class LinuxLibgpioIF : public GpioIF, public SystemObject {
public:
static const uint8_t gpioRetvalId = CLASS_ID::HAL_GPIO;
static constexpr ReturnValue_t UNKNOWN_GPIO_ID =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 1);
static constexpr ReturnValue_t DRIVE_GPIO_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 2);
static constexpr ReturnValue_t GPIO_TYPE_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 3);
static constexpr ReturnValue_t GPIO_INVALID_INSTANCE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 4);
LinuxLibgpioIF(object_id_t objectId);
virtual ~LinuxLibgpioIF();
ReturnValue_t addGpios(GpioCookie* gpioCookie) override;
ReturnValue_t pullHigh(gpioId_t gpioId) override;
ReturnValue_t pullLow(gpioId_t gpioId) override;
ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) override;
private:
/* Holds the information and configuration of all used GPIOs */
GpioUnorderedMap gpioMap;
GpioUnorderedMapIter gpioMapIter;
/**
* @brief This functions drives line of a GPIO specified by the GPIO ID.
*
* @param gpioId The GPIO ID of the GPIO to drive.
* @param logiclevel The logic level to set. O or 1.
*/
ReturnValue_t driveGpio(gpioId_t gpioId, GpiodRegular* regularGpio, unsigned int logiclevel);
ReturnValue_t configureRegularGpio(gpioId_t gpioId, GpiodRegular* regularGpio);
/**
* @brief This function checks if GPIOs are already registered and whether
* there exists a conflict in the GPIO configuration. E.g. the
* direction.
*
* @param mapToAdd The GPIOs which shall be added to the gpioMap.
*
* @return RETURN_OK if successful, otherwise RETURN_FAILED
*/
ReturnValue_t checkForConflicts(GpioMap& mapToAdd);
ReturnValue_t checkForConflictsRegularGpio(gpioId_t gpiodId, GpiodRegular* regularGpio,
GpioMap& mapToAdd);
ReturnValue_t checkForConflictsCallbackGpio(gpioId_t gpiodId, GpioCallback* regularGpio,
GpioMap& mapToAdd);
/**
* @brief Performs the initial configuration of all GPIOs specified in the GpioMap mapToAdd.
*/
ReturnValue_t configureGpios(GpioMap& mapToAdd);
};
#endif /* LINUX_GPIO_LINUXLIBGPIOIF_H_ */

View File

@ -0,0 +1,61 @@
#ifndef LINUX_I2C_I2COMIF_H_
#define LINUX_I2C_I2COMIF_H_
#include "I2cCookie.h"
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <unordered_map>
#include <vector>
/**
* @brief This is the communication interface for I2C devices connected
* to a system running a Linux OS.
*
* @note The Xilinx Linux kernel might not support to read more than 255 bytes at once.
*
* @author J. Meier
*/
class I2cComIF: public DeviceCommunicationIF, public SystemObject {
public:
I2cComIF(object_id_t objectId);
virtual ~I2cComIF();
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
private:
struct I2cInstance {
std::vector<uint8_t> replyBuffer;
size_t replyLen;
};
using I2cDeviceMap = std::unordered_map<address_t, I2cInstance>;
using I2cDeviceMapIter = I2cDeviceMap::iterator;
/* In this map all i2c devices will be registered with their address and
* the appropriate file descriptor will be stored */
I2cDeviceMap i2cDeviceMap;
I2cDeviceMapIter i2cDeviceMapIter;
/**
* @brief This function opens an I2C device and binds the opened file
* to a specific I2C address.
* @param deviceFile The name of the device file. E.g. i2c-0
* @param i2cAddress The address of the i2c slave device.
* @param fileDescriptor Pointer to device descriptor.
* @return RETURN_OK if successful, otherwise RETURN_FAILED.
*/
ReturnValue_t openDevice(std::string deviceFile,
address_t i2cAddress, int* fileDescriptor);
};
#endif /* LINUX_I2C_I2COMIF_H_ */

View File

@ -0,0 +1,38 @@
#ifndef LINUX_I2C_I2CCOOKIE_H_
#define LINUX_I2C_I2CCOOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <string>
/**
* @brief Cookie for the i2cDeviceComIF.
*
* @author J. Meier
*/
class I2cCookie: public CookieIF {
public:
/**
* @brief Constructor for the I2C cookie.
* @param i2cAddress_ The i2c address of the target device.
* @param maxReplyLen_ The maximum expected length of a reply from the
* target device.
* @param devicFile_ The device file specifying the i2c interface to use. E.g. "/dev/i2c-0".
*/
I2cCookie(address_t i2cAddress_, size_t maxReplyLen_,
std::string deviceFile_);
virtual ~I2cCookie();
address_t getAddress() const;
size_t getMaxReplyLen() const;
std::string getDeviceFile() const;
private:
address_t i2cAddress = 0;
size_t maxReplyLen = 0;
std::string deviceFile;
};
#endif /* LINUX_I2C_I2CCOOKIE_H_ */

View File

@ -0,0 +1,26 @@
#ifndef BSP_RPI_GPIO_GPIORPI_H_
#define BSP_RPI_GPIO_GPIORPI_H_
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "../../common/gpio/gpioDefinitions.h"
class GpioCookie;
namespace gpio {
/**
* Create a GpioConfig_t. This function does a sanity check on the BCM pin number and fails if the
* BCM pin is invalid.
* @param cookie Adds the configuration to this cookie directly
* @param gpioId ID which identifies the GPIO configuration
* @param bcmPin Raspberry Pi BCM pin
* @param consumer Information string
* @param direction GPIO direction
* @param initValue Intial value for output pins, 0 for low, 1 for high
* @return
*/
ReturnValue_t createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue);
}
#endif /* BSP_RPI_GPIO_GPIORPI_H_ */

View File

@ -0,0 +1,90 @@
#ifndef LINUX_SPI_SPICOMIF_H_
#define LINUX_SPI_SPICOMIF_H_
#include "spiDefinitions.h"
#include "returnvalues/classIds.h"
#include "../../common/gpio/GpioIF.h"
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <vector>
#include <unordered_map>
class SpiCookie;
/**
* @brief Encapsulates access to linux SPI driver for FSFW objects
* @details
* Right now, only full-duplex SPI is supported. Most device specific transfer properties
* are contained in the SPI cookie.
* @author R. Mueller
*/
class SpiComIF: public DeviceCommunicationIF, public SystemObject {
public:
static constexpr uint8_t spiRetvalId = CLASS_ID::HAL_SPI;
static constexpr ReturnValue_t OPENING_FILE_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 0);
/* Full duplex (ioctl) transfer failure */
static constexpr ReturnValue_t FULL_DUPLEX_TRANSFER_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 1);
/* Half duplex (read/write) transfer failure */
static constexpr ReturnValue_t HALF_DUPLEX_TRANSFER_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 2);
SpiComIF(object_id_t objectId, GpioIF* gpioComIF);
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
/**
* @brief This function returns the mutex which can be used to protect the spi bus when
* the chip select must be driven from outside of the com if.
*/
MutexIF* getMutex(MutexIF::TimeoutType* timeoutType = nullptr, uint32_t* timeoutMs = nullptr);
/**
* Perform a regular send operation using Linux iotcl. This is public so it can be used
* in functions like a user callback if special handling is only necessary for certain commands.
* @param spiCookie
* @param sendData
* @param sendLen
* @return
*/
ReturnValue_t performRegularSendOperation(SpiCookie* spiCookie, const uint8_t *sendData,
size_t sendLen);
GpioIF* getGpioInterface();
void setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed);
void performSpiWiretapping(SpiCookie* spiCookie);
ReturnValue_t getReadBuffer(address_t spiAddress, uint8_t** buffer);
private:
struct SpiInstance {
SpiInstance(size_t maxRecvSize): replyBuffer(std::vector<uint8_t>(maxRecvSize)) {}
std::vector<uint8_t> replyBuffer;
};
GpioIF* gpioComIF = nullptr;
MutexIF* spiMutex = nullptr;
MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING;
uint32_t timeoutMs = 20;
using SpiDeviceMap = std::unordered_map<address_t, SpiInstance>;
using SpiDeviceMapIter = SpiDeviceMap::iterator;
SpiDeviceMap spiDeviceMap;
ReturnValue_t performHalfDuplexReception(SpiCookie* spiCookie);
};
#endif /* LINUX_SPI_SPICOMIF_H_ */

View File

@ -0,0 +1,185 @@
#ifndef LINUX_SPI_SPICOOKIE_H_
#define LINUX_SPI_SPICOOKIE_H_
#include "spiDefinitions.h"
#include "../../common/gpio/gpioDefinitions.h"
#include <fsfw/devicehandlers/CookieIF.h>
#include <linux/spi/spidev.h>
/**
* @brief This cookie class is passed to the SPI communication interface
* @details
* This cookie contains device specific properties like speed and SPI mode or the SPI transfer
* struct required by the Linux SPI driver. It also contains a handle to a GPIO interface
* to perform slave select switching when necessary.
*
* The user can specify gpio::NO_GPIO as the GPIO ID or use a custom send callback to meet
* special requirements like expander slave select switching (e.g. GPIO or I2C expander)
* or special timing related requirements.
*/
class SpiCookie: public CookieIF {
public:
/**
* Each SPI device will have a corresponding cookie. The cookie is used by the communication
* interface and contains device specific information like the largest expected size to be
* sent and received and the GPIO pin used to toggle the SPI slave select pin.
* @param spiAddress
* @param chipSelect Chip select. gpio::NO_GPIO can be used for hardware slave selects.
* @param spiDev
* @param maxSize
*/
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed);
/**
* Like constructor above, but without a dedicated GPIO CS. Can be used for hardware
* slave select or if CS logic is performed with decoders.
*/
SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxReplySize,
spi::SpiModes spiMode, uint32_t spiSpeed);
/**
* Use the callback mode of the SPI communication interface. The user can pass the callback
* function here or by using the setter function #setCallbackMode
*/
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, const size_t maxSize,
spi::SpiModes spiMode, uint32_t spiSpeed, spi::send_callback_function_t callback,
void *args);
/**
* Get the callback function
* @param callback
* @param args
*/
void getCallback(spi::send_callback_function_t* callback, void** args);
address_t getSpiAddress() const;
std::string getSpiDevice() const;
gpioId_t getChipSelectPin() const;
size_t getMaxBufferSize() const;
spi::SpiComIfModes getComIfMode() const;
/** Enables changing SPI speed at run-time */
void setSpiSpeed(uint32_t newSpeed);
/** Enables changing the SPI mode at run-time */
void setSpiMode(spi::SpiModes newMode);
/**
* Set the SPI to callback mode and assigns the user supplied callback and an argument
* passed to the callback.
* @param callback
* @param args
*/
void setCallbackMode(spi::send_callback_function_t callback, void* args);
/**
* Can be used to set the callback arguments and a later point than initialization.
* @param args
*/
void setCallbackArgs(void* args);
/**
* True if SPI transfers should be performed in full duplex mode
* @return
*/
bool isFullDuplex() const;
/**
* Set transfer type to full duplex or half duplex. Full duplex is the default setting,
* ressembling common SPI hardware implementation with shift registers, where read and writes
* happen simultaneosly.
* @param fullDuplex
*/
void setFullOrHalfDuplex(bool halfDuplex);
/**
* This needs to be called to specify where the SPI driver writes to or reads from.
* @param readLocation
* @param writeLocation
*/
void assignReadBuffer(uint8_t* rx);
void assignWriteBuffer(const uint8_t* tx);
/**
* Assign size for the next transfer.
* @param transferSize
*/
void assignTransferSize(size_t transferSize);
size_t getCurrentTransferSize() const;
struct UncommonParameters {
uint8_t bitsPerWord = 8;
bool noCs = false;
bool csHigh = false;
bool threeWireSpi = false;
/* MSB first is more common */
bool lsbFirst = false;
};
/**
* Can be used to explicitely disable hardware chip select.
* Some drivers like the Raspberry Pi Linux driver will not use hardware chip select by default
* (see https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md)
* @param enable
*/
void setNoCs(bool enable);
void setThreeWireSpi(bool enable);
void setLsbFirst(bool enable);
void setCsHigh(bool enable);
void setBitsPerWord(uint8_t bitsPerWord);
void getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed,
UncommonParameters* parameters = nullptr) const;
/**
* See spidev.h cs_change and delay_usecs
* @param deselectCs
* @param delayUsecs
*/
void activateCsDeselect(bool deselectCs, uint16_t delayUsecs);
spi_ioc_transfer* getTransferStructHandle();
private:
/**
* Internal constructor which initializes every field
* @param spiAddress
* @param chipSelect
* @param spiDev
* @param maxSize
* @param spiMode
* @param spiSpeed
* @param callback
* @param args
*/
SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect,
std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void* args);
size_t currentTransferSize = 0;
address_t spiAddress;
gpioId_t chipSelectPin;
std::string spiDevice;
spi::SpiComIfModes comIfMode;
// Required for regular mode
const size_t maxSize;
spi::SpiModes spiMode;
uint32_t spiSpeed;
bool halfDuplex = false;
// Required for callback mode
spi::send_callback_function_t sendCallback = nullptr;
void* callbackArgs = nullptr;
struct spi_ioc_transfer spiTransferStruct = {};
UncommonParameters uncommonParameters;
};
#endif /* LINUX_SPI_SPICOOKIE_H_ */

View File

@ -0,0 +1,28 @@
#ifndef LINUX_SPI_SPIDEFINITONS_H_
#define LINUX_SPI_SPIDEFINITONS_H_
#include "../../common/gpio/gpioDefinitions.h"
#include "../../common/spi/spiCommon.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include <linux/spi/spidev.h>
#include <cstdint>
class SpiCookie;
class SpiComIF;
namespace spi {
enum SpiComIfModes {
REGULAR,
CALLBACK
};
using send_callback_function_t = ReturnValue_t (*) (SpiComIF* comIf, SpiCookie *cookie,
const uint8_t *sendData, size_t sendLen, void* args);
}
#endif /* LINUX_SPI_SPIDEFINITONS_H_ */

View File

@ -0,0 +1,110 @@
#ifndef BSP_Q7S_COMIF_UARTCOMIF_H_
#define BSP_Q7S_COMIF_UARTCOMIF_H_
#include "UartCookie.h"
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <unordered_map>
#include <vector>
/**
* @brief This is the communication interface to access serial ports on linux based operating
* systems.
*
* @details The implementation follows the instructions from https://blog.mbedded.ninja/programming/
* operating-systems/linux/linux-serial-ports-using-c-cpp/#disabling-canonical-mode
*
* @author J. Meier
*/
class UartComIF: public DeviceCommunicationIF, public SystemObject {
public:
static constexpr uint8_t uartRetvalId = CLASS_ID::HAL_UART;
static constexpr ReturnValue_t UART_READ_FAILURE =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 1);
static constexpr ReturnValue_t UART_READ_SIZE_MISSMATCH =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 2);
static constexpr ReturnValue_t UART_RX_BUFFER_TOO_SMALL =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 3);
UartComIF(object_id_t objectId);
virtual ~UartComIF();
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
private:
using UartDeviceFile_t = std::string;
struct UartElements {
int fileDescriptor;
std::vector<uint8_t> replyBuffer;
/** Number of bytes read will be written to this variable */
size_t replyLen;
};
using UartDeviceMap = std::unordered_map<UartDeviceFile_t, UartElements>;
using UartDeviceMapIter = UartDeviceMap::iterator;
/**
* The uart devie map stores informations of initialized uart ports.
*/
UartDeviceMap uartDeviceMap;
/**
* @brief This function opens and configures a uart device by using the information stored
* in the uart cookie.
* @param uartCookie Pointer to uart cookie with information about the uart. Contains the
* uart device file, baudrate, parity, stopbits etc.
* @return The file descriptor of the configured uart.
*/
int configureUartPort(UartCookie* uartCookie);
/**
* @brief This function adds the parity settings to the termios options struct.
*
* @param options Pointer to termios options struct which will be modified to enable or disable
* parity checking.
* @param uartCookie Pointer to uart cookie containing the information about the desired
* parity settings.
*
*/
void setParityOptions(struct termios* options, UartCookie* uartCookie);
void setStopBitOptions(struct termios* options, UartCookie* uartCookie);
/**
* @brief This function sets options which are not configurable by the uartCookie.
*/
void setFixedOptions(struct termios* options);
/**
* @brief With this function the datasize settings are added to the termios options struct.
*/
void setDatasizeOptions(struct termios* options, UartCookie* uartCookie);
/**
* @brief This functions adds the baudrate specified in the uartCookie to the termios options
* struct.
*/
void configureBaudrate(struct termios* options, UartCookie* uartCookie);
void setUartMode(struct termios* options, UartCookie& uartCookie);
ReturnValue_t handleCanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
ReturnValue_t handleNoncanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
};
#endif /* BSP_Q7S_COMIF_UARTCOMIF_H_ */

View File

@ -0,0 +1,121 @@
#ifndef SAM9G20_COMIF_COOKIES_UART_COOKIE_H_
#define SAM9G20_COMIF_COOKIES_UART_COOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/objectmanager/SystemObjectIF.h>
#include <string>
enum class Parity {
NONE,
EVEN,
ODD
};
enum class StopBits {
ONE_STOP_BIT,
TWO_STOP_BITS
};
enum class UartModes {
CANONICAL,
NON_CANONICAL
};
/**
* @brief Cookie for the UartComIF. There are many options available to configure the UART driver.
* The constructor only requests for common options like the baudrate. Other options can
* be set by member functions.
*
* @author J. Meier
*/
class UartCookie: public CookieIF {
public:
/**
* @brief Constructor for the uart cookie.
* @param deviceFile The device file specifying the uart to use, e.g. "/dev/ttyPS1"
* @param uartMode Specify the UART mode. The canonical mode should be used if the
* messages are separated by a delimited character like '\n'. See the
* termios documentation for more information
* @param baudrate The baudrate to use for input and output. Possible Baudrates are: 50,
* 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, B19200,
* 38400, 57600, 115200, 230400, 460800
* @param maxReplyLen The maximum size an object using this cookie expects
* @details
* Default configuration: No parity
* 8 databits (number of bits transfered with one uart frame)
* One stop bit
*/
UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen);
virtual ~UartCookie();
uint32_t getBaudrate() const;
size_t getMaxReplyLen() const;
std::string getDeviceFile() const;
Parity getParity() const;
uint8_t getBitsPerWord() const;
StopBits getStopBits() const;
UartModes getUartMode() const;
object_id_t getHandlerId() const;
/**
* The UART ComIF will only perform a specified number of read cycles for the canonical mode.
* The user can specify how many of those read cycles are performed for one device handler
* communication cycle. An example use-case would be to read all available GPS NMEA strings
* at once.
* @param readCycles
*/
void setReadCycles(uint8_t readCycles);
uint8_t getReadCycles() const;
/**
* Allows to flush the data which was received but has not been read yet. This is useful
* to discard obsolete data at software startup.
*/
void setToFlushInput(bool enable);
bool getInputShouldBeFlushed();
/**
* Functions two enable parity checking.
*/
void setParityOdd();
void setParityEven();
/**
* Function two set number of bits per UART frame.
*/
void setBitsPerWord(uint8_t bitsPerWord_);
/**
* Function to specify the number of stopbits.
*/
void setTwoStopBits();
void setOneStopBit();
/**
* Calling this function prevents the UartComIF to return failed if not all requested bytes
* could be read. This is required by a device handler when the size of a reply is not known.
*/
void setNoFixedSizeReply();
bool isReplySizeFixed();
private:
const object_id_t handlerId;
std::string deviceFile;
const UartModes uartMode;
bool flushInput = false;
uint32_t baudrate;
size_t maxReplyLen = 0;
Parity parity = Parity::NONE;
uint8_t bitsPerWord = 8;
uint8_t readCycles = 1;
StopBits stopBits = StopBits::ONE_STOP_BIT;
bool replySizeFixed = true;
};
#endif

View File

@ -0,0 +1,10 @@
#ifndef LINUX_UTILITY_UTILITY_H_
#define LINUX_UTILITY_UTILITY_H_
namespace utility {
void handleIoctlError(const char* const customPrintout);
}
#endif /* LINUX_UTILITY_UTILITY_H_ */

View File

@ -0,0 +1,70 @@
#ifndef FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_
#define FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_spi.h"
#include "../spi/mspInit.h"
#include "../spi/spiDefinitions.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
#include <array>
enum class TransferStates {
IDLE,
WAIT,
SUCCESS,
FAILURE
};
class GyroL3GD20H {
public:
GyroL3GD20H(SPI_HandleTypeDef* spiHandle, spi::TransferModes transferMode);
~GyroL3GD20H();
ReturnValue_t initialize();
ReturnValue_t performOperation();
private:
const uint8_t WHO_AM_I_REG = 0b00001111;
const uint8_t STM_READ_MASK = 0b10000000;
const uint8_t STM_AUTO_INCREMENT_MASK = 0b01000000;
const uint8_t EXPECTED_WHO_AM_I_VAL = 0b11010111;
const uint8_t CTRL_REG_1 = 0b00100000;
const uint32_t L3G_RANGE = 245;
SPI_HandleTypeDef* spiHandle;
static spi::TransferModes transferMode;
static constexpr size_t recvBufferSize = 32 * 10;
static std::array<uint8_t, recvBufferSize> rxBuffer;
static constexpr size_t txBufferSize = 32;
static std::array<uint8_t, txBufferSize> txBuffer;
ReturnValue_t handleDmaTransferInit();
ReturnValue_t handlePollingTransferInit();
ReturnValue_t handleInterruptTransferInit();
ReturnValue_t handleDmaSensorRead();
HAL_StatusTypeDef performDmaTransfer(size_t sendSize);
ReturnValue_t handlePollingSensorRead();
ReturnValue_t handleInterruptSensorRead();
uint8_t readRegPolling(uint8_t reg);
static void spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args);
static void spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args);
void prepareConfigRegs(uint8_t* configRegs);
void handleSensorReadout();
DMA_HandleTypeDef* txDmaHandle = {};
DMA_HandleTypeDef* rxDmaHandle = {};
spi::MspCfgBase* mspCfg = {};
};
#endif /* FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_ */

View File

@ -0,0 +1,49 @@
#ifndef FSFW_HAL_STM32H7_DMA_H_
#define FSFW_HAL_STM32H7_DMA_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "interrupts.h"
#include <cstdint>
namespace dma {
enum DMAType {
TX = 0,
RX = 1
};
enum DMAIndexes: uint8_t {
DMA_1 = 1,
DMA_2 = 2
};
enum DMAStreams {
STREAM_0 = 0,
STREAM_1 = 1,
STREAM_2 = 2,
STREAM_3 = 3,
STREAM_4 = 4,
STREAM_5 = 5,
STREAM_6 = 6,
STREAM_7 = 7,
} ;
/**
* Assign user interrupt handlers for DMA streams, allowing to pass an
* arbitrary argument as well. Generally, this argument will be the related DMA handle.
* @param user_handler
* @param user_args
*/
void assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx,
user_handler_t user_handler, user_args_t user_args);
}