adapted temp sensor to use °C limits, doc added
This commit is contained in:
parent
d8ed5bb1c1
commit
ddae9ee80f
@ -16,12 +16,13 @@ public:
|
||||
uint16_t confirmationLimit, T lowerLimit, T upperLimit,
|
||||
Event belowLowEvent = MonitoringIF::VALUE_BELOW_LOW_LIMIT,
|
||||
Event aboveHighEvent = MonitoringIF::VALUE_ABOVE_HIGH_LIMIT) :
|
||||
MonitorBase<T>(reporterId, monitorId, parameterId, confirmationLimit), lowerLimit(
|
||||
lowerLimit), upperLimit(upperLimit), belowLowEvent(
|
||||
belowLowEvent), aboveHighEvent(aboveHighEvent) {
|
||||
}
|
||||
virtual ~LimitMonitor() {
|
||||
MonitorBase<T>(reporterId, monitorId, parameterId, confirmationLimit),
|
||||
lowerLimit(lowerLimit), upperLimit(upperLimit), belowLowEvent(belowLowEvent),
|
||||
aboveHighEvent(aboveHighEvent) {
|
||||
}
|
||||
|
||||
virtual ~LimitMonitor() {}
|
||||
|
||||
virtual ReturnValue_t checkSample(T sample, T* crossedLimit) {
|
||||
*crossedLimit = 0.0;
|
||||
if (sample > upperLimit) {
|
||||
|
@ -1,105 +1,142 @@
|
||||
#ifndef TEMPERATURESENSOR_H_
|
||||
#define TEMPERATURESENSOR_H_
|
||||
|
||||
#include <framework/thermal/AbstractTemperatureSensor.h>
|
||||
#include <framework/datapool/DataSet.h>
|
||||
#include "AbstractTemperatureSensor.h"
|
||||
#include <framework/monitoring/LimitMonitor.h>
|
||||
|
||||
/**
|
||||
* @brief This building block handles non-linear value conversion and
|
||||
* range checks for analog temperature sensors.
|
||||
* @details HOW TO USE
|
||||
* @details This class can be used to perform all necessary tasks for temperature sensors.
|
||||
* A sensor can be instantiated by calling the constructor.
|
||||
* The temperature is calculated from an input value with
|
||||
* the calculateOutputTemperature() function. Range checking and
|
||||
* limit monitoring is performed automatically.
|
||||
*
|
||||
* @ingroup thermal
|
||||
*/
|
||||
|
||||
template<typename T>
|
||||
class TemperatureSensor: public AbstractTemperatureSensor {
|
||||
public:
|
||||
|
||||
/**
|
||||
* What are a,b and c?
|
||||
* This structure contains parameters required for range checking
|
||||
* and the conversion from the input value to the output temperature.
|
||||
* a, b and c can be any parameters required to calculate the output
|
||||
* temperature from the input value, for example parameters for the
|
||||
* Callendar-Van-Dusen equation(see datasheet of used sensor / ADC)
|
||||
*
|
||||
* The parameters a,b and c are used in the calculateOutputTemperature() call.
|
||||
*
|
||||
* The lower and upper limits can be specified in °C or in the input value
|
||||
* format
|
||||
*/
|
||||
struct Parameters {
|
||||
float a;
|
||||
float b;
|
||||
float c;
|
||||
T lowerLimit;
|
||||
T upperLimit;
|
||||
float gradient;
|
||||
float maxGradient;
|
||||
};
|
||||
|
||||
/**
|
||||
* How to use me.
|
||||
* @param setObjectid
|
||||
* @param inputTemperature
|
||||
* @param poolVariable
|
||||
* @param vectorIndex
|
||||
* @param parameters
|
||||
* @param datapoolId
|
||||
* @param outputSet
|
||||
* @param thermalModule
|
||||
* Forward declaration for explicit instantiation of used parameters.
|
||||
*/
|
||||
TemperatureSensor(object_id_t setObjectid,
|
||||
T *inputTemperature, PoolVariableIF *poolVariable,
|
||||
uint8_t vectorIndex, Parameters parameters, uint32_t datapoolId,
|
||||
DataSet *outputSet, ThermalModuleIF *thermalModule) :
|
||||
|
||||
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
|
||||
inputTemperature(inputTemperature), poolVariable(poolVariable),
|
||||
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
|
||||
sensorMonitor(setObjectid, DOMAIN_ID_SENSOR,
|
||||
DataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
|
||||
DEFAULT_CONFIRMATION_COUNT, parameters.lowerLimit,parameters.upperLimit,
|
||||
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH),
|
||||
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 }) {
|
||||
}
|
||||
|
||||
struct UsedParameters {
|
||||
UsedParameters(Parameters parameters) :
|
||||
a(parameters.a), b(parameters.b), c(parameters.c),
|
||||
gradient(parameters.gradient) {}
|
||||
gradient(parameters.maxGradient) {}
|
||||
float a;
|
||||
float b;
|
||||
float c;
|
||||
float gradient;
|
||||
};
|
||||
|
||||
static const uint16_t ADDRESS_A = 0;
|
||||
static const uint16_t ADDRESS_B = 1;
|
||||
static const uint16_t ADDRESS_C = 2;
|
||||
static const uint16_t ADDRESS_GRADIENT = 3;
|
||||
/**
|
||||
* Constructor to check against raw input values
|
||||
* @param setObjectid objectId of the sensor object
|
||||
* @param inputValue Input value which is converted to a temperature
|
||||
* @param poolVariable Pool Variable to store the temperature value
|
||||
* @param vectorIndex Vector Index for the sensor monitor
|
||||
* @param parameters Calculation parameters, temperature limits, gradient limit
|
||||
* @param datapoolId Datapool ID of the output temperature
|
||||
* @param outputSet Output dataset for the output temperature to fetch it with read()
|
||||
* @param thermalModule respective thermal module, if it has one
|
||||
*/
|
||||
TemperatureSensor(object_id_t setObjectid,
|
||||
T *inputValue, T lowerLimit, T upperLimit, PoolVariableIF *poolVariable,
|
||||
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0},
|
||||
DataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
|
||||
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
|
||||
inputValue(inputValue), poolVariable(poolVariable),
|
||||
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
|
||||
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 })
|
||||
{
|
||||
sensorMonitorRaw = new LimitMonitor<T>(setObjectid, DOMAIN_ID_SENSOR,
|
||||
DataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
|
||||
DEFAULT_CONFIRMATION_COUNT, lowerLimit, upperLimit,
|
||||
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH);
|
||||
delete sensorMonitor;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor do check against °C values
|
||||
*/
|
||||
TemperatureSensor(object_id_t setObjectid,
|
||||
T *inputValue, float lowerLimit, float upperLimit, PoolVariableIF *poolVariable,
|
||||
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0},
|
||||
DataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
|
||||
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
|
||||
inputValue(inputValue), poolVariable(poolVariable),
|
||||
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
|
||||
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 })
|
||||
{
|
||||
sensorMonitor = new LimitMonitor<float>(setObjectid, DOMAIN_ID_SENSOR,
|
||||
DataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
|
||||
DEFAULT_CONFIRMATION_COUNT, lowerLimit, upperLimit,
|
||||
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH);
|
||||
delete sensorMonitorRaw;
|
||||
}
|
||||
|
||||
protected:
|
||||
/**
|
||||
* This formula is used to calculate the temperature from an input value
|
||||
* with an arbitrary type.
|
||||
* A default implementation is provided but can be replaced depending
|
||||
* on the required calculation.
|
||||
* @param inputTemperature
|
||||
* @return
|
||||
*/
|
||||
virtual float calculateOutputTemperature(T inputValue) {
|
||||
return parameters.a * inputValue * inputValue
|
||||
+ parameters.b * inputValue + parameters.c;
|
||||
}
|
||||
|
||||
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
|
||||
|
||||
static const uint8_t DOMAIN_ID_SENSOR = 1;
|
||||
private:
|
||||
void setInvalid() {
|
||||
outputTemperature = INVALID_TEMPERATURE;
|
||||
outputTemperature.setValid(false);
|
||||
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
|
||||
sensorMonitor.setToInvalid();
|
||||
sensorMonitor->setToInvalid();
|
||||
}
|
||||
protected:
|
||||
static const int32_t INVALID_UPTIME = 0;
|
||||
|
||||
UsedParameters parameters;
|
||||
|
||||
T *inputTemperature;
|
||||
T * inputValue;
|
||||
|
||||
PoolVariableIF *poolVariable;
|
||||
|
||||
PoolVariable<float> outputTemperature;
|
||||
|
||||
LimitMonitor<T> sensorMonitor;
|
||||
LimitMonitor<T> * sensorMonitorRaw;
|
||||
LimitMonitor<float> * sensorMonitor;
|
||||
|
||||
float oldTemperature;
|
||||
timeval uptimeOfOldTemperature;
|
||||
|
||||
virtual float calculateOutputTemperature(T inputTemperature) {
|
||||
return parameters.a * inputTemperature * inputTemperature
|
||||
+ parameters.b * inputTemperature + parameters.c;
|
||||
}
|
||||
|
||||
void doChildOperation() {
|
||||
if (!poolVariable->isValid()
|
||||
|| !healthHelper.healthTable->isHealthy(getObjectId())) {
|
||||
@ -107,7 +144,7 @@ protected:
|
||||
return;
|
||||
}
|
||||
|
||||
outputTemperature = calculateOutputTemperature(*inputTemperature);
|
||||
outputTemperature = calculateOutputTemperature(*inputValue);
|
||||
outputTemperature.setValid(PoolVariableIF::VALID);
|
||||
|
||||
timeval uptime;
|
||||
@ -115,7 +152,7 @@ protected:
|
||||
|
||||
if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) {
|
||||
//In theory, we could use an AbsValueMonitor to monitor the gradient.
|
||||
//But this would require storing the gradient in DP and quite some overhead.
|
||||
//But this would require storing the maxGradient in DP and quite some overhead.
|
||||
//The concept of delta limits is a bit strange anyway.
|
||||
float deltaTime;
|
||||
float deltaTemp;
|
||||
@ -133,10 +170,10 @@ protected:
|
||||
}
|
||||
}
|
||||
|
||||
//Check is done against raw limits. SHOULDDO: Why? Using °C would be more easy to handle.
|
||||
sensorMonitor.doCheck(*inputTemperature);
|
||||
//Check is done against raw limits. SHOULDDO: Why? Using °C would be more easy to handle.
|
||||
sensorMonitor->doCheck(outputTemperature.value);
|
||||
|
||||
if (sensorMonitor.isOutOfLimits()) {
|
||||
if (sensorMonitor->isOutOfLimits()) {
|
||||
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
|
||||
outputTemperature.setValid(PoolVariableIF::INVALID);
|
||||
outputTemperature = INVALID_TEMPERATURE;
|
||||
@ -155,10 +192,19 @@ public:
|
||||
return outputTemperature.isValid();
|
||||
}
|
||||
|
||||
static const uint16_t ADDRESS_A = 0;
|
||||
static const uint16_t ADDRESS_B = 1;
|
||||
static const uint16_t ADDRESS_C = 2;
|
||||
static const uint16_t ADDRESS_GRADIENT = 3;
|
||||
|
||||
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
|
||||
|
||||
static const uint8_t DOMAIN_ID_SENSOR = 1;
|
||||
|
||||
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
|
||||
ParameterWrapper *parameterWrapper,
|
||||
const ParameterWrapper *newValues, uint16_t startAtIndex) {
|
||||
ReturnValue_t result = sensorMonitor.getParameter(domainId, parameterId,
|
||||
ReturnValue_t result = sensorMonitor->getParameter(domainId, parameterId,
|
||||
parameterWrapper, newValues, startAtIndex);
|
||||
if (result != INVALID_DOMAIN_ID) {
|
||||
return result;
|
||||
@ -186,7 +232,7 @@ public:
|
||||
}
|
||||
|
||||
virtual void resetOldState() {
|
||||
sensorMonitor.setToUnchecked();
|
||||
sensorMonitor->setToUnchecked();
|
||||
}
|
||||
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user