Merge remote-tracking branch 'upstream/mueller/master' into mueller/master

This commit is contained in:
Robin Müller 2021-07-15 01:24:25 +02:00
commit f19f3681ca
822 changed files with 7439 additions and 1479 deletions

View File

@ -10,13 +10,16 @@ endif()
option(FSFW_WARNING_SHADOW_LOCAL_GCC "Enable -Wshadow=local warning in GCC" ON)
# Options to exclude parts of the FSFW from compilation.
option(FSFW_ADD_INTERNAL_TESTS "Add internal unit tests" ON)
option(FSFW_USE_RMAP "Compile with RMAP" ON)
option(FSFW_USE_DATALINKLAYER "Compile with Data Link Layer" ON)
option(FSFW_ADD_SPG4_PROPAGATOR "Add SPG4 propagator code" ON)
set(LIB_FSFW_NAME fsfw)
add_library(${LIB_FSFW_NAME})
set(FSFW_CORE_INC_PATH "inc")
set_property(CACHE OS_FSFW PROPERTY STRINGS host linux rtems freertos)
set_property(CACHE FSFW_OSAL PROPERTY STRINGS host linux rtems freertos)
if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 11)
@ -25,38 +28,44 @@ elseif(${CMAKE_CXX_STANDARD} LESS 11)
message(FATAL_ERROR "Compiling the FSFW requires a minimum of C++11 support")
endif()
if(NOT OS_FSFW)
message(STATUS "No OS for FSFW via OS_FSFW set. Assuming host OS")
# Backwards comptability
if(OS_FSFW)
message(WARNING "Please pass the FSFW OSAL as FSFW_OSAL instead of OS_FSFW")
set(FSFW_OSAL OS_FSFW)
endif()
if(NOT FSFW_OSAL)
message(STATUS "No OS for FSFW via FSFW_OSAL set. Assuming host OS")
# Assume host OS and autodetermine from OS_FSFW
if(UNIX)
set(OS_FSFW "linux"
set(FSFW_OSAL "linux"
CACHE STRING
"OS abstraction layer used in the FSFW"
)
elseif(WIN32)
set(OS_FSFW "host"
set(FSFW_OSAL "host"
CACHE STRING "OS abstraction layer used in the FSFW"
)
endif()
endif()
set(FSFW_OSAL_DEFINITION FSFW_HOST)
set(FSFW_OSAL_DEFINITION FSFW_OSAL_HOST)
if(${OS_FSFW} STREQUAL host)
if(FSFW_OSAL MATCHES host)
set(OS_FSFW_NAME "Host")
elseif(${OS_FSFW} STREQUAL linux)
elseif(FSFW_OSAL MATCHES linux)
set(OS_FSFW_NAME "Linux")
set(FSFW_OSAL_DEFINITION FSFW_LINUX)
elseif(${OS_FSFW} STREQUAL freertos)
set(FSFW_OSAL_DEFINITION FSFW_OSAL_LINUX)
elseif(FSFW_OSAL MATCHES freertos)
set(OS_FSFW_NAME "FreeRTOS")
set(FSFW_OSAL_DEFINITION FSFW_FREERTOS)
set(FSFW_OSAL_DEFINITION FSFW_OSAL_FREERTOS)
target_link_libraries(${LIB_FSFW_NAME} PRIVATE
${LIB_OS_NAME}
)
elseif(${OS_FSFW} STREQUAL rtems)
elseif(FSFW_OSAL STREQUAL rtems)
set(OS_FSFW_NAME "RTEMS")
set(FSFW_OSAL_DEFINITION FSFW_RTEMS)
set(FSFW_OSAL_DEFINITION FSFW_OSAL_RTEMS)
else()
message(WARNING
"Invalid operating system for FSFW specified! Setting to host.."
@ -75,50 +84,9 @@ target_compile_definitions(${LIB_FSFW_NAME} INTERFACE
message(STATUS "Compiling FSFW for the ${OS_FSFW_NAME} operating system.")
add_subdirectory(action)
add_subdirectory(container)
add_subdirectory(controller)
add_subdirectory(coordinates)
if(FSFW_USE_DATALINKLAYER)
add_subdirectory(datalinklayer)
endif()
add_subdirectory(datapool)
add_subdirectory(datapoollocal)
add_subdirectory(housekeeping)
add_subdirectory(devicehandlers)
add_subdirectory(events)
add_subdirectory(fdir)
add_subdirectory(globalfunctions)
add_subdirectory(health)
add_subdirectory(internalError)
add_subdirectory(ipc)
add_subdirectory(memory)
add_subdirectory(modes)
add_subdirectory(monitoring)
add_subdirectory(objectmanager)
add_subdirectory(osal)
add_subdirectory(parameters)
add_subdirectory(power)
add_subdirectory(pus)
if(FSFW_USE_RMAP)
add_subdirectory(rmap)
endif()
add_subdirectory(serialize)
add_subdirectory(serviceinterface)
add_subdirectory(storagemanager)
add_subdirectory(subsystem)
add_subdirectory(tasks)
add_subdirectory(tcdistribution)
add_subdirectory(thermal)
add_subdirectory(timemanager)
add_subdirectory(tmstorage)
add_subdirectory(tmtcpacket)
add_subdirectory(tmtcservices)
add_subdirectory(unittest)
add_subdirectory(src)
add_subdirectory(tests)
add_subdirectory(contrib)
# The project CMakeLists file has to set the FSFW_CONFIG_PATH and add it.
# If this is not given, we include the default configuration and emit a warning.
@ -191,6 +159,7 @@ endif()
target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_SOURCE_DIR}
${FSFW_CONFIG_PATH_ABSOLUTE}
${FSFW_CORE_INC_PATH}
${FSFW_ADD_INC_PATHS_ABS}
)
@ -200,6 +169,7 @@ target_include_directories(${LIB_FSFW_NAME} INTERFACE
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_SOURCE_DIR}
${FSFW_CONFIG_PATH_ABSOLUTE}
${FSFW_CORE_INC_PATH}
${FSFW_ADD_INC_PATHS_ABS}
)

11
contrib/CMakeLists.txt Normal file
View File

@ -0,0 +1,11 @@
if(FSFW_ADD_SPG4_PROPAGATOR)
target_sources(${LIB_FSFW_NAME} PRIVATE
sgp4/sgp4unit.cpp
)
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/sgp4
)
target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/sgp4
)
endif()

View File

@ -1,12 +0,0 @@
#ifndef FSFW_DATAPOOLLOCAL_DATAPOOLLOCAL_H_
#define FSFW_DATAPOOLLOCAL_DATAPOOLLOCAL_H_
/* Collected related headers */
#include "LocalPoolVariable.h"
#include "LocalPoolVector.h"
#include "StaticLocalDataSet.h"
#include "LocalDataSet.h"
#include "SharedLocalDataSet.h"
#endif /* FSFW_DATAPOOLLOCAL_DATAPOOLLOCAL_H_ */

View File

@ -1,15 +0,0 @@
CXXSRC += $(wildcard $(CURRENTPATH)/ipc/*.cpp)
CXXSRC += $(wildcard $(CURRENTPATH)/objects/*.cpp)
CXXSRC += $(wildcard $(CURRENTPATH)/pollingsequence/*.cpp)
CXXSRC += $(wildcard $(CURRENTPATH)/events/*.cpp)
CXXSRC += $(wildcard $(CURRENTPATH)/tmtc/*.cpp)
CXXSRC += $(wildcard $(CURRENTPATH)/devices/*.cpp)
INCLUDES += $(CURRENTPATH)
INCLUDES += $(CURRENTPATH)/objects
INCLUDES += $(CURRENTPATH)/returnvalues
INCLUDES += $(CURRENTPATH)/tmtc
INCLUDES += $(CURRENTPATH)/events
INCLUDES += $(CURRENTPATH)/devices
INCLUDES += $(CURRENTPATH)/pollingsequence
INCLUDES += $(CURRENTPATH)/ipc

View File

@ -1,7 +0,0 @@
target_sources(${LIB_FSFW_NAME}
PRIVATE
EventManager.cpp
EventMessage.cpp
)
add_subdirectory(eventmatching)

75
fsfw.mk
View File

@ -1,75 +0,0 @@
# This submake file needs to be included by the primary Makefile.
# This file needs FRAMEWORK_PATH and OS_FSFW set correctly by another Makefile.
# Valid API settings: rtems, linux, freeRTOS, host
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/action/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/container/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/contrib/sgp4/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/controller/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/coordinates/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/datalinklayer/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/datapool/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/datapoollocal/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/datapoollocal/internal/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/housekeeping/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/devicehandlers/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/events/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/events/eventmatching/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/fdir/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/globalfunctions/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/globalfunctions/matching/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/globalfunctions/math/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/health/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/internalError/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/ipc/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/memory/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/modes/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/monitoring/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/objectmanager/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/osal/*.cpp)
# select the OS
ifeq ($(OS_FSFW),rtems)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/osal/rtems/*.cpp)
else ifeq ($(OS_FSFW),linux)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/osal/linux/*.cpp)
else ifeq ($(OS_FSFW),freeRTOS)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/osal/FreeRTOS/*.cpp)
else ifeq ($(OS_FSFW),host)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/osal/host/*.cpp)
ifeq ($(OS),Windows_NT)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/osal/windows/*.cpp)
else
# For now, the linux UDP bridge sources needs to be included manually by upper makefile
# for host OS because we can't be sure the OS is linux.
# Following lines can be used to do this:
# CXXSRC += $(FRAMEWORK_PATH)/osal/linux/TcUnixUdpPollingTask.cpp
# CXXSRC += $(FRAMEWORK_PATH)/osal/linux/TmTcUnixUdpBridge.cpp
endif
else
$(error invalid OS_FSFW specified, valid OS_FSFW are rtems, linux, freeRTOS, host)
endif
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/parameters/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/power/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/returnvalues/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/rmap/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/serialize/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/serviceinterface/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/storagemanager/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/subsystem/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/subsystem/modes/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/tasks/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/tcdistribution/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/thermal/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/timemanager/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/tmstorage/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/tmtcpacket/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/tmtcpacket/packetmatcher/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/tmtcpacket/pus/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/tmtcservices/*.cpp)
CXXSRC += $(wildcard $(FRAMEWORK_PATH)/pus/*.cpp)

89
hal/CMakeLists.txt Normal file
View File

@ -0,0 +1,89 @@
cmake_minimum_required(VERSION 3.13)
# Can also be changed by upper CMakeLists.txt file
find_library(LIB_FSFW_NAME fsfw REQUIRED)
option(FSFW_HAL_ADD_LINUX "Add the Linux HAL to the sources. Required gpiod library" OFF)
option(FSFW_HAL_ADD_RASPBERRY_PI "Add Raspberry Pi specific code to the sources" OFF)
option(FSFW_HAL_ADD_STM32H7 "Add the STM32H7 HAL to the sources" OFF)
option(FSFW_HAL_WARNING_SHADOW_LOCAL_GCC "Enable -Wshadow=local warning in GCC" ON)
set(LIB_FSFW_HAL_NAME fsfw_hal)
set(LINUX_HAL_PATH_NAME linux)
set(STM32H7_PATH_NAME stm32h7)
add_library(${LIB_FSFW_HAL_NAME})
if(NOT LIB_FSFW_NAME)
message(ERROR "LIB_FSFW_NAME needs to be set as a linkable target")
endif()
add_subdirectory(devicehandlers)
add_subdirectory(common)
if(FSFW_HAL_ADD_LINUX)
add_subdirectory(${LINUX_HAL_PATH_NAME})
endif()
if(FSFW_HAL_ADD_STM32H7)
add_subdirectory(${STM32H7_PATH_NAME})
endif()
target_link_libraries(${LIB_FSFW_HAL_NAME} PRIVATE
${LIB_FSFW_NAME}
)
foreach(INCLUDE_PATH ${FSFW_HAL_ADDITIONAL_INC_PATHS})
if(IS_ABSOLUTE ${INCLUDE_PATH})
set(CURR_ABS_INC_PATH "${INCLUDE_PATH}")
else()
get_filename_component(CURR_ABS_INC_PATH
${INCLUDE_PATH} REALPATH BASE_DIR ${CMAKE_SOURCE_DIR})
endif()
if(CMAKE_VERBOSE)
message(STATUS "FSFW include path: ${CURR_ABS_INC_PATH}")
endif()
list(APPEND FSFW_HAL_ADD_INC_PATHS_ABS ${CURR_ABS_INC_PATH})
endforeach()
target_include_directories(${LIB_FSFW_HAL_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
${FSFW_HAL_ADD_INC_PATHS_ABS}
)
target_compile_definitions(${LIB_FSFW_HAL_NAME} PRIVATE
${FSFW_HAL_DEFINES}
)
target_link_libraries(${LIB_FSFW_HAL_NAME} PRIVATE
${FSFW_HAL_LINK_LIBS}
)
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if(NOT DEFINED FSFW_WARNING_FLAGS)
set(FSFW_WARNING_FLAGS
-Wall
-Wextra
-Wimplicit-fallthrough=1
-Wno-unused-parameter
)
endif()
target_compile_options(${LIB_FSFW_NAME} PRIVATE
"-ffunction-sections"
"-fdata-sections"
)
target_link_options(${LIB_FSFW_NAME} PRIVATE
"Wl,--gc-sections"
)
if(FSFW_HAL_WARNING_SHADOW_LOCAL_GCC)
list(APPEND WARNING_FLAGS "-Wshadow=local")
endif()
endif()

View File

@ -0,0 +1,41 @@
#ifndef COMMON_GPIO_GPIOCOOKIE_H_
#define COMMON_GPIO_GPIOCOOKIE_H_
#include "GpioIF.h"
#include "gpioDefinitions.h"
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
/**
* @brief Cookie for the GpioIF. Allows the GpioIF to determine which
* GPIOs to initialize and whether they should be configured as in- or
* output.
* @details One GpioCookie can hold multiple GPIO configurations. To add a new
* GPIO configuration to a GpioCookie use the GpioCookie::addGpio
* function.
*
* @author J. Meier
*/
class GpioCookie: public CookieIF {
public:
GpioCookie();
virtual ~GpioCookie();
ReturnValue_t addGpio(gpioId_t gpioId, GpioBase* gpioConfig);
/**
* @brief Get map with registered GPIOs.
*/
GpioMap getGpioMap() const;
private:
/**
* Returns a copy of the internal GPIO map.
*/
GpioMap gpioMap;
};
#endif /* COMMON_GPIO_GPIOCOOKIE_H_ */

View File

@ -0,0 +1,54 @@
#ifndef COMMON_GPIO_GPIOIF_H_
#define COMMON_GPIO_GPIOIF_H_
#include "gpioDefinitions.h"
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/devicehandlers/CookieIF.h>
class GpioCookie;
/**
* @brief This class defines the interface for objects requiring the control
* over GPIOs.
* @author J. Meier
*/
class GpioIF : public HasReturnvaluesIF {
public:
virtual ~GpioIF() {};
/**
* @brief Called by the GPIO using object.
* @param cookie Cookie specifying informations of the GPIOs required
* by a object.
*/
virtual ReturnValue_t addGpios(GpioCookie* cookie) = 0;
/**
* @brief By implementing this function a child must provide the
* functionality to pull a certain GPIO to high logic level.
*
* @param gpioId A unique number which specifies the GPIO to drive.
* @return Returns RETURN_OK for success. This should never return RETURN_FAILED.
*/
virtual ReturnValue_t pullHigh(gpioId_t gpioId) = 0;
/**
* @brief By implementing this function a child must provide the
* functionality to pull a certain GPIO to low logic level.
*
* @param gpioId A unique number which specifies the GPIO to drive.
*/
virtual ReturnValue_t pullLow(gpioId_t gpioId) = 0;
/**
* @brief This function requires a child to implement the functionality to read the state of
* an ouput or input gpio.
*
* @param gpioId A unique number which specifies the GPIO to read.
* @param gpioState State of GPIO will be written to this pointer.
*/
virtual ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) = 0;
};
#endif /* COMMON_GPIO_GPIOIF_H_ */

View File

@ -0,0 +1,110 @@
#ifndef COMMON_GPIO_GPIODEFINITIONS_H_
#define COMMON_GPIO_GPIODEFINITIONS_H_
#include <string>
#include <unordered_map>
#include <map>
using gpioId_t = uint16_t;
namespace gpio {
enum Levels {
LOW = 0,
HIGH = 1
};
enum Direction {
IN = 0,
OUT = 1
};
enum GpioOperation {
READ,
WRITE
};
enum GpioTypes {
NONE,
GPIO_REGULAR,
CALLBACK
};
static constexpr gpioId_t NO_GPIO = -1;
using gpio_cb_t = void (*) (gpioId_t gpioId, gpio::GpioOperation gpioOp, int value, void* args);
}
/**
* @brief Struct containing information about the GPIO to use. This is
* required by the libgpiod to access and drive a GPIO.
* @param chipname String of the chipname specifying the group which contains the GPIO to
* access. E.g. gpiochip0. To detect names of GPIO groups run gpiodetect on
* the linux command line.
* @param lineNum The offset of the GPIO within the GPIO group.
* @param consumer Name of the consumer. Simply a description of the GPIO configuration.
* @param direction Specifies whether the GPIO should be used as in- or output.
* @param initValue Defines the initial state of the GPIO when configured as output.
* Only required for output GPIOs.
* @param lineHandle The handle returned by gpiod_chip_get_line will be later written to this
* pointer.
*/
class GpioBase {
public:
GpioBase() = default;
GpioBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction,
int initValue):
gpioType(gpioType), consumer(consumer),direction(direction), initValue(initValue) {}
virtual~ GpioBase() {};
// Can be used to cast GpioBase to a concrete child implementation
gpio::GpioTypes gpioType = gpio::GpioTypes::NONE;
std::string consumer;
gpio::Direction direction = gpio::Direction::IN;
int initValue = 0;
};
class GpiodRegular: public GpioBase {
public:
GpiodRegular() :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, std::string(), gpio::Direction::IN, 0) {
}
;
GpiodRegular(std::string chipname_, int lineNum_, std::string consumer_,
gpio::Direction direction_, int initValue_) :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, consumer_, direction_, initValue_),
chipname(chipname_), lineNum(lineNum_) {
}
GpiodRegular(std::string chipname_, int lineNum_, std::string consumer_) :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, consumer_, gpio::Direction::IN, 0),
chipname(chipname_), lineNum(lineNum_) {
}
std::string chipname;
int lineNum = 0;
struct gpiod_line* lineHandle = nullptr;
};
class GpioCallback: public GpioBase {
public:
GpioCallback(std::string consumer, gpio::Direction direction_, int initValue_,
gpio::gpio_cb_t callback, void* callbackArgs):
GpioBase(gpio::GpioTypes::CALLBACK, consumer, direction_, initValue_),
callback(callback), callbackArgs(callbackArgs) {}
gpio::gpio_cb_t callback = nullptr;
void* callbackArgs = nullptr;
};
using GpioMap = std::map<gpioId_t, GpioBase*>;
using GpioUnorderedMap = std::unordered_map<gpioId_t, GpioBase*>;
using GpioMapIter = GpioMap::iterator;
using GpioUnorderedMapIter = GpioUnorderedMap::iterator;
#endif /* LINUX_GPIO_GPIODEFINITIONS_H_ */

View File

@ -0,0 +1,17 @@
#ifndef FSFW_HAL_COMMON_SPI_SPICOMMON_H_
#define FSFW_HAL_COMMON_SPI_SPICOMMON_H_
#include <cstdint>
namespace spi {
enum SpiModes: uint8_t {
MODE_0,
MODE_1,
MODE_2,
MODE_3
};
}
#endif /* FSFW_HAL_COMMON_SPI_SPICOMMON_H_ */

View File

@ -0,0 +1,86 @@
#ifndef MISSION_DEVICES_GYROL3GD20HANDLER_H_
#define MISSION_DEVICES_GYROL3GD20HANDLER_H_
#include "OBSWConfig.h"
#include "devicedefinitions/GyroL3GD20Definitions.h"
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
#ifndef FSFW_HAL_L3GD20_GYRO_DEBUG
#define FSFW_HAL_L3GD20_GYRO_DEBUG 1
#endif /* FSFW_HAL_L3GD20_GYRO_DEBUG */
/**
* @brief Device Handler for the L3GD20H gyroscope sensor
* (https://www.st.com/en/mems-and-sensors/l3gd20h.html)
* @details
* Advanced documentation:
* https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/L3GD20H_Gyro
*
* Data is read big endian with the smallest possible range of 245 degrees per second.
*/
class GyroHandlerL3GD20H: public DeviceHandlerBase {
public:
GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF* comCookie);
virtual ~GyroHandlerL3GD20H();
void setGoNormalModeAtStartup();
protected:
/* DeviceHandlerBase overrides */
ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t *id) override;
void doStartUp() override;
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
void fillCommandAndReplyMap() override;
void modeChanged() override;
uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
private:
GyroPrimaryDataset dataset;
enum class InternalState {
NONE,
CONFIGURE,
CHECK_REGS,
NORMAL
};
InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
uint8_t statusReg = 0;
bool goNormalModeImmediately = false;
uint8_t ctrlReg1Value = L3GD20H::CTRL_REG_1_VAL;
uint8_t ctrlReg2Value = L3GD20H::CTRL_REG_2_VAL;
uint8_t ctrlReg3Value = L3GD20H::CTRL_REG_3_VAL;
uint8_t ctrlReg4Value = L3GD20H::CTRL_REG_4_VAL;
uint8_t ctrlReg5Value = L3GD20H::CTRL_REG_5_VAL;
uint8_t commandBuffer[L3GD20H::READ_LEN + 1];
// Set default value
float sensitivity = L3GD20H::SENSITIVITY_00;
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
PeriodicOperationDivider* debugDivider = nullptr;
#endif
};
#endif /* MISSION_DEVICES_GYROL3GD20HANDLER_H_ */

View File

@ -0,0 +1,143 @@
#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <cstdint>
namespace L3GD20H {
/* Actual size is 15 but we round up a bit */
static constexpr size_t MAX_BUFFER_SIZE = 16;
static constexpr uint8_t READ_MASK = 0b10000000;
static constexpr uint8_t AUTO_INCREMENT_MASK = 0b01000000;
static constexpr uint8_t WHO_AM_I_REG = 0b00001111;
static constexpr uint8_t WHO_AM_I_VAL = 0b11010111;
/*------------------------------------------------------------------------*/
/* Control registers */
/*------------------------------------------------------------------------*/
static constexpr uint8_t CTRL_REG_1 = 0b00100000;
static constexpr uint8_t CTRL_REG_2 = 0b00100001;
static constexpr uint8_t CTRL_REG_3 = 0b00100010;
static constexpr uint8_t CTRL_REG_4 = 0b00100011;
static constexpr uint8_t CTRL_REG_5 = 0b00100100;
/* Register 1 */
static constexpr uint8_t SET_DR_1 = 1 << 7;
static constexpr uint8_t SET_DR_0 = 1 << 6;
static constexpr uint8_t SET_BW_1 = 1 << 5;
static constexpr uint8_t SET_BW_0 = 1 << 4;
static constexpr uint8_t SET_POWER_NORMAL_MODE = 1 << 3;
static constexpr uint8_t SET_Z_ENABLE = 1 << 2;
static constexpr uint8_t SET_X_ENABLE = 1 << 1;
static constexpr uint8_t SET_Y_ENABLE = 1;
static constexpr uint8_t CTRL_REG_1_VAL = SET_POWER_NORMAL_MODE | SET_Z_ENABLE |
SET_Y_ENABLE | SET_X_ENABLE;
/* Register 2 */
static constexpr uint8_t EXTERNAL_EDGE_ENB = 1 << 7;
static constexpr uint8_t LEVEL_SENSITIVE_TRIGGER = 1 << 6;
static constexpr uint8_t SET_HPM_1 = 1 << 5;
static constexpr uint8_t SET_HPM_0 = 1 << 4;
static constexpr uint8_t SET_HPCF_3 = 1 << 3;
static constexpr uint8_t SET_HPCF_2 = 1 << 2;
static constexpr uint8_t SET_HPCF_1 = 1 << 1;
static constexpr uint8_t SET_HPCF_0 = 1;
static constexpr uint8_t CTRL_REG_2_VAL = 0b00000000;
/* Register 3 */
static constexpr uint8_t CTRL_REG_3_VAL = 0b00000000;
/* Register 4 */
static constexpr uint8_t SET_BNU = 1 << 7;
static constexpr uint8_t SET_BLE = 1 << 6;
static constexpr uint8_t SET_FS_1 = 1 << 5;
static constexpr uint8_t SET_FS_0 = 1 << 4;
static constexpr uint8_t SET_IMP_ENB = 1 << 3;
static constexpr uint8_t SET_SELF_TEST_ENB_1 = 1 << 2;
static constexpr uint8_t SET_SELF_TEST_ENB_0 = 1 << 1;
static constexpr uint8_t SET_SPI_IF_SELECT = 1;
/* Enable big endian data format */
static constexpr uint8_t CTRL_REG_4_VAL = SET_BLE;
/* Register 5 */
static constexpr uint8_t SET_REBOOT_MEM = 1 << 7;
static constexpr uint8_t SET_FIFO_ENB = 1 << 6;
static constexpr uint8_t CTRL_REG_5_VAL = 0b00000000;
/* Possible range values in degrees per second (DPS). */
static constexpr uint16_t RANGE_DPS_00 = 245;
static constexpr float SENSITIVITY_00 = 8.75 * 0.001;
static constexpr uint16_t RANGE_DPS_01 = 500;
static constexpr float SENSITIVITY_01 = 17.5 * 0.001;
static constexpr uint16_t RANGE_DPS_11 = 2000;
static constexpr float SENSITIVITY_11 = 70.0 * 0.001;
static constexpr uint8_t READ_START = CTRL_REG_1;
static constexpr size_t READ_LEN = 14;
/* Indexing */
static constexpr uint8_t REFERENCE_IDX = 6;
static constexpr uint8_t TEMPERATURE_IDX = 7;
static constexpr uint8_t STATUS_IDX = 8;
static constexpr uint8_t OUT_X_H = 9;
static constexpr uint8_t OUT_X_L = 10;
static constexpr uint8_t OUT_Y_H = 11;
static constexpr uint8_t OUT_Y_L = 12;
static constexpr uint8_t OUT_Z_H = 13;
static constexpr uint8_t OUT_Z_L = 14;
/*------------------------------------------------------------------------*/
/* Device Handler specific */
/*------------------------------------------------------------------------*/
static constexpr DeviceCommandId_t READ_REGS = 0;
static constexpr DeviceCommandId_t CONFIGURE_CTRL_REGS = 1;
static constexpr DeviceCommandId_t READ_CTRL_REGS = 2;
static constexpr uint32_t GYRO_DATASET_ID = READ_REGS;
enum GyroPoolIds: lp_id_t {
ANG_VELOC_X,
ANG_VELOC_Y,
ANG_VELOC_Z,
TEMPERATURE
};
}
class GyroPrimaryDataset: public StaticLocalDataSet<5> {
public:
/** Constructor for data users like controllers */
GyroPrimaryDataset(object_id_t mgmId):
StaticLocalDataSet(sid_t(mgmId, L3GD20H::GYRO_DATASET_ID)) {
setAllVariablesReadOnly();
}
/* Angular velocities in degrees per second (DPS) */
lp_var_t<float> angVelocX = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_X, this);
lp_var_t<float> angVelocY = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_Y, this);
lp_var_t<float> angVelocZ = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_Z, this);
lp_var_t<float> temperature = lp_var_t<float>(sid.objectId,
L3GD20H::TEMPERATURE, this);
private:
friend class GyroHandlerL3GD20H;
/** Constructor for the data creator */
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, L3GD20H::GYRO_DATASET_ID) {}
};
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_ */

View File

@ -0,0 +1,33 @@
#ifndef LINUX_UTILITY_UNIXFILEGUARD_H_
#define LINUX_UTILITY_UNIXFILEGUARD_H_
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <string>
#include <fcntl.h>
#include <unistd.h>
class UnixFileGuard {
public:
static constexpr int READ_WRITE_FLAG = O_RDWR;
static constexpr int READ_ONLY_FLAG = O_RDONLY;
static constexpr int NON_BLOCKING_IO_FLAG = O_NONBLOCK;
static constexpr ReturnValue_t OPEN_FILE_FAILED = 1;
UnixFileGuard(std::string device, int* fileDescriptor, int flags,
std::string diagnosticPrefix = "");
virtual~ UnixFileGuard();
ReturnValue_t getOpenResult() const;
private:
int* fileDescriptor = nullptr;
ReturnValue_t openStatus = HasReturnvaluesIF::RETURN_OK;
};
#endif /* LINUX_UTILITY_UNIXFILEGUARD_H_ */

View File

@ -0,0 +1,77 @@
#ifndef LINUX_GPIO_LINUXLIBGPIOIF_H_
#define LINUX_GPIO_LINUXLIBGPIOIF_H_
#include "../../common/gpio/GpioIF.h"
#include <returnvalues/classIds.h>
#include <fsfw/objectmanager/SystemObject.h>
class GpioCookie;
/**
* @brief This class implements the GpioIF for a linux based system. The
* implementation is based on the libgpiod lib which requires linux 4.8
* or higher.
* @note The Petalinux SDK from Xilinx supports libgpiod since Petalinux
* 2019.1.
*/
class LinuxLibgpioIF : public GpioIF, public SystemObject {
public:
static const uint8_t gpioRetvalId = CLASS_ID::HAL_GPIO;
static constexpr ReturnValue_t UNKNOWN_GPIO_ID =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 1);
static constexpr ReturnValue_t DRIVE_GPIO_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 2);
static constexpr ReturnValue_t GPIO_TYPE_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 3);
static constexpr ReturnValue_t GPIO_INVALID_INSTANCE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 4);
LinuxLibgpioIF(object_id_t objectId);
virtual ~LinuxLibgpioIF();
ReturnValue_t addGpios(GpioCookie* gpioCookie) override;
ReturnValue_t pullHigh(gpioId_t gpioId) override;
ReturnValue_t pullLow(gpioId_t gpioId) override;
ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) override;
private:
/* Holds the information and configuration of all used GPIOs */
GpioUnorderedMap gpioMap;
GpioUnorderedMapIter gpioMapIter;
/**
* @brief This functions drives line of a GPIO specified by the GPIO ID.
*
* @param gpioId The GPIO ID of the GPIO to drive.
* @param logiclevel The logic level to set. O or 1.
*/
ReturnValue_t driveGpio(gpioId_t gpioId, GpiodRegular* regularGpio, unsigned int logiclevel);
ReturnValue_t configureRegularGpio(gpioId_t gpioId, GpiodRegular* regularGpio);
/**
* @brief This function checks if GPIOs are already registered and whether
* there exists a conflict in the GPIO configuration. E.g. the
* direction.
*
* @param mapToAdd The GPIOs which shall be added to the gpioMap.
*
* @return RETURN_OK if successful, otherwise RETURN_FAILED
*/
ReturnValue_t checkForConflicts(GpioMap& mapToAdd);
ReturnValue_t checkForConflictsRegularGpio(gpioId_t gpiodId, GpiodRegular* regularGpio,
GpioMap& mapToAdd);
ReturnValue_t checkForConflictsCallbackGpio(gpioId_t gpiodId, GpioCallback* regularGpio,
GpioMap& mapToAdd);
/**
* @brief Performs the initial configuration of all GPIOs specified in the GpioMap mapToAdd.
*/
ReturnValue_t configureGpios(GpioMap& mapToAdd);
};
#endif /* LINUX_GPIO_LINUXLIBGPIOIF_H_ */

View File

@ -0,0 +1,61 @@
#ifndef LINUX_I2C_I2COMIF_H_
#define LINUX_I2C_I2COMIF_H_
#include "I2cCookie.h"
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <unordered_map>
#include <vector>
/**
* @brief This is the communication interface for I2C devices connected
* to a system running a Linux OS.
*
* @note The Xilinx Linux kernel might not support to read more than 255 bytes at once.
*
* @author J. Meier
*/
class I2cComIF: public DeviceCommunicationIF, public SystemObject {
public:
I2cComIF(object_id_t objectId);
virtual ~I2cComIF();
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
private:
struct I2cInstance {
std::vector<uint8_t> replyBuffer;
size_t replyLen;
};
using I2cDeviceMap = std::unordered_map<address_t, I2cInstance>;
using I2cDeviceMapIter = I2cDeviceMap::iterator;
/* In this map all i2c devices will be registered with their address and
* the appropriate file descriptor will be stored */
I2cDeviceMap i2cDeviceMap;
I2cDeviceMapIter i2cDeviceMapIter;
/**
* @brief This function opens an I2C device and binds the opened file
* to a specific I2C address.
* @param deviceFile The name of the device file. E.g. i2c-0
* @param i2cAddress The address of the i2c slave device.
* @param fileDescriptor Pointer to device descriptor.
* @return RETURN_OK if successful, otherwise RETURN_FAILED.
*/
ReturnValue_t openDevice(std::string deviceFile,
address_t i2cAddress, int* fileDescriptor);
};
#endif /* LINUX_I2C_I2COMIF_H_ */

View File

@ -0,0 +1,38 @@
#ifndef LINUX_I2C_I2CCOOKIE_H_
#define LINUX_I2C_I2CCOOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <string>
/**
* @brief Cookie for the i2cDeviceComIF.
*
* @author J. Meier
*/
class I2cCookie: public CookieIF {
public:
/**
* @brief Constructor for the I2C cookie.
* @param i2cAddress_ The i2c address of the target device.
* @param maxReplyLen_ The maximum expected length of a reply from the
* target device.
* @param devicFile_ The device file specifying the i2c interface to use. E.g. "/dev/i2c-0".
*/
I2cCookie(address_t i2cAddress_, size_t maxReplyLen_,
std::string deviceFile_);
virtual ~I2cCookie();
address_t getAddress() const;
size_t getMaxReplyLen() const;
std::string getDeviceFile() const;
private:
address_t i2cAddress = 0;
size_t maxReplyLen = 0;
std::string deviceFile;
};
#endif /* LINUX_I2C_I2CCOOKIE_H_ */

View File

@ -0,0 +1,26 @@
#ifndef BSP_RPI_GPIO_GPIORPI_H_
#define BSP_RPI_GPIO_GPIORPI_H_
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "../../common/gpio/gpioDefinitions.h"
class GpioCookie;
namespace gpio {
/**
* Create a GpioConfig_t. This function does a sanity check on the BCM pin number and fails if the
* BCM pin is invalid.
* @param cookie Adds the configuration to this cookie directly
* @param gpioId ID which identifies the GPIO configuration
* @param bcmPin Raspberry Pi BCM pin
* @param consumer Information string
* @param direction GPIO direction
* @param initValue Intial value for output pins, 0 for low, 1 for high
* @return
*/
ReturnValue_t createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue);
}
#endif /* BSP_RPI_GPIO_GPIORPI_H_ */

View File

@ -0,0 +1,90 @@
#ifndef LINUX_SPI_SPICOMIF_H_
#define LINUX_SPI_SPICOMIF_H_
#include "spiDefinitions.h"
#include "returnvalues/classIds.h"
#include "../../common/gpio/GpioIF.h"
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <vector>
#include <unordered_map>
class SpiCookie;
/**
* @brief Encapsulates access to linux SPI driver for FSFW objects
* @details
* Right now, only full-duplex SPI is supported. Most device specific transfer properties
* are contained in the SPI cookie.
* @author R. Mueller
*/
class SpiComIF: public DeviceCommunicationIF, public SystemObject {
public:
static constexpr uint8_t spiRetvalId = CLASS_ID::HAL_SPI;
static constexpr ReturnValue_t OPENING_FILE_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 0);
/* Full duplex (ioctl) transfer failure */
static constexpr ReturnValue_t FULL_DUPLEX_TRANSFER_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 1);
/* Half duplex (read/write) transfer failure */
static constexpr ReturnValue_t HALF_DUPLEX_TRANSFER_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 2);
SpiComIF(object_id_t objectId, GpioIF* gpioComIF);
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
/**
* @brief This function returns the mutex which can be used to protect the spi bus when
* the chip select must be driven from outside of the com if.
*/
MutexIF* getMutex(MutexIF::TimeoutType* timeoutType = nullptr, uint32_t* timeoutMs = nullptr);
/**
* Perform a regular send operation using Linux iotcl. This is public so it can be used
* in functions like a user callback if special handling is only necessary for certain commands.
* @param spiCookie
* @param sendData
* @param sendLen
* @return
*/
ReturnValue_t performRegularSendOperation(SpiCookie* spiCookie, const uint8_t *sendData,
size_t sendLen);
GpioIF* getGpioInterface();
void setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed);
void performSpiWiretapping(SpiCookie* spiCookie);
ReturnValue_t getReadBuffer(address_t spiAddress, uint8_t** buffer);
private:
struct SpiInstance {
SpiInstance(size_t maxRecvSize): replyBuffer(std::vector<uint8_t>(maxRecvSize)) {}
std::vector<uint8_t> replyBuffer;
};
GpioIF* gpioComIF = nullptr;
MutexIF* spiMutex = nullptr;
MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING;
uint32_t timeoutMs = 20;
using SpiDeviceMap = std::unordered_map<address_t, SpiInstance>;
using SpiDeviceMapIter = SpiDeviceMap::iterator;
SpiDeviceMap spiDeviceMap;
ReturnValue_t performHalfDuplexReception(SpiCookie* spiCookie);
};
#endif /* LINUX_SPI_SPICOMIF_H_ */

View File

@ -0,0 +1,185 @@
#ifndef LINUX_SPI_SPICOOKIE_H_
#define LINUX_SPI_SPICOOKIE_H_
#include "spiDefinitions.h"
#include "../../common/gpio/gpioDefinitions.h"
#include <fsfw/devicehandlers/CookieIF.h>
#include <linux/spi/spidev.h>
/**
* @brief This cookie class is passed to the SPI communication interface
* @details
* This cookie contains device specific properties like speed and SPI mode or the SPI transfer
* struct required by the Linux SPI driver. It also contains a handle to a GPIO interface
* to perform slave select switching when necessary.
*
* The user can specify gpio::NO_GPIO as the GPIO ID or use a custom send callback to meet
* special requirements like expander slave select switching (e.g. GPIO or I2C expander)
* or special timing related requirements.
*/
class SpiCookie: public CookieIF {
public:
/**
* Each SPI device will have a corresponding cookie. The cookie is used by the communication
* interface and contains device specific information like the largest expected size to be
* sent and received and the GPIO pin used to toggle the SPI slave select pin.
* @param spiAddress
* @param chipSelect Chip select. gpio::NO_GPIO can be used for hardware slave selects.
* @param spiDev
* @param maxSize
*/
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed);
/**
* Like constructor above, but without a dedicated GPIO CS. Can be used for hardware
* slave select or if CS logic is performed with decoders.
*/
SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxReplySize,
spi::SpiModes spiMode, uint32_t spiSpeed);
/**
* Use the callback mode of the SPI communication interface. The user can pass the callback
* function here or by using the setter function #setCallbackMode
*/
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, const size_t maxSize,
spi::SpiModes spiMode, uint32_t spiSpeed, spi::send_callback_function_t callback,
void *args);
/**
* Get the callback function
* @param callback
* @param args
*/
void getCallback(spi::send_callback_function_t* callback, void** args);
address_t getSpiAddress() const;
std::string getSpiDevice() const;
gpioId_t getChipSelectPin() const;
size_t getMaxBufferSize() const;
spi::SpiComIfModes getComIfMode() const;
/** Enables changing SPI speed at run-time */
void setSpiSpeed(uint32_t newSpeed);
/** Enables changing the SPI mode at run-time */
void setSpiMode(spi::SpiModes newMode);
/**
* Set the SPI to callback mode and assigns the user supplied callback and an argument
* passed to the callback.
* @param callback
* @param args
*/
void setCallbackMode(spi::send_callback_function_t callback, void* args);
/**
* Can be used to set the callback arguments and a later point than initialization.
* @param args
*/
void setCallbackArgs(void* args);
/**
* True if SPI transfers should be performed in full duplex mode
* @return
*/
bool isFullDuplex() const;
/**
* Set transfer type to full duplex or half duplex. Full duplex is the default setting,
* ressembling common SPI hardware implementation with shift registers, where read and writes
* happen simultaneosly.
* @param fullDuplex
*/
void setFullOrHalfDuplex(bool halfDuplex);
/**
* This needs to be called to specify where the SPI driver writes to or reads from.
* @param readLocation
* @param writeLocation
*/
void assignReadBuffer(uint8_t* rx);
void assignWriteBuffer(const uint8_t* tx);
/**
* Assign size for the next transfer.
* @param transferSize
*/
void assignTransferSize(size_t transferSize);
size_t getCurrentTransferSize() const;
struct UncommonParameters {
uint8_t bitsPerWord = 8;
bool noCs = false;
bool csHigh = false;
bool threeWireSpi = false;
/* MSB first is more common */
bool lsbFirst = false;
};
/**
* Can be used to explicitely disable hardware chip select.
* Some drivers like the Raspberry Pi Linux driver will not use hardware chip select by default
* (see https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md)
* @param enable
*/
void setNoCs(bool enable);
void setThreeWireSpi(bool enable);
void setLsbFirst(bool enable);
void setCsHigh(bool enable);
void setBitsPerWord(uint8_t bitsPerWord);
void getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed,
UncommonParameters* parameters = nullptr) const;
/**
* See spidev.h cs_change and delay_usecs
* @param deselectCs
* @param delayUsecs
*/
void activateCsDeselect(bool deselectCs, uint16_t delayUsecs);
spi_ioc_transfer* getTransferStructHandle();
private:
/**
* Internal constructor which initializes every field
* @param spiAddress
* @param chipSelect
* @param spiDev
* @param maxSize
* @param spiMode
* @param spiSpeed
* @param callback
* @param args
*/
SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect,
std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void* args);
size_t currentTransferSize = 0;
address_t spiAddress;
gpioId_t chipSelectPin;
std::string spiDevice;
spi::SpiComIfModes comIfMode;
// Required for regular mode
const size_t maxSize;
spi::SpiModes spiMode;
uint32_t spiSpeed;
bool halfDuplex = false;
// Required for callback mode
spi::send_callback_function_t sendCallback = nullptr;
void* callbackArgs = nullptr;
struct spi_ioc_transfer spiTransferStruct = {};
UncommonParameters uncommonParameters;
};
#endif /* LINUX_SPI_SPICOOKIE_H_ */

View File

@ -0,0 +1,28 @@
#ifndef LINUX_SPI_SPIDEFINITONS_H_
#define LINUX_SPI_SPIDEFINITONS_H_
#include "../../common/gpio/gpioDefinitions.h"
#include "../../common/spi/spiCommon.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include <linux/spi/spidev.h>
#include <cstdint>
class SpiCookie;
class SpiComIF;
namespace spi {
enum SpiComIfModes {
REGULAR,
CALLBACK
};
using send_callback_function_t = ReturnValue_t (*) (SpiComIF* comIf, SpiCookie *cookie,
const uint8_t *sendData, size_t sendLen, void* args);
}
#endif /* LINUX_SPI_SPIDEFINITONS_H_ */

View File

@ -0,0 +1,110 @@
#ifndef BSP_Q7S_COMIF_UARTCOMIF_H_
#define BSP_Q7S_COMIF_UARTCOMIF_H_
#include "UartCookie.h"
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <unordered_map>
#include <vector>
/**
* @brief This is the communication interface to access serial ports on linux based operating
* systems.
*
* @details The implementation follows the instructions from https://blog.mbedded.ninja/programming/
* operating-systems/linux/linux-serial-ports-using-c-cpp/#disabling-canonical-mode
*
* @author J. Meier
*/
class UartComIF: public DeviceCommunicationIF, public SystemObject {
public:
static constexpr uint8_t uartRetvalId = CLASS_ID::HAL_UART;
static constexpr ReturnValue_t UART_READ_FAILURE =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 1);
static constexpr ReturnValue_t UART_READ_SIZE_MISSMATCH =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 2);
static constexpr ReturnValue_t UART_RX_BUFFER_TOO_SMALL =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 3);
UartComIF(object_id_t objectId);
virtual ~UartComIF();
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
private:
using UartDeviceFile_t = std::string;
struct UartElements {
int fileDescriptor;
std::vector<uint8_t> replyBuffer;
/** Number of bytes read will be written to this variable */
size_t replyLen;
};
using UartDeviceMap = std::unordered_map<UartDeviceFile_t, UartElements>;
using UartDeviceMapIter = UartDeviceMap::iterator;
/**
* The uart devie map stores informations of initialized uart ports.
*/
UartDeviceMap uartDeviceMap;
/**
* @brief This function opens and configures a uart device by using the information stored
* in the uart cookie.
* @param uartCookie Pointer to uart cookie with information about the uart. Contains the
* uart device file, baudrate, parity, stopbits etc.
* @return The file descriptor of the configured uart.
*/
int configureUartPort(UartCookie* uartCookie);
/**
* @brief This function adds the parity settings to the termios options struct.
*
* @param options Pointer to termios options struct which will be modified to enable or disable
* parity checking.
* @param uartCookie Pointer to uart cookie containing the information about the desired
* parity settings.
*
*/
void setParityOptions(struct termios* options, UartCookie* uartCookie);
void setStopBitOptions(struct termios* options, UartCookie* uartCookie);
/**
* @brief This function sets options which are not configurable by the uartCookie.
*/
void setFixedOptions(struct termios* options);
/**
* @brief With this function the datasize settings are added to the termios options struct.
*/
void setDatasizeOptions(struct termios* options, UartCookie* uartCookie);
/**
* @brief This functions adds the baudrate specified in the uartCookie to the termios options
* struct.
*/
void configureBaudrate(struct termios* options, UartCookie* uartCookie);
void setUartMode(struct termios* options, UartCookie& uartCookie);
ReturnValue_t handleCanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
ReturnValue_t handleNoncanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
};
#endif /* BSP_Q7S_COMIF_UARTCOMIF_H_ */

View File

@ -0,0 +1,121 @@
#ifndef SAM9G20_COMIF_COOKIES_UART_COOKIE_H_
#define SAM9G20_COMIF_COOKIES_UART_COOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/objectmanager/SystemObjectIF.h>
#include <string>
enum class Parity {
NONE,
EVEN,
ODD
};
enum class StopBits {
ONE_STOP_BIT,
TWO_STOP_BITS
};
enum class UartModes {
CANONICAL,
NON_CANONICAL
};
/**
* @brief Cookie for the UartComIF. There are many options available to configure the UART driver.
* The constructor only requests for common options like the baudrate. Other options can
* be set by member functions.
*
* @author J. Meier
*/
class UartCookie: public CookieIF {
public:
/**
* @brief Constructor for the uart cookie.
* @param deviceFile The device file specifying the uart to use, e.g. "/dev/ttyPS1"
* @param uartMode Specify the UART mode. The canonical mode should be used if the
* messages are separated by a delimited character like '\n'. See the
* termios documentation for more information
* @param baudrate The baudrate to use for input and output. Possible Baudrates are: 50,
* 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, B19200,
* 38400, 57600, 115200, 230400, 460800
* @param maxReplyLen The maximum size an object using this cookie expects
* @details
* Default configuration: No parity
* 8 databits (number of bits transfered with one uart frame)
* One stop bit
*/
UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen);
virtual ~UartCookie();
uint32_t getBaudrate() const;
size_t getMaxReplyLen() const;
std::string getDeviceFile() const;
Parity getParity() const;
uint8_t getBitsPerWord() const;
StopBits getStopBits() const;
UartModes getUartMode() const;
object_id_t getHandlerId() const;
/**
* The UART ComIF will only perform a specified number of read cycles for the canonical mode.
* The user can specify how many of those read cycles are performed for one device handler
* communication cycle. An example use-case would be to read all available GPS NMEA strings
* at once.
* @param readCycles
*/
void setReadCycles(uint8_t readCycles);
uint8_t getReadCycles() const;
/**
* Allows to flush the data which was received but has not been read yet. This is useful
* to discard obsolete data at software startup.
*/
void setToFlushInput(bool enable);
bool getInputShouldBeFlushed();
/**
* Functions two enable parity checking.
*/
void setParityOdd();
void setParityEven();
/**
* Function two set number of bits per UART frame.
*/
void setBitsPerWord(uint8_t bitsPerWord_);
/**
* Function to specify the number of stopbits.
*/
void setTwoStopBits();
void setOneStopBit();
/**
* Calling this function prevents the UartComIF to return failed if not all requested bytes
* could be read. This is required by a device handler when the size of a reply is not known.
*/
void setNoFixedSizeReply();
bool isReplySizeFixed();
private:
const object_id_t handlerId;
std::string deviceFile;
const UartModes uartMode;
bool flushInput = false;
uint32_t baudrate;
size_t maxReplyLen = 0;
Parity parity = Parity::NONE;
uint8_t bitsPerWord = 8;
uint8_t readCycles = 1;
StopBits stopBits = StopBits::ONE_STOP_BIT;
bool replySizeFixed = true;
};
#endif

View File

@ -0,0 +1,10 @@
#ifndef LINUX_UTILITY_UTILITY_H_
#define LINUX_UTILITY_UTILITY_H_
namespace utility {
void handleIoctlError(const char* const customPrintout);
}
#endif /* LINUX_UTILITY_UTILITY_H_ */

View File

@ -0,0 +1,70 @@
#ifndef FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_
#define FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_spi.h"
#include "../spi/mspInit.h"
#include "../spi/spiDefinitions.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
#include <array>
enum class TransferStates {
IDLE,
WAIT,
SUCCESS,
FAILURE
};
class GyroL3GD20H {
public:
GyroL3GD20H(SPI_HandleTypeDef* spiHandle, spi::TransferModes transferMode);
~GyroL3GD20H();
ReturnValue_t initialize();
ReturnValue_t performOperation();
private:
const uint8_t WHO_AM_I_REG = 0b00001111;
const uint8_t STM_READ_MASK = 0b10000000;
const uint8_t STM_AUTO_INCREMENT_MASK = 0b01000000;
const uint8_t EXPECTED_WHO_AM_I_VAL = 0b11010111;
const uint8_t CTRL_REG_1 = 0b00100000;
const uint32_t L3G_RANGE = 245;
SPI_HandleTypeDef* spiHandle;
static spi::TransferModes transferMode;
static constexpr size_t recvBufferSize = 32 * 10;
static std::array<uint8_t, recvBufferSize> rxBuffer;
static constexpr size_t txBufferSize = 32;
static std::array<uint8_t, txBufferSize> txBuffer;
ReturnValue_t handleDmaTransferInit();
ReturnValue_t handlePollingTransferInit();
ReturnValue_t handleInterruptTransferInit();
ReturnValue_t handleDmaSensorRead();
HAL_StatusTypeDef performDmaTransfer(size_t sendSize);
ReturnValue_t handlePollingSensorRead();
ReturnValue_t handleInterruptSensorRead();
uint8_t readRegPolling(uint8_t reg);
static void spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args);
static void spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args);
void prepareConfigRegs(uint8_t* configRegs);
void handleSensorReadout();
DMA_HandleTypeDef* txDmaHandle = {};
DMA_HandleTypeDef* rxDmaHandle = {};
spi::MspCfgBase* mspCfg = {};
};
#endif /* FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_ */

View File

@ -0,0 +1,49 @@
#ifndef FSFW_HAL_STM32H7_DMA_H_
#define FSFW_HAL_STM32H7_DMA_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "interrupts.h"
#include <cstdint>
namespace dma {
enum DMAType {
TX = 0,
RX = 1
};
enum DMAIndexes: uint8_t {
DMA_1 = 1,
DMA_2 = 2
};
enum DMAStreams {
STREAM_0 = 0,
STREAM_1 = 1,
STREAM_2 = 2,
STREAM_3 = 3,
STREAM_4 = 4,
STREAM_5 = 5,
STREAM_6 = 6,
STREAM_7 = 7,
} ;
/**
* Assign user interrupt handlers for DMA streams, allowing to pass an
* arbitrary argument as well. Generally, this argument will be the related DMA handle.
* @param user_handler
* @param user_args
*/
void assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx,
user_handler_t user_handler, user_args_t user_args);
}
#ifdef __cplusplus
}
#endif
#endif /* FSFW_HAL_STM32H7_DMA_H_ */

View File

@ -0,0 +1,14 @@
#ifndef FSFW_HAL_STM32H7_GPIO_GPIO_H_
#define FSFW_HAL_STM32H7_GPIO_GPIO_H_
#include "stm32h7xx.h"
namespace gpio {
void initializeGpioClock(GPIO_TypeDef* gpioPort);
}
#endif /* FSFW_HAL_STM32H7_GPIO_GPIO_H_ */

View File

@ -0,0 +1,28 @@
#ifndef FSFW_HAL_STM32H7_INTERRUPTS_H_
#define FSFW_HAL_STM32H7_INTERRUPTS_H_
#include <cstdint>
#ifdef __cplusplus
extern "C" {
#endif
/**
* Default handler which is defined in startup file as assembly code.
*/
extern void Default_Handler();
typedef void (*user_handler_t) (void*);
typedef void* user_args_t;
enum IrqPriorities: uint8_t {
HIGHEST = 0,
HIGHEST_FREERTOS = 6,
LOWEST = 15
};
#ifdef __cplusplus
}
#endif
#endif /* FSFW_HAL_STM32H7_INTERRUPTS_H_ */

View File

@ -0,0 +1,130 @@
#ifndef FSFW_HAL_STM32H7_SPI_SPICOMIF_H_
#define FSFW_HAL_STM32H7_SPI_SPICOMIF_H_
#include "fsfw/tasks/SemaphoreIF.h"
#include "fsfw/devicehandlers/DeviceCommunicationIF.h"
#include "fsfw/objectmanager/SystemObject.h"
#include "fsfw/osal/FreeRTOS/BinarySemaphore.h"
#include "fsfw_hal/stm32h7/spi/spiDefinitions.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h743xx.h"
#include <vector>
#include <map>
class SpiCookie;
/**
* @brief This communication interface allows using generic device handlers with using
* the STM32H7 SPI peripherals
* @details
* This communication interface supports all three major communcation modes:
* - Polling: Simple, but not recommended to real use-cases, blocks the CPU
* - Interrupt: Good for small data only arriving occasionally
* - DMA: Good for large data which also occur regularly. Please note that the number
* of DMA channels in limited
* The device specific information is usually kept in the SpiCookie class. The current
* implementation limits the transfer mode for a given SPI bus.
* @author R. Mueller
*/
class SpiComIF:
public SystemObject,
public DeviceCommunicationIF {
public:
/**
* Create a SPI communication interface for the given SPI peripheral (spiInstance)
* @param objectId
* @param spiInstance
* @param spiHandle
* @param transferMode
*/
SpiComIF(object_id_t objectId);
/**
* Allows the user to disable cache maintenance on the TX buffer. This can be done if the
* TX buffers are places and MPU protected properly like specified in this link:
* https://community.st.com/s/article/FAQ-DMA-is-not-working-on-STM32H7-devices
* The cache maintenace is enabled by default.
* @param enable
*/
void configureCacheMaintenanceOnTxBuffer(bool enable);
void setDefaultPollingTimeout(dur_millis_t timeout);
/**
* Add the DMA handles. These need to be set in the DMA transfer mode is used.
* @param txHandle
* @param rxHandle
*/
void addDmaHandles(DMA_HandleTypeDef* txHandle, DMA_HandleTypeDef* rxHandle);
ReturnValue_t initialize() override;
protected:
// DeviceCommunicationIF overrides
virtual ReturnValue_t initializeInterface(CookieIF * cookie) override;
virtual ReturnValue_t sendMessage(CookieIF *cookie,
const uint8_t * sendData, size_t sendLen) override;
virtual ReturnValue_t getSendSuccess(CookieIF *cookie) override;
virtual ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
virtual ReturnValue_t readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t *size) override;
private:
struct SpiInstance {
SpiInstance(size_t maxRecvSize): replyBuffer(std::vector<uint8_t>(maxRecvSize)) {}
std::vector<uint8_t> replyBuffer;
size_t currentTransferLen = 0;
};
struct IrqArgs {
SpiComIF* comIF = nullptr;
SpiCookie* spiCookie = nullptr;
};
IrqArgs irqArgs;
uint32_t defaultPollingTimeout = 50;
SemaphoreIF::TimeoutType timeoutType = SemaphoreIF::TimeoutType::WAITING;
dur_millis_t timeoutMs = 20;
BinarySemaphore* spiSemaphore = nullptr;
bool cacheMaintenanceOnTxBuffer = true;
using SpiDeviceMap = std::map<address_t, SpiInstance>;
using SpiDeviceMapIter = SpiDeviceMap::iterator;
uint8_t* currentRecvPtr = nullptr;
size_t currentRecvBuffSize = 0;
SpiDeviceMap spiDeviceMap;
ReturnValue_t handlePollingSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen);
ReturnValue_t handleInterruptSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen);
ReturnValue_t handleDmaSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen);
ReturnValue_t handleIrqSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen);
ReturnValue_t genericIrqSendSetup(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen);
ReturnValue_t halErrorHandler(HAL_StatusTypeDef status, spi::TransferModes transferMode);
static void spiTransferTxCompleteCallback(SPI_HandleTypeDef *hspi, void* args);
static void spiTransferRxCompleteCallback(SPI_HandleTypeDef *hspi, void* args);
static void spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args);
static void spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args);
static void genericIrqHandler(void* irqArgs, spi::TransferStates targetState);
void printCfgError(const char* const type);
};
#endif /* FSFW_HAL_STM32H7_SPI_SPICOMIF_H_ */

View File

@ -0,0 +1,75 @@
#ifndef FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_
#define FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_
#include "spiDefinitions.h"
#include "mspInit.h"
#include "fsfw/devicehandlers/CookieIF.h"
#include "stm32h743xx.h"
/**
* @brief SPI cookie implementation for the STM32H7 device family
* @details
* This cookie contains and caches device specific information to be used by the
* SPI communication interface
* @author R. Mueller
*/
class SpiCookie: public CookieIF {
friend class SpiComIF;
public:
/**
* Allows construction of a SPI cookie for a connected SPI device
* @param deviceAddress
* @param spiIdx SPI bus, e.g. SPI1 or SPI2
* @param transferMode
* @param mspCfg This is the MSP configuration. The user is expected to supply
* a valid MSP configuration. See mspInit.h for functions
* to create one.
* @param spiSpeed
* @param spiMode
* @param chipSelectGpioPin GPIO port. Don't use a number here, use the 16 bit type
* definitions supplied in the MCU header file! (e.g. GPIO_PIN_X)
* @param chipSelectGpioPort GPIO port (e.g. GPIOA)
* @param maxRecvSize Maximum expected receive size. Chose as small as possible.
*/
SpiCookie(address_t deviceAddress, spi::SpiBus spiIdx, spi::TransferModes transferMode,
spi::MspCfgBase* mspCfg, uint32_t spiSpeed, spi::SpiModes spiMode,
uint16_t chipSelectGpioPin, GPIO_TypeDef* chipSelectGpioPort, size_t maxRecvSize);
uint16_t getChipSelectGpioPin() const;
GPIO_TypeDef* getChipSelectGpioPort();
address_t getDeviceAddress() const;
spi::SpiBus getSpiIdx() const;
spi::SpiModes getSpiMode() const;
spi::TransferModes getTransferMode() const;
uint32_t getSpiSpeed() const;
size_t getMaxRecvSize() const;
SPI_HandleTypeDef& getSpiHandle();
private:
address_t deviceAddress;
SPI_HandleTypeDef spiHandle = {};
spi::SpiBus spiIdx;
uint32_t spiSpeed;
spi::SpiModes spiMode;
spi::TransferModes transferMode;
volatile spi::TransferStates transferState = spi::TransferStates::IDLE;
uint16_t chipSelectGpioPin;
GPIO_TypeDef* chipSelectGpioPort;
// The MSP configuration is cached here. Be careful when using this, it is automatically
// deleted by the SPI communication interface if it is not required anymore!
spi::MspCfgBase* mspCfg = nullptr;
const size_t maxRecvSize;
// Only the SpiComIF is allowed to use this to prevent dangling pointers issues
spi::MspCfgBase* getMspCfg();
void deleteMspCfg();
void setTransferState(spi::TransferStates transferState);
spi::TransferStates getTransferState() const;
};
#endif /* FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_ */

View File

@ -0,0 +1,114 @@
#ifndef FSFW_HAL_STM32H7_SPI_MSPINIT_H_
#define FSFW_HAL_STM32H7_SPI_MSPINIT_H_
#include "spiDefinitions.h"
#include "../dma.h"
#include "stm32h7xx_hal_spi.h"
#include <cstdint>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief This file provides MSP implementation for DMA, IRQ and Polling mode for the
* SPI peripheral. This configuration is required for the SPI communication to work.
*/
namespace spi {
struct MspCfgBase {
virtual ~MspCfgBase() = default;
void (* cleanUpMacroWrapper) (void) = nullptr;
void (* setupMacroWrapper) (void) = nullptr;
GPIO_TypeDef* sckPort = nullptr;
uint32_t sckPin = 0;
uint8_t sckAlternateFunction = 0;
GPIO_TypeDef* mosiPort = nullptr;
uint32_t mosiPin = 0;
uint8_t mosiAlternateFunction = 0;
GPIO_TypeDef* misoPort = nullptr;
uint32_t misoPin = 0;
uint8_t misoAlternateFunction = 0;
};
struct MspPollingConfigStruct: public MspCfgBase {};
/* A valid instance of this struct must be passed to the MSP initialization function as a void*
argument */
struct MspIrqConfigStruct: public MspPollingConfigStruct {
SpiBus spiBus = SpiBus::SPI_1;
user_handler_t spiIrqHandler = nullptr;
user_args_t spiUserArgs = nullptr;
IRQn_Type spiIrqNumber = SPI1_IRQn;
// Priorities for NVIC
// Pre-Empt priority ranging from 0 to 15. If FreeRTOS calls are used, only 5-15 are allowed
IrqPriorities preEmptPriority = IrqPriorities::LOWEST;
IrqPriorities subpriority = IrqPriorities::LOWEST;
};
/* A valid instance of this struct must be passed to the MSP initialization function as a void*
argument */
struct MspDmaConfigStruct: public MspIrqConfigStruct {
void (* dmaClkEnableWrapper) (void) = nullptr;
dma::DMAIndexes txDmaIndex;
dma::DMAIndexes rxDmaIndex;
dma::DMAStreams txDmaStream;
dma::DMAStreams rxDmaStream;
IRQn_Type txDmaIrqNumber = DMA1_Stream0_IRQn;
IRQn_Type rxDmaIrqNumber = DMA1_Stream1_IRQn;
// Priorities for NVIC
IrqPriorities txPreEmptPriority = IrqPriorities::LOWEST;
IrqPriorities rxPreEmptPriority = IrqPriorities::LOWEST;
IrqPriorities txSubpriority = IrqPriorities::LOWEST;
IrqPriorities rxSubpriority = IrqPriorities::LOWEST;
};
using msp_func_t = void (*) (SPI_HandleTypeDef* hspi, MspCfgBase* cfg);
void getMspInitFunction(msp_func_t* init_func, MspCfgBase **args);
void getMspDeinitFunction(msp_func_t* deinit_func, MspCfgBase **args);
void halMspInitDma(SPI_HandleTypeDef* hspi, MspCfgBase* cfg);
void halMspDeinitDma(SPI_HandleTypeDef* hspi, MspCfgBase* cfg);
void halMspInitInterrupt(SPI_HandleTypeDef* hspi, MspCfgBase* cfg);
void halMspDeinitInterrupt(SPI_HandleTypeDef* hspi, MspCfgBase* cfg);
void halMspInitPolling(SPI_HandleTypeDef* hspi, MspCfgBase* cfg);
void halMspDeinitPolling(SPI_HandleTypeDef* hspi, MspCfgBase* cfg);
/**
* Assign MSP init functions. Important for SPI configuration
* @param init_func
* @param init_args
* @param deinit_func
* @param deinit_args
*/
void setSpiDmaMspFunctions(MspDmaConfigStruct* cfg,
msp_func_t initFunc = &spi::halMspInitDma,
msp_func_t deinitFunc= &spi::halMspDeinitDma
);
void setSpiIrqMspFunctions(MspIrqConfigStruct* cfg,
msp_func_t initFunc = &spi::halMspInitInterrupt,
msp_func_t deinitFunc= &spi::halMspDeinitInterrupt
);
void setSpiPollingMspFunctions(MspPollingConfigStruct* cfg,
msp_func_t initFunc = &spi::halMspInitPolling,
msp_func_t deinitFunc= &spi::halMspDeinitPolling
);
void mspErrorHandler(const char* const function, const char *const message);
}
#ifdef __cplusplus
}
#endif
#endif /* FSFW_HAL_STM32H7_SPI_MSPINIT_H_ */

View File

@ -0,0 +1,53 @@
#ifndef FSFW_HAL_STM32H7_SPI_SPICORE_H_
#define FSFW_HAL_STM32H7_SPI_SPICORE_H_
#include <fsfw_hal/stm32h7/dma.h>
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_dma.h"
#ifdef __cplusplus
extern "C" {
#endif
using spi_transfer_cb_t = void (*) (SPI_HandleTypeDef *hspi, void* userArgs);
namespace spi {
void configureDmaHandle(DMA_HandleTypeDef* handle, spi::SpiBus spiBus,
dma::DMAType dmaType, dma::DMAIndexes dmaIdx,
dma::DMAStreams dmaStream, IRQn_Type* dmaIrqNumber, uint32_t dmaMode = DMA_NORMAL,
uint32_t dmaPriority = DMA_PRIORITY_LOW);
/**
* Assign DMA handles. Required to use DMA for SPI transfers.
* @param txHandle
* @param rxHandle
*/
void setDmaHandles(DMA_HandleTypeDef* txHandle, DMA_HandleTypeDef* rxHandle);
void getDmaHandles(DMA_HandleTypeDef** txHandle, DMA_HandleTypeDef** rxHandle);
/**
* Assign SPI handle. Needs to be done before using the SPI
* @param spiHandle
*/
void setSpiHandle(SPI_HandleTypeDef *spiHandle);
void assignTransferRxTxCompleteCallback(spi_transfer_cb_t callback, void* userArgs);
void assignTransferRxCompleteCallback(spi_transfer_cb_t callback, void* userArgs);
void assignTransferTxCompleteCallback(spi_transfer_cb_t callback, void* userArgs);
void assignTransferErrorCallback(spi_transfer_cb_t callback, void* userArgs);
/**
* Get the assigned SPI handle.
* @return
*/
SPI_HandleTypeDef* getSpiHandle();
}
#ifdef __cplusplus
}
#endif
#endif /* FSFW_HAL_STM32H7_SPI_SPICORE_H_ */

View File

@ -0,0 +1,50 @@
#ifndef FSFW_HAL_STM32H7_SPI_SPIDEFINITIONS_H_
#define FSFW_HAL_STM32H7_SPI_SPIDEFINITIONS_H_
#include "../../common/spi/spiCommon.h"
#include "fsfw/returnvalues/FwClassIds.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_spi.h"
namespace spi {
static constexpr uint8_t HAL_SPI_ID = CLASS_ID::HAL_SPI;
static constexpr ReturnValue_t HAL_TIMEOUT_RETVAL = HasReturnvaluesIF::makeReturnCode(HAL_SPI_ID, 0);
static constexpr ReturnValue_t HAL_BUSY_RETVAL = HasReturnvaluesIF::makeReturnCode(HAL_SPI_ID, 1);
static constexpr ReturnValue_t HAL_ERROR_RETVAL = HasReturnvaluesIF::makeReturnCode(HAL_SPI_ID, 2);
enum class TransferStates {
IDLE,
WAIT,
SUCCESS,
FAILURE
};
enum SpiBus {
SPI_1,
SPI_2
};
enum TransferModes {
POLLING,
INTERRUPT,
DMA
};
void assignSpiMode(SpiModes spiMode, SPI_HandleTypeDef& spiHandle);
/**
* @brief Set SPI frequency to calculate correspondent baud-rate prescaler.
* @param clock_src_freq Frequency of clock source
* @param baudrate_mbps Baudrate to set to set
* @retval Baudrate prescaler
*/
uint32_t getPrescaler(uint32_t clock_src_freq, uint32_t baudrate_mbps);
}
#endif /* FSFW_HAL_STM32H7_SPI_SPIDEFINITIONS_H_ */

View File

@ -0,0 +1,41 @@
#ifndef FSFW_HAL_STM32H7_SPI_INTERRUPTS_H_
#define FSFW_HAL_STM32H7_SPI_INTERRUPTS_H_
#include "../interrupts.h"
#include "spiDefinitions.h"
#ifdef __cplusplus
extern "C" {
#endif
namespace spi {
void assignSpiUserArgs(spi::SpiBus spiBus, user_args_t userArgs);
/**
* Assign a user interrupt handler for SPI bus 1, allowing to pass an arbitrary argument as well.
* Generally, this argument will be the related SPI handle.
* @param user_handler
* @param user_args
*/
void assignSpiUserHandler(spi::SpiBus spiBus, user_handler_t user_handler,
user_args_t user_args);
void getSpiUserHandler(spi::SpiBus spiBus, user_handler_t* user_handler,
user_args_t* user_args);
/**
* Generic interrupt handlers supplied for convenience. Do not call these directly! Set them
* instead with assign_dma_user_handler and assign_spi_user_handler functions.
* @param dma_handle
*/
void dmaRxIrqHandler(void* dma_handle);
void dmaTxIrqHandler(void* dma_handle);
void spiIrqHandler(void* spi_handle);
}
#ifdef __cplusplus
}
#endif
#endif /* FSFW_HAL_STM32H7_SPI_INTERRUPTS_H_ */

View File

@ -0,0 +1,23 @@
#ifndef FSFW_HAL_STM32H7_SPI_STM32H743ZISPI_H_
#define FSFW_HAL_STM32H7_SPI_STM32H743ZISPI_H_
#include "mspInit.h"
namespace spi {
namespace h743zi {
void standardPollingCfg(MspPollingConfigStruct& cfg);
void standardInterruptCfg(MspIrqConfigStruct& cfg, IrqPriorities spiIrqPrio,
IrqPriorities spiSubprio = HIGHEST);
void standardDmaCfg(MspDmaConfigStruct& cfg, IrqPriorities spiIrqPrio,
IrqPriorities txIrqPrio, IrqPriorities rxIrqPrio,
IrqPriorities spiSubprio = HIGHEST, IrqPriorities txSubPrio = HIGHEST,
IrqPriorities rxSubprio = HIGHEST);
}
}
#endif /* FSFW_HAL_STM32H7_SPI_STM32H743ZISPI_H_ */

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
GpioCookie.cpp
)

View File

@ -0,0 +1,50 @@
#include "GpioCookie.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
GpioCookie::GpioCookie() {
}
ReturnValue_t GpioCookie::addGpio(gpioId_t gpioId, GpioBase* gpioConfig) {
if (gpioConfig == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: gpioConfig is nullpointer" << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: gpioConfig is nullpointer\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
auto gpioMapIter = gpioMap.find(gpioId);
if(gpioMapIter == gpioMap.end()) {
auto statusPair = gpioMap.emplace(gpioId, gpioConfig);
if (statusPair.second == false) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: Failed to add GPIO " << gpioId <<
" to GPIO map" << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: Failed to add GPIO %d to GPIO map\n", gpioId);
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: GPIO already exists in GPIO map " << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: GPIO already exists in GPIO map\n");
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
GpioMap GpioCookie::getGpioMap() const {
return gpioMap;
}
GpioCookie::~GpioCookie() {
for(auto& config: gpioMap) {
delete(config.second);
}
}

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
GyroL3GD20Handler.cpp
)

View File

@ -0,0 +1,262 @@
#include "GyroL3GD20Handler.h"
#include <fsfw/datapool/PoolReadGuard.h>
GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF *comCookie):
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
dataset(this) {
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
debugDivider = new PeriodicOperationDivider(5);
#endif
}
GyroHandlerL3GD20H::~GyroHandlerL3GD20H() {}
void GyroHandlerL3GD20H::doStartUp() {
if(internalState == InternalState::NONE) {
internalState = InternalState::CONFIGURE;
}
if(internalState == InternalState::CONFIGURE) {
if(commandExecuted) {
internalState = InternalState::CHECK_REGS;
commandExecuted = false;
}
}
if(internalState == InternalState::CHECK_REGS) {
if(commandExecuted) {
internalState = InternalState::NORMAL;
if(goNormalModeImmediately) {
setMode(MODE_NORMAL);
}
else {
setMode(_MODE_TO_ON);
}
commandExecuted = false;
}
}
}
void GyroHandlerL3GD20H::doShutDown() {
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t GyroHandlerL3GD20H::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
switch(internalState) {
case(InternalState::NONE):
case(InternalState::NORMAL): {
return HasReturnvaluesIF::RETURN_OK;
}
case(InternalState::CONFIGURE): {
*id = L3GD20H::CONFIGURE_CTRL_REGS;
uint8_t command [5];
command[0] = L3GD20H::CTRL_REG_1_VAL;
command[1] = L3GD20H::CTRL_REG_2_VAL;
command[2] = L3GD20H::CTRL_REG_3_VAL;
command[3] = L3GD20H::CTRL_REG_4_VAL;
command[4] = L3GD20H::CTRL_REG_5_VAL;
return buildCommandFromCommand(*id, command, 5);
}
case(InternalState::CHECK_REGS): {
*id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0);
}
default:
#if FSFW_CPP_OSTREAM_ENABLED == 1
/* Might be a configuration error. */
sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" <<
std::endl;
#else
sif::printDebug("GyroHandler::buildTransitionDeviceCommand: Unknown internal state!\n");
#endif
return HasReturnvaluesIF::RETURN_OK;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::buildNormalDeviceCommand(DeviceCommandId_t *id) {
*id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t GyroHandlerL3GD20H::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(L3GD20H::READ_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN);
rawPacket = commandBuffer;
rawPacketLen = L3GD20H::READ_LEN + 1;
break;
}
case(L3GD20H::CONFIGURE_CTRL_REGS): {
commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK;
if(commandData == nullptr or commandDataLen != 5) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
ctrlReg1Value = commandData[0];
ctrlReg2Value = commandData[1];
ctrlReg3Value = commandData[2];
ctrlReg4Value = commandData[3];
ctrlReg5Value = commandData[4];
bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1;
bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0;
if(not fsH and not fsL) {
sensitivity = L3GD20H::SENSITIVITY_00;
}
else if(not fsH and fsL) {
sensitivity = L3GD20H::SENSITIVITY_01;
}
else {
sensitivity = L3GD20H::SENSITIVITY_11;
}
commandBuffer[1] = ctrlReg1Value;
commandBuffer[2] = ctrlReg2Value;
commandBuffer[3] = ctrlReg3Value;
commandBuffer[4] = ctrlReg4Value;
commandBuffer[5] = ctrlReg5Value;
rawPacket = commandBuffer;
rawPacketLen = 6;
break;
}
case(L3GD20H::READ_CTRL_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK |
L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, 5);
rawPacket = commandBuffer;
rawPacketLen = 6;
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) {
/* For SPI, the ID will always be the one of the last sent command. */
*foundId = this->getPendingCommand();
*foundLen = this->rawPacketLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
case(L3GD20H::CONFIGURE_CTRL_REGS): {
commandExecuted = true;
break;
}
case(L3GD20H::READ_CTRL_REGS): {
if(packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and
packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and
packet[5] == ctrlReg5Value) {
commandExecuted = true;
}
else {
/* Attempt reconfiguration. */
internalState = InternalState::CONFIGURE;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(L3GD20H::READ_REGS): {
if(packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and
packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and
packet[5] != ctrlReg5Value) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
else {
if(internalState == InternalState::CHECK_REGS) {
commandExecuted = true;
}
}
statusReg = packet[L3GD20H::STATUS_IDX];
int16_t angVelocXRaw = packet[L3GD20H::OUT_X_H] << 8 | packet[L3GD20H::OUT_X_L];
int16_t angVelocYRaw = packet[L3GD20H::OUT_Y_H] << 8 | packet[L3GD20H::OUT_Y_L];
int16_t angVelocZRaw = packet[L3GD20H::OUT_Z_H] << 8 | packet[L3GD20H::OUT_Z_L];
float angVelocX = angVelocXRaw * sensitivity;
float angVelocY = angVelocYRaw * sensitivity;
float angVelocZ = angVelocZRaw * sensitivity;
int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX];
float temperature = 25.0 + temperaturOffset;
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
if(debugDivider->checkAndIncrement()) {
/* Set terminal to utf-8 if there is an issue with micro printout. */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "GyroHandlerL3GD20H: Angular velocities in degrees per second:" <<
std::endl;
sif::info << "X: " << angVelocX << " \xC2\xB0" << std::endl;
sif::info << "Y: " << angVelocY << " \xC2\xB0" << std::endl;
sif::info << "Z: " << angVelocZ << " \xC2\xB0" << std::endl;
#else
sif::printInfo("GyroHandlerL3GD20H: Angular velocities in degrees per second:\n");
sif::printInfo("X: %f\n", angVelocX);
sif::printInfo("Y: %f\n", angVelocY);
sif::printInfo("Z: %f\n", angVelocZ);
#endif
}
#endif
PoolReadGuard readSet(&dataset);
if(readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
dataset.angVelocX = angVelocX;
dataset.angVelocY = angVelocY;
dataset.angVelocZ = angVelocZ;
dataset.temperature = temperature;
dataset.setValidity(true, true);
}
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return result;
}
uint32_t GyroHandlerL3GD20H::getTransitionDelayMs(Mode_t from, Mode_t to) {
return 10000;
}
void GyroHandlerL3GD20H::setGoNormalModeAtStartup() {
this->goNormalModeImmediately = true;
}
ReturnValue_t GyroHandlerL3GD20H::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::TEMPERATURE,
new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
}
void GyroHandlerL3GD20H::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset);
insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1);
insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1);
}
void GyroHandlerL3GD20H::modeChanged() {
internalState = InternalState::NONE;
}

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,13 @@
if(FSFW_HAL_ADD_RASPBERRY_PI)
add_subdirectory(rpi)
endif()
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
UnixFileGuard.cpp
utility.cpp
)
add_subdirectory(gpio)
add_subdirectory(spi)
add_subdirectory(i2c)
add_subdirectory(uart)

View File

@ -0,0 +1,33 @@
#include "UnixFileGuard.h"
UnixFileGuard::UnixFileGuard(std::string device, int* fileDescriptor, int flags,
std::string diagnosticPrefix):
fileDescriptor(fileDescriptor) {
if(fileDescriptor == nullptr) {
return;
}
*fileDescriptor = open(device.c_str(), flags);
if (*fileDescriptor < 0) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << diagnosticPrefix <<"Opening device failed with error code " << errno <<
"." << std::endl;
sif::warning << "Error description: " << strerror(errno) << std::endl;
#else
sif::printError("%sOpening device failed with error code %d.\n", diagnosticPrefix);
sif::printWarning("Error description: %s\n", strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
openStatus = OPEN_FILE_FAILED;
}
}
UnixFileGuard::~UnixFileGuard() {
if(fileDescriptor != nullptr) {
close(*fileDescriptor);
}
}
ReturnValue_t UnixFileGuard::getOpenResult() const {
return openStatus;
}

View File

@ -0,0 +1,12 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
LinuxLibgpioIF.cpp
)
# This abstraction layer requires the gpiod library. You can install this library
# with "sudo apt-get install -y libgpiod-dev". If you are cross-compiling, you need
# to install the package before syncing the sysroot to your host computer.
find_library(LIB_GPIO gpiod REQUIRED)
target_link_libraries(${LIB_FSFW_HAL_NAME} PRIVATE
${LIB_GPIO}
)

View File

@ -0,0 +1,305 @@
#include "LinuxLibgpioIF.h"
#include <common/gpio/gpioDefinitions.h>
#include <common/gpio/GpioCookie.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <utility>
#include <unistd.h>
#include <gpiod.h>
LinuxLibgpioIF::LinuxLibgpioIF(object_id_t objectId) : SystemObject(objectId) {
}
LinuxLibgpioIF::~LinuxLibgpioIF() {
for(auto& config: gpioMap) {
delete(config.second);
}
}
ReturnValue_t LinuxLibgpioIF::addGpios(GpioCookie* gpioCookie) {
ReturnValue_t result;
if(gpioCookie == nullptr) {
sif::error << "LinuxLibgpioIF::initialize: Invalid cookie" << std::endl;
return RETURN_FAILED;
}
GpioMap mapToAdd = gpioCookie->getGpioMap();
/* Check whether this ID already exists in the map and remove duplicates */
result = checkForConflicts(mapToAdd);
if (result != RETURN_OK){
return result;
}
result = configureGpios(mapToAdd);
if (result != RETURN_OK) {
return RETURN_FAILED;
}
/* Register new GPIOs in gpioMap */
gpioMap.insert(mapToAdd.begin(), mapToAdd.end());
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::configureGpios(GpioMap& mapToAdd) {
for(auto& gpioConfig: mapToAdd) {
switch(gpioConfig.second->gpioType) {
case(gpio::GpioTypes::NONE): {
return GPIO_INVALID_INSTANCE;
}
case(gpio::GpioTypes::GPIO_REGULAR): {
GpiodRegular* regularGpio = dynamic_cast<GpiodRegular*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_INVALID_INSTANCE;
}
configureRegularGpio(gpioConfig.first, regularGpio);
break;
}
case(gpio::GpioTypes::CALLBACK): {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioConfig.first, gpio::GpioOperation::WRITE,
gpioCallback->initValue, gpioCallback->callbackArgs);
}
}
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, GpiodRegular *regularGpio) {
std::string chipname;
unsigned int lineNum;
struct gpiod_chip *chip;
gpio::Direction direction;
std::string consumer;
struct gpiod_line *lineHandle;
int result = 0;
chipname = regularGpio->chipname;
chip = gpiod_chip_open_by_name(chipname.c_str());
if (!chip) {
sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open chip "
<< chipname << ". Gpio ID: " << gpioId << std::endl;
return RETURN_FAILED;
}
lineNum = regularGpio->lineNum;
lineHandle = gpiod_chip_get_line(chip, lineNum);
if (!lineHandle) {
sif::debug << "LinuxLibgpioIF::configureRegularGpio: Failed to open line " << std::endl;
sif::debug << "GPIO ID: " << gpioId << ", line number: " << lineNum <<
", chipname: " << chipname << std::endl;
sif::debug << "Check if linux GPIO configuration has changed. " << std::endl;
gpiod_chip_close(chip);
return RETURN_FAILED;
}
direction = regularGpio->direction;
consumer = regularGpio->consumer;
/* Configure direction and add a description to the GPIO */
switch (direction) {
case(gpio::OUT): {
result = gpiod_line_request_output(lineHandle, consumer.c_str(),
regularGpio->initValue);
if (result < 0) {
sif::error << "LinuxLibgpioIF::configureRegularGpio: Failed to request line " << lineNum <<
" from GPIO instance with ID: " << gpioId << std::endl;
gpiod_line_release(lineHandle);
return RETURN_FAILED;
}
break;
}
case(gpio::IN): {
result = gpiod_line_request_input(lineHandle, consumer.c_str());
if (result < 0) {
sif::error << "LinuxLibgpioIF::configureGpios: Failed to request line "
<< lineNum << " from GPIO instance with ID: " << gpioId << std::endl;
gpiod_line_release(lineHandle);
return RETURN_FAILED;
}
break;
}
default: {
sif::error << "LinuxLibgpioIF::configureGpios: Invalid direction specified"
<< std::endl;
return GPIO_INVALID_INSTANCE;
}
}
/**
* Write line handle to GPIO configuration instance so it can later be used to set or
* read states of GPIOs.
*/
regularGpio->lineHandle = lineHandle;
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::pullHigh(gpioId_t gpioId) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) {
sif::warning << "LinuxLibgpioIF::pullHigh: Unknown GPIO ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
return driveGpio(gpioId, dynamic_cast<GpiodRegular*>(gpioMapIter->second), 1);
}
else {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE,
1, gpioCallback->callbackArgs);
return RETURN_OK;
}
return GPIO_TYPE_FAILURE;
}
ReturnValue_t LinuxLibgpioIF::pullLow(gpioId_t gpioId) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) {
sif::warning << "LinuxLibgpioIF::pullLow: Unknown GPIO ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
return driveGpio(gpioId, dynamic_cast<GpiodRegular*>(gpioMapIter->second), 0);
}
else {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE,
0, gpioCallback->callbackArgs);
return RETURN_OK;
}
return GPIO_TYPE_FAILURE;
}
ReturnValue_t LinuxLibgpioIF::driveGpio(gpioId_t gpioId,
GpiodRegular* regularGpio, unsigned int logicLevel) {
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
int result = gpiod_line_set_value(regularGpio->lineHandle, logicLevel);
if (result < 0) {
sif::warning << "LinuxLibgpioIF::driveGpio: Failed to pull GPIO with ID " << gpioId <<
" to logic level " << logicLevel << std::endl;
return DRIVE_GPIO_FAILURE;
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::readGpio(gpioId_t gpioId, int* gpioState) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()){
sif::warning << "LinuxLibgpioIF::readGpio: Unknown GPIOD ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
GpiodRegular* regularGpio = dynamic_cast<GpiodRegular*>(gpioMapIter->second);
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
*gpioState = gpiod_line_get_value(regularGpio->lineHandle);
}
else {
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::checkForConflicts(GpioMap& mapToAdd){
ReturnValue_t status = HasReturnvaluesIF::RETURN_OK;
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
for(auto& gpioConfig: mapToAdd) {
switch(gpioConfig.second->gpioType) {
case(gpio::GpioTypes::GPIO_REGULAR): {
auto regularGpio = dynamic_cast<GpiodRegular*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Check for conflicts and remove duplicates if necessary */
result = checkForConflictsRegularGpio(gpioConfig.first, regularGpio, mapToAdd);
if(result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
}
case(gpio::GpioTypes::CALLBACK): {
auto callbackGpio = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(callbackGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Check for conflicts and remove duplicates if necessary */
result = checkForConflictsCallbackGpio(gpioConfig.first, callbackGpio, mapToAdd);
if(result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
}
default: {
}
}
}
return status;
}
ReturnValue_t LinuxLibgpioIF::checkForConflictsRegularGpio(gpioId_t gpioIdToCheck,
GpiodRegular* gpioToCheck, GpioMap& mapToAdd) {
/* Cross check with private map */
gpioMapIter = gpioMap.find(gpioIdToCheck);
if(gpioMapIter != gpioMap.end()) {
if(gpioMapIter->second->gpioType != gpio::GpioTypes::GPIO_REGULAR) {
sif::warning << "LinuxLibgpioIF::checkForConflicts: ID already exists for different "
"GPIO type" << gpioIdToCheck << ". Removing duplicate." << std::endl;
mapToAdd.erase(gpioIdToCheck);
return HasReturnvaluesIF::RETURN_OK;
}
auto ownRegularGpio = dynamic_cast<GpiodRegular*>(gpioMapIter->second);
if(ownRegularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Remove element from map to add because a entry for this GPIO
already exists */
sif::warning << "LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO definition"
<< " detected. Duplicate will be removed from map to add." << std::endl;
mapToAdd.erase(gpioIdToCheck);
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::checkForConflictsCallbackGpio(gpioId_t gpioIdToCheck,
GpioCallback *callbackGpio, GpioMap& mapToAdd) {
/* Cross check with private map */
gpioMapIter = gpioMap.find(gpioIdToCheck);
if(gpioMapIter != gpioMap.end()) {
if(gpioMapIter->second->gpioType != gpio::GpioTypes::CALLBACK) {
sif::warning << "LinuxLibgpioIF::checkForConflicts: ID already exists for different "
"GPIO type" << gpioIdToCheck << ". Removing duplicate." << std::endl;
mapToAdd.erase(gpioIdToCheck);
return HasReturnvaluesIF::RETURN_OK;
}
/* Remove element from map to add because a entry for this GPIO
already exists */
sif::warning << "LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO definition"
<< " detected. Duplicate will be removed from map to add." << std::endl;
mapToAdd.erase(gpioIdToCheck);
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,8 @@
target_sources(${LIB_FSFW_HAL_NAME} PUBLIC
I2cComIF.cpp
I2cCookie.cpp
)

View File

@ -0,0 +1,205 @@
#include "I2cComIF.h"
#include "../utility.h"
#include "../UnixFileGuard.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>
#include <errno.h>
#include <cstring>
I2cComIF::I2cComIF(object_id_t objectId): SystemObject(objectId){
}
I2cComIF::~I2cComIF() {}
ReturnValue_t I2cComIF::initializeInterface(CookieIF* cookie) {
address_t i2cAddress;
std::string deviceFile;
if(cookie == nullptr) {
sif::error << "I2cComIF::initializeInterface: Invalid cookie!" << std::endl;
return NULLPOINTER;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::initializeInterface: Invalid I2C cookie!" << std::endl;
return NULLPOINTER;
}
i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if(i2cDeviceMapIter == i2cDeviceMap.end()) {
size_t maxReplyLen = i2cCookie->getMaxReplyLen();
I2cInstance i2cInstance = {std::vector<uint8_t>(maxReplyLen), 0};
auto statusPair = i2cDeviceMap.emplace(i2cAddress, i2cInstance);
if (not statusPair.second) {
sif::error << "I2cComIF::initializeInterface: Failed to insert device with address " <<
i2cAddress << "to I2C device " << "map" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
sif::error << "I2cComIF::initializeInterface: Device with address " << i2cAddress <<
"already in use" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t I2cComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if(sendData == nullptr) {
sif::error << "I2cComIF::sendMessage: Send Data is nullptr"
<< std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
if(sendLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::sendMessage: Invalid I2C Cookie!" << std::endl;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::sendMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::sendMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK){
return result;
}
if (write(fd, sendData, sendLen) != (int)sendLen) {
sif::error << "I2cComIF::sendMessage: Failed to send data to I2C "
"device with error code " << errno << ". Error description: "
<< strerror(errno) << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::requestReceiveMessage(CookieIF *cookie,
size_t requestLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if (requestLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::requestReceiveMessage: Invalid I2C Cookie!" << std::endl;
i2cDeviceMapIter->second.replyLen = 0;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::requestReceiveMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
i2cDeviceMapIter->second.replyLen = 0;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::requestReceiveMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK){
i2cDeviceMapIter->second.replyLen = 0;
return result;
}
uint8_t* replyBuffer = i2cDeviceMapIter->second.replyBuffer.data();
int readLen = read(fd, replyBuffer, requestLen);
if (readLen != static_cast<int>(requestLen)) {
#if FSFW_VERBOSE_LEVEL >= 1 and FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::requestReceiveMessage: Reading from I2C "
<< "device failed with error code " << errno <<". Description"
<< " of error: " << strerror(errno) << std::endl;
sif::error << "I2cComIF::requestReceiveMessage: Read only " << readLen << " from "
<< requestLen << " bytes" << std::endl;
#endif
i2cDeviceMapIter->second.replyLen = 0;
sif::debug << "I2cComIF::requestReceiveMessage: Read " << readLen << " of " << requestLen << " bytes" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
i2cDeviceMapIter->second.replyLen = requestLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t* size) {
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::readReceivedMessage: Invalid I2C Cookie!" << std::endl;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::readReceivedMessage: i2cAddress of Cookie not "
<< "found in i2cDeviceMap" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = i2cDeviceMapIter->second.replyBuffer.data();
*size = i2cDeviceMapIter->second.replyLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::openDevice(std::string deviceFile,
address_t i2cAddress, int* fileDescriptor) {
if (ioctl(*fileDescriptor, I2C_SLAVE, i2cAddress) < 0) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "I2cComIF: Specifying target device failed with error code " << errno << "."
<< std::endl;
sif::warning << "Error description " << strerror(errno) << std::endl;
#else
sif::printWarning("I2cComIF: Specifying target device failed with error code %d.\n");
sif::printWarning("Error description: %s\n", strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,20 @@
#include "I2cCookie.h"
I2cCookie::I2cCookie(address_t i2cAddress_, size_t maxReplyLen_,
std::string deviceFile_) :
i2cAddress(i2cAddress_), maxReplyLen(maxReplyLen_), deviceFile(deviceFile_) {
}
address_t I2cCookie::getAddress() const {
return i2cAddress;
}
size_t I2cCookie::getMaxReplyLen() const {
return maxReplyLen;
}
std::string I2cCookie::getDeviceFile() const {
return deviceFile;
}
I2cCookie::~I2cCookie() {}

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
GpioRPi.cpp
)

View File

@ -0,0 +1,37 @@
#include "GpioRPi.h"
#include "../../common/gpio/GpioCookie.h"
#include <FSFWConfig.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
ReturnValue_t gpio::createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue) {
if(cookie == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
GpiodRegular* config = new GpiodRegular();
/* Default chipname for Raspberry Pi. There is still gpiochip1 for expansion, but most users
will not need this */
config->chipname = "gpiochip0";
config->consumer = consumer;
config->direction = direction;
config->initValue = initValue;
/* Sanity check for the BCM pins before assigning it */
if(bcmPin > 27) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "createRpiGpioConfig: BCM pin " << bcmPin << " invalid!" << std::endl;
#else
sif::printError("createRpiGpioConfig: BCM pin %d invalid!\n", bcmPin);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
config->lineNum = bcmPin;
cookie->addGpio(gpioId, config);
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,8 @@
target_sources(${LIB_FSFW_HAL_NAME} PUBLIC
SpiComIF.cpp
SpiCookie.cpp
)

View File

@ -0,0 +1,398 @@
#include "SpiComIF.h"
#include "SpiCookie.h"
#include "../utility.h"
#include "../UnixFileGuard.h"
#include "FSFWConfig.h"
#include <fsfw/ipc/MutexFactory.h>
#include <fsfw/globalfunctions/arrayprinter.h>
#include <linux/spi/spidev.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <cerrno>
#include <cstring>
/* Can be used for low-level debugging of the SPI bus */
#ifndef FSFW_HAL_LINUX_SPI_WIRETAPPING
#define FSFW_HAL_LINUX_SPI_WIRETAPPING 0
#endif
SpiComIF::SpiComIF(object_id_t objectId, GpioIF* gpioComIF):
SystemObject(objectId), gpioComIF(gpioComIF) {
if(gpioComIF == nullptr) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::SpiComIF: GPIO communication interface invalid!" << std::endl;
#else
sif::printError("SpiComIF::SpiComIF: GPIO communication interface invalid!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
}
spiMutex = MutexFactory::instance()->createMutex();
}
ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) {
int retval = 0;
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
address_t spiAddress = spiCookie->getSpiAddress();
auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) {
size_t bufferSize = spiCookie->getMaxBufferSize();
SpiInstance spiInstance(bufferSize);
auto statusPair = spiDeviceMap.emplace(spiAddress, spiInstance);
if (not statusPair.second) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: Failed to insert device with address " <<
spiAddress << "to SPI device map" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: Failed to insert device with address "
"%lu to SPI device map\n", static_cast<unsigned long>(spiAddress));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
/* Now we emplaced the read buffer in the map, we still need to assign that location
to the SPI driver transfer struct */
spiCookie->assignReadBuffer(statusPair.first->second.replyBuffer.data());
}
else {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: SPI address already exists!" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: SPI address already exists!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
/* Pull CS high in any case to be sure that device is inactive */
gpioId_t gpioId = spiCookie->getChipSelectPin();
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
}
size_t spiSpeed = 0;
spi::SpiModes spiMode = spi::SpiModes::MODE_0;
SpiCookie::UncommonParameters params;
spiCookie->getSpiParameters(spiMode, spiSpeed, &params);
int fileDescriptor = 0;
UnixFileGuard fileHelper(spiCookie->getSpiDevice(), &fileDescriptor, O_RDWR,
"SpiComIF::initializeInterface: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
/* These flags are rather uncommon */
if(params.threeWireSpi or params.noCs or params.csHigh) {
uint32_t currentMode = 0;
retval = ioctl(fileDescriptor, SPI_IOC_RD_MODE32, &currentMode);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not read full mode!");
}
if(params.threeWireSpi) {
currentMode |= SPI_3WIRE;
}
if(params.noCs) {
/* Some drivers like the Raspberry Pi ignore this flag in any case */
currentMode |= SPI_NO_CS;
}
if(params.csHigh) {
currentMode |= SPI_CS_HIGH;
}
/* Write adapted mode */
retval = ioctl(fileDescriptor, SPI_IOC_WR_MODE32, &currentMode);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not write full mode!");
}
}
if(params.lsbFirst) {
retval = ioctl(fileDescriptor, SPI_IOC_WR_LSB_FIRST, &params.lsbFirst);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initializeInterface: Setting LSB first failed");
}
}
if(params.bitsPerWord != 8) {
retval = ioctl(fileDescriptor, SPI_IOC_WR_BITS_PER_WORD, &params.bitsPerWord);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initializeInterface: "
"Could not write bits per word!");
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
if(spiCookie == nullptr) {
return NULLPOINTER;
}
if(sendLen > spiCookie->getMaxBufferSize()) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Too much data sent, send length" << sendLen <<
"larger than maximum buffer length" << spiCookie->getMaxBufferSize() << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Too much data sent, send length %lu larger "
"than maximum buffer length %lu!\n", static_cast<unsigned long>(sendLen),
static_cast<unsigned long>(spiCookie->getMaxBufferSize()));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return DeviceCommunicationIF::TOO_MUCH_DATA;
}
if(spiCookie->getComIfMode() == spi::SpiComIfModes::REGULAR) {
result = performRegularSendOperation(spiCookie, sendData, sendLen);
}
else if(spiCookie->getComIfMode() == spi::SpiComIfModes::CALLBACK) {
spi::send_callback_function_t sendFunc = nullptr;
void* funcArgs = nullptr;
spiCookie->getCallback(&sendFunc, &funcArgs);
if(sendFunc != nullptr) {
result = sendFunc(this, spiCookie, sendData, sendLen, funcArgs);
}
}
return result;
}
ReturnValue_t SpiComIF::performRegularSendOperation(SpiCookie *spiCookie, const uint8_t *sendData,
size_t sendLen) {
address_t spiAddress = spiCookie->getSpiAddress();
auto iter = spiDeviceMap.find(spiAddress);
if(iter != spiDeviceMap.end()) {
spiCookie->assignReadBuffer(iter->second.replyBuffer.data());
}
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
int retval = 0;
/* Prepare transfer */
int fileDescriptor = 0;
std::string device = spiCookie->getSpiDevice();
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::sendMessage: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return OPENING_FILE_FAILED;
}
spi::SpiModes spiMode = spi::SpiModes::MODE_0;
uint32_t spiSpeed = 0;
spiCookie->getSpiParameters(spiMode, spiSpeed, nullptr);
setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed);
spiCookie->assignWriteBuffer(sendData);
spiCookie->assignTransferSize(sendLen);
bool fullDuplex = spiCookie->isFullDuplex();
gpioId_t gpioId = spiCookie->getChipSelectPin();
/* Pull SPI CS low. For now, no support for active high given */
if(gpioId != gpio::NO_GPIO) {
result = spiMutex->lockMutex(timeoutType, timeoutMs);
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to lock mutex" << std::endl;
#endif
return result;
}
gpioComIF->pullLow(gpioId);
}
/* Execute transfer */
if(fullDuplex) {
/* Initiate a full duplex SPI transfer. */
retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), spiCookie->getTransferStructHandle());
if(retval < 0) {
utility::handleIoctlError("SpiComIF::sendMessage: ioctl error.");
result = FULL_DUPLEX_TRANSFER_FAILED;
}
#if FSFW_HAL_LINUX_SPI_WIRETAPPING == 1
performSpiWiretapping(spiCookie);
#endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */
}
else {
/* We write with a blocking half-duplex transfer here */
if (write(fileDescriptor, sendData, sendLen) != static_cast<ssize_t>(sendLen)) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Half-Duplex write operation failed!" <<
std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Half-Duplex write operation failed!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
result = HALF_DUPLEX_TRANSFER_FAILED;
}
}
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
result = spiMutex->unlockMutex();
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to unlock mutex" << std::endl;
#endif
return result;
}
}
return result;
}
ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
if(spiCookie->isFullDuplex()) {
return HasReturnvaluesIF::RETURN_OK;
}
return performHalfDuplexReception(spiCookie);
}
ReturnValue_t SpiComIF::performHalfDuplexReception(SpiCookie* spiCookie) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
std::string device = spiCookie->getSpiDevice();
int fileDescriptor = 0;
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR,
"SpiComIF::requestReceiveMessage: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return OPENING_FILE_FAILED;
}
uint8_t* rxBuf = nullptr;
size_t readSize = spiCookie->getCurrentTransferSize();
result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
gpioId_t gpioId = spiCookie->getChipSelectPin();
if(gpioId != gpio::NO_GPIO) {
result = spiMutex->lockMutex(timeoutType, timeoutMs);
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::getSendSuccess: Failed to lock mutex" << std::endl;
#endif
return result;
}
gpioComIF->pullLow(gpioId);
}
if(read(fileDescriptor, rxBuf, readSize) != static_cast<ssize_t>(readSize)) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Half-Duplex read operation failed!" << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Half-Duplex read operation failed!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
result = HALF_DUPLEX_TRANSFER_FAILED;
}
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
result = spiMutex->unlockMutex();
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::getSendSuccess: Failed to unlock mutex" << std::endl;
#endif
return result;
}
}
return result;
}
ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
uint8_t* rxBuf = nullptr;
ReturnValue_t result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
*buffer = rxBuf;
*size = spiCookie->getCurrentTransferSize();
return HasReturnvaluesIF::RETURN_OK;
}
MutexIF* SpiComIF::getMutex(MutexIF::TimeoutType* timeoutType, uint32_t* timeoutMs) {
if(timeoutType != nullptr) {
*timeoutType = this->timeoutType;
}
if(timeoutMs != nullptr) {
*timeoutMs = this->timeoutMs;
}
return spiMutex;
}
void SpiComIF::performSpiWiretapping(SpiCookie* spiCookie) {
if(spiCookie == nullptr) {
return;
}
size_t dataLen = spiCookie->getTransferStructHandle()->len;
uint8_t* dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->tx_buf);
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Sent SPI data: " << std::endl;
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
sif::info << "Received SPI data: " << std::endl;
#else
sif::printInfo("Sent SPI data: \n");
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
sif::printInfo("Received SPI data: \n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->rx_buf);
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
}
ReturnValue_t SpiComIF::getReadBuffer(address_t spiAddress, uint8_t** buffer) {
if(buffer == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = iter->second.replyBuffer.data();
return HasReturnvaluesIF::RETURN_OK;
}
GpioIF* SpiComIF::getGpioInterface() {
return gpioComIF;
}
void SpiComIF::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) {
int retval = ioctl(spiFd, SPI_IOC_WR_MODE, reinterpret_cast<uint8_t*>(&mode));
if(retval != 0) {
utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI mode failed!");
}
retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if(retval != 0) {
utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI speed failed!");
}
}

View File

@ -0,0 +1,144 @@
#include "SpiCookie.h"
SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed):
SpiCookie(spi::SpiComIfModes::REGULAR, spiAddress, chipSelect, spiDev, maxSize, spiMode,
spiSpeed, nullptr, nullptr) {
}
SpiCookie::SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxSize,
spi::SpiModes spiMode, uint32_t spiSpeed):
SpiCookie(spiAddress, gpio::NO_GPIO, spiDev, maxSize, spiMode, spiSpeed) {
}
SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void *args):
SpiCookie(spi::SpiComIfModes::CALLBACK, spiAddress, chipSelect, spiDev, maxSize,
spiMode, spiSpeed, callback, args) {
}
SpiCookie::SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect,
std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void* args):
spiAddress(spiAddress), chipSelectPin(chipSelect), spiDevice(spiDev),
comIfMode(comIfMode), maxSize(maxSize), spiMode(spiMode), spiSpeed(spiSpeed),
sendCallback(callback), callbackArgs(args) {
}
spi::SpiComIfModes SpiCookie::getComIfMode() const {
return this->comIfMode;
}
void SpiCookie::getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed,
UncommonParameters* parameters) const {
spiMode = this->spiMode;
spiSpeed = this->spiSpeed;
if(parameters != nullptr) {
parameters->threeWireSpi = uncommonParameters.threeWireSpi;
parameters->lsbFirst = uncommonParameters.lsbFirst;
parameters->noCs = uncommonParameters.noCs;
parameters->bitsPerWord = uncommonParameters.bitsPerWord;
parameters->csHigh = uncommonParameters.csHigh;
}
}
gpioId_t SpiCookie::getChipSelectPin() const {
return chipSelectPin;
}
size_t SpiCookie::getMaxBufferSize() const {
return maxSize;
}
address_t SpiCookie::getSpiAddress() const {
return spiAddress;
}
std::string SpiCookie::getSpiDevice() const {
return spiDevice;
}
void SpiCookie::setThreeWireSpi(bool enable) {
uncommonParameters.threeWireSpi = enable;
}
void SpiCookie::setLsbFirst(bool enable) {
uncommonParameters.lsbFirst = enable;
}
void SpiCookie::setNoCs(bool enable) {
uncommonParameters.noCs = enable;
}
void SpiCookie::setBitsPerWord(uint8_t bitsPerWord) {
uncommonParameters.bitsPerWord = bitsPerWord;
}
void SpiCookie::setCsHigh(bool enable) {
uncommonParameters.csHigh = enable;
}
void SpiCookie::activateCsDeselect(bool deselectCs, uint16_t delayUsecs) {
spiTransferStruct.cs_change = deselectCs;
spiTransferStruct.delay_usecs = delayUsecs;
}
void SpiCookie::assignReadBuffer(uint8_t* rx) {
if(rx != nullptr) {
spiTransferStruct.rx_buf = reinterpret_cast<__u64>(rx);
}
}
void SpiCookie::assignWriteBuffer(const uint8_t* tx) {
if(tx != nullptr) {
spiTransferStruct.tx_buf = reinterpret_cast<__u64>(tx);
}
}
void SpiCookie::setCallbackMode(spi::send_callback_function_t callback,
void *args) {
this->comIfMode = spi::SpiComIfModes::CALLBACK;
this->sendCallback = callback;
this->callbackArgs = args;
}
void SpiCookie::setCallbackArgs(void *args) {
this->callbackArgs = args;
}
spi_ioc_transfer* SpiCookie::getTransferStructHandle() {
return &spiTransferStruct;
}
void SpiCookie::setFullOrHalfDuplex(bool halfDuplex) {
this->halfDuplex = halfDuplex;
}
bool SpiCookie::isFullDuplex() const {
return not this->halfDuplex;
}
void SpiCookie::assignTransferSize(size_t transferSize) {
spiTransferStruct.len = transferSize;
}
size_t SpiCookie::getCurrentTransferSize() const {
return spiTransferStruct.len;
}
void SpiCookie::setSpiSpeed(uint32_t newSpeed) {
this->spiSpeed = newSpeed;
}
void SpiCookie::setSpiMode(spi::SpiModes newMode) {
this->spiMode = newMode;
}
void SpiCookie::getCallback(spi::send_callback_function_t *callback,
void **args) {
*callback = this->sendCallback;
*args = this->callbackArgs;
}

View File

@ -0,0 +1,4 @@
target_sources(${TARGET_NAME} PUBLIC
UartComIF.cpp
UartCookie.cpp
)

View File

@ -0,0 +1,455 @@
#include "UartComIF.h"
#include "OBSWConfig.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include <cstring>
#include <fcntl.h>
#include <errno.h>
#include <termios.h>
#include <unistd.h>
UartComIF::UartComIF(object_id_t objectId): SystemObject(objectId){
}
UartComIF::~UartComIF() {}
ReturnValue_t UartComIF::initializeInterface(CookieIF* cookie) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
if(cookie == nullptr) {
return NULLPOINTER;
}
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if (uartCookie == nullptr) {
sif::error << "UartComIF::initializeInterface: Invalid UART Cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if(uartDeviceMapIter == uartDeviceMap.end()) {
int fileDescriptor = configureUartPort(uartCookie);
if (fileDescriptor < 0) {
return RETURN_FAILED;
}
size_t maxReplyLen = uartCookie->getMaxReplyLen();
UartElements uartElements = {fileDescriptor, std::vector<uint8_t>(maxReplyLen), 0};
auto status = uartDeviceMap.emplace(deviceFile, uartElements);
if (status.second == false) {
sif::warning << "UartComIF::initializeInterface: Failed to insert device " <<
deviceFile << "to UART device map" << std::endl;
return RETURN_FAILED;
}
}
else {
sif::warning << "UartComIF::initializeInterface: UART device " << deviceFile <<
" already in use" << std::endl;
return RETURN_FAILED;
}
return RETURN_OK;
}
int UartComIF::configureUartPort(UartCookie* uartCookie) {
struct termios options = {};
std::string deviceFile = uartCookie->getDeviceFile();
int fd = open(deviceFile.c_str(), O_RDWR);
if (fd < 0) {
sif::warning << "UartComIF::configureUartPort: Failed to open uart " << deviceFile <<
"with error code " << errno << strerror(errno) << std::endl;
return fd;
}
/* Read in existing settings */
if(tcgetattr(fd, &options) != 0) {
sif::warning << "UartComIF::configureUartPort: Error " << errno << "from tcgetattr: "
<< strerror(errno) << std::endl;
return fd;
}
setParityOptions(&options, uartCookie);
setStopBitOptions(&options, uartCookie);
setDatasizeOptions(&options, uartCookie);
setFixedOptions(&options);
setUartMode(&options, *uartCookie);
if(uartCookie->getInputShouldBeFlushed()) {
tcflush(fd, TCIFLUSH);
}
/* Sets uart to non-blocking mode. Read returns immediately when there are no data available */
options.c_cc[VTIME] = 0;
options.c_cc[VMIN] = 0;
configureBaudrate(&options, uartCookie);
/* Save option settings */
if (tcsetattr(fd, TCSANOW, &options) != 0) {
sif::warning << "UartComIF::configureUartPort: Failed to set options with error " <<
errno << ": " << strerror(errno);
return fd;
}
return fd;
}
void UartComIF::setParityOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear parity bit */
options->c_cflag &= ~PARENB;
switch (uartCookie->getParity()) {
case Parity::EVEN:
options->c_cflag |= PARENB;
options->c_cflag &= ~PARODD;
break;
case Parity::ODD:
options->c_cflag |= PARENB;
options->c_cflag |= PARODD;
break;
default:
break;
}
}
void UartComIF::setStopBitOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear stop field. Sets stop bit to one bit */
options->c_cflag &= ~CSTOPB;
switch (uartCookie->getStopBits()) {
case StopBits::TWO_STOP_BITS:
options->c_cflag |= CSTOPB;
break;
default:
break;
}
}
void UartComIF::setDatasizeOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear size bits */
options->c_cflag &= ~CSIZE;
switch (uartCookie->getBitsPerWord()) {
case 5:
options->c_cflag |= CS5;
break;
case 6:
options->c_cflag |= CS6;
break;
case 7:
options->c_cflag |= CS7;
break;
case 8:
options->c_cflag |= CS8;
break;
default:
sif::warning << "UartComIF::setDatasizeOptions: Invalid size specified" << std::endl;
break;
}
}
void UartComIF::setFixedOptions(struct termios* options) {
/* Disable RTS/CTS hardware flow control */
options->c_cflag &= ~CRTSCTS;
/* Turn on READ & ignore ctrl lines (CLOCAL = 1) */
options->c_cflag |= CREAD | CLOCAL;
/* Disable echo */
options->c_lflag &= ~ECHO;
/* Disable erasure */
options->c_lflag &= ~ECHOE;
/* Disable new-line echo */
options->c_lflag &= ~ECHONL;
/* Disable interpretation of INTR, QUIT and SUSP */
options->c_lflag &= ~ISIG;
/* Turn off s/w flow ctrl */
options->c_iflag &= ~(IXON | IXOFF | IXANY);
/* Disable any special handling of received bytes */
options->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL);
/* Prevent special interpretation of output bytes (e.g. newline chars) */
options->c_oflag &= ~OPOST;
/* Prevent conversion of newline to carriage return/line feed */
options->c_oflag &= ~ONLCR;
}
void UartComIF::configureBaudrate(struct termios* options, UartCookie* uartCookie) {
switch (uartCookie->getBaudrate()) {
case 50:
cfsetispeed(options, B50);
cfsetospeed(options, B50);
break;
case 75:
cfsetispeed(options, B75);
cfsetospeed(options, B75);
break;
case 110:
cfsetispeed(options, B110);
cfsetospeed(options, B110);
break;
case 134:
cfsetispeed(options, B134);
cfsetospeed(options, B134);
break;
case 150:
cfsetispeed(options, B150);
cfsetospeed(options, B150);
break;
case 200:
cfsetispeed(options, B200);
cfsetospeed(options, B200);
break;
case 300:
cfsetispeed(options, B300);
cfsetospeed(options, B300);
break;
case 600:
cfsetispeed(options, B600);
cfsetospeed(options, B600);
break;
case 1200:
cfsetispeed(options, B1200);
cfsetospeed(options, B1200);
break;
case 1800:
cfsetispeed(options, B1800);
cfsetospeed(options, B1800);
break;
case 2400:
cfsetispeed(options, B2400);
cfsetospeed(options, B2400);
break;
case 4800:
cfsetispeed(options, B4800);
cfsetospeed(options, B4800);
break;
case 9600:
cfsetispeed(options, B9600);
cfsetospeed(options, B9600);
break;
case 19200:
cfsetispeed(options, B19200);
cfsetospeed(options, B19200);
break;
case 38400:
cfsetispeed(options, B38400);
cfsetospeed(options, B38400);
break;
case 57600:
cfsetispeed(options, B57600);
cfsetospeed(options, B57600);
break;
case 115200:
cfsetispeed(options, B115200);
cfsetospeed(options, B115200);
break;
case 230400:
cfsetispeed(options, B230400);
cfsetospeed(options, B230400);
break;
case 460800:
cfsetispeed(options, B460800);
cfsetospeed(options, B460800);
break;
default:
sif::warning << "UartComIF::configureBaudrate: Baudrate not supported" << std::endl;
break;
}
}
ReturnValue_t UartComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
int fd = 0;
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
if(sendData == nullptr) {
sif::debug << "UartComIF::sendMessage: Send Data is nullptr" << std::endl;
return RETURN_FAILED;
}
if(sendLen == 0) {
return RETURN_OK;
}
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::sendMessasge: Invalid UART Cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::sendMessage: Device file " << deviceFile <<
"not in UART map" << std::endl;
return RETURN_FAILED;
}
fd = uartDeviceMapIter->second.fileDescriptor;
if (write(fd, sendData, sendLen) != (int)sendLen) {
sif::error << "UartComIF::sendMessage: Failed to send data with error code " <<
errno << ": Error description: " << strerror(errno) << std::endl;
return RETURN_FAILED;
}
return RETURN_OK;
}
ReturnValue_t UartComIF::getSendSuccess(CookieIF *cookie) {
return RETURN_OK;
}
ReturnValue_t UartComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::requestReceiveMessage: Invalid Uart Cookie!" << std::endl;
return NULLPOINTER;
}
UartModes uartMode = uartCookie->getUartMode();
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if(uartMode == UartModes::NON_CANONICAL and requestLen == 0) {
return RETURN_OK;
}
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::requestReceiveMessage: Device file " << deviceFile
<< " not in uart map" << std::endl;
return RETURN_FAILED;
}
if (uartMode == UartModes::CANONICAL) {
return handleCanonicalRead(*uartCookie, uartDeviceMapIter, requestLen);
}
else if (uartMode == UartModes::NON_CANONICAL) {
return handleNoncanonicalRead(*uartCookie, uartDeviceMapIter, requestLen);
}
else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t UartComIF::handleCanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
uint8_t maxReadCycles = uartCookie.getReadCycles();
uint8_t currentReadCycles = 0;
int bytesRead = 0;
size_t currentBytesRead = 0;
size_t maxReplySize = uartCookie.getMaxReplyLen();
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
do {
size_t allowedReadSize = 0;
if(currentBytesRead >= maxReplySize) {
// Overflow risk. Emit warning, trigger event and break. If this happens,
// the reception buffer is not large enough or data is not polled often enough.
#if OBSW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
#else
sif::printWarning("UartComIF::requestReceiveMessage: "
"Next read would cause overflow!");
#endif
#endif
result = UART_RX_BUFFER_TOO_SMALL;
break;
}
else {
allowedReadSize = maxReplySize - currentBytesRead;
}
bytesRead = read(fd, bufferPtr, allowedReadSize);
if (bytesRead < 0) {
return RETURN_FAILED;
}
else if(bytesRead > 0) {
iter->second.replyLen += bytesRead;
bufferPtr += bytesRead;
currentBytesRead += bytesRead;
}
currentReadCycles++;
} while(bytesRead > 0 and currentReadCycles < maxReadCycles);
return result;
}
ReturnValue_t UartComIF::handleNoncanonicalRead(UartCookie &uartCookie, UartDeviceMapIter &iter,
size_t requestLen) {
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
// Size check to prevent buffer overflow
if(requestLen > uartCookie.getMaxReplyLen()) {
#if OBSW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
#else
sif::printWarning("UartComIF::requestReceiveMessage: "
"Next read would cause overflow!");
#endif
#endif
return UART_RX_BUFFER_TOO_SMALL;
}
int bytesRead = read(fd, bufferPtr, requestLen);
if (bytesRead < 0) {
return RETURN_FAILED;
}
else if (bytesRead != static_cast<int>(requestLen)) {
if(uartCookie.isReplySizeFixed()) {
sif::warning << "UartComIF::requestReceiveMessage: Only read " << bytesRead <<
" of " << requestLen << " bytes" << std::endl;
return RETURN_FAILED;
}
}
iter->second.replyLen = bytesRead;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t UartComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t* size) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::readReceivedMessage: Invalid uart cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::readReceivedMessage: Device file " << deviceFile <<
" not in uart map" << std::endl;
return RETURN_FAILED;
}
*buffer = uartDeviceMapIter->second.replyBuffer.data();
*size = uartDeviceMapIter->second.replyLen;
/* Length is reset to 0 to prevent reading the same data twice */
uartDeviceMapIter->second.replyLen = 0;
return RETURN_OK;
}
void UartComIF::setUartMode(struct termios *options, UartCookie &uartCookie) {
UartModes uartMode = uartCookie.getUartMode();
if(uartMode == UartModes::NON_CANONICAL) {
/* Disable canonical mode */
options->c_lflag &= ~ICANON;
}
else if(uartMode == UartModes::CANONICAL) {
options->c_lflag |= ICANON;
}
}

View File

@ -0,0 +1,97 @@
#include "UartCookie.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
UartCookie::UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen):
handlerId(handlerId), deviceFile(deviceFile), uartMode(uartMode), baudrate(baudrate),
maxReplyLen(maxReplyLen) {
}
UartCookie::~UartCookie() {}
uint32_t UartCookie::getBaudrate() const {
return baudrate;
}
size_t UartCookie::getMaxReplyLen() const {
return maxReplyLen;
}
std::string UartCookie::getDeviceFile() const {
return deviceFile;
}
void UartCookie::setParityOdd() {
parity = Parity::ODD;
}
void UartCookie::setParityEven() {
parity = Parity::EVEN;
}
Parity UartCookie::getParity() const {
return parity;
}
void UartCookie::setBitsPerWord(uint8_t bitsPerWord_) {
switch(bitsPerWord_) {
case 5:
case 6:
case 7:
case 8:
break;
default:
sif::debug << "UartCookie::setBitsPerWord: Invalid bits per word specified" << std::endl;
return;
}
bitsPerWord = bitsPerWord_;
}
uint8_t UartCookie::getBitsPerWord() const {
return bitsPerWord;
}
StopBits UartCookie::getStopBits() const {
return stopBits;
}
void UartCookie::setTwoStopBits() {
stopBits = StopBits::TWO_STOP_BITS;
}
void UartCookie::setOneStopBit() {
stopBits = StopBits::ONE_STOP_BIT;
}
UartModes UartCookie::getUartMode() const {
return uartMode;
}
void UartCookie::setReadCycles(uint8_t readCycles) {
this->readCycles = readCycles;
}
void UartCookie::setToFlushInput(bool enable) {
this->flushInput = enable;
}
uint8_t UartCookie::getReadCycles() const {
return readCycles;
}
bool UartCookie::getInputShouldBeFlushed() {
return this->flushInput;
}
object_id_t UartCookie::getHandlerId() const {
return this->handlerId;
}
void UartCookie::setNoFixedSizeReply() {
replySizeFixed = false;
}
bool UartCookie::isReplySizeFixed() {
return replySizeFixed;
}

21
hal/src/linux/utility.cpp Normal file
View File

@ -0,0 +1,21 @@
#include <fsfw_hal/linux/utility.h>
void utility::handleIoctlError(const char* const customPrintout) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
if(customPrintout != nullptr) {
sif::warning << customPrintout << std::endl;
}
sif::warning << "handleIoctlError: Error code " << errno << ", "<< strerror(errno) <<
std::endl;
#else
if(customPrintout != nullptr) {
sif::printWarning("%s\n", customPrintout);
}
sif::printWarning("handleIoctlError: Error code %d, %s\n", errno, strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
}

View File

@ -0,0 +1,7 @@
add_subdirectory(spi)
add_subdirectory(gpio)
add_subdirectory(devicetest)
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
dma.cpp
)

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
GyroL3GD20H.cpp
)

View File

@ -0,0 +1,559 @@
#include "GyroL3GD20H.h"
#include "../spi/mspInit.h"
#include "../spi/spiDefinitions.h"
#include "../spi/spiCore.h"
#include "../spi/spiInterrupts.h"
#include "../spi/stm32h743ziSpi.h"
#include "fsfw/tasks/TaskFactory.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "stm32h7xx_nucleo.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h7xx_hal_rcc.h"
#include <cstring>
alignas(32) std::array<uint8_t, GyroL3GD20H::recvBufferSize> GyroL3GD20H::rxBuffer;
alignas(32) std::array<uint8_t, GyroL3GD20H::txBufferSize>
GyroL3GD20H::txBuffer __attribute__((section(".dma_buffer")));
TransferStates transferState = TransferStates::IDLE;
spi::TransferModes GyroL3GD20H::transferMode = spi::TransferModes::POLLING;
GyroL3GD20H::GyroL3GD20H(SPI_HandleTypeDef *spiHandle, spi::TransferModes transferMode_):
spiHandle(spiHandle) {
txDmaHandle = new DMA_HandleTypeDef();
rxDmaHandle = new DMA_HandleTypeDef();
spi::setSpiHandle(spiHandle);
spi::assignSpiUserArgs(spi::SpiBus::SPI_1, spiHandle);
transferMode = transferMode_;
if(transferMode == spi::TransferModes::DMA) {
mspCfg = new spi::MspDmaConfigStruct();
auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct*>(mspCfg);
spi::setDmaHandles(txDmaHandle, rxDmaHandle);
spi::h743zi::standardDmaCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS,
IrqPriorities::HIGHEST_FREERTOS, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiDmaMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::INTERRUPT) {
mspCfg = new spi::MspIrqConfigStruct();
auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct*>(mspCfg);
spi::h743zi::standardInterruptCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiIrqMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::POLLING) {
mspCfg = new spi::MspPollingConfigStruct();
auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct*>(mspCfg);
spi::h743zi::standardPollingCfg(*typedCfg);
spi::setSpiPollingMspFunctions(typedCfg);
}
spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, nullptr);
spi::assignTransferErrorCallback(&spiTransferErrorCallback, nullptr);
GPIO_InitTypeDef chipSelect = {};
__HAL_RCC_GPIOD_CLK_ENABLE();
chipSelect.Pin = GPIO_PIN_14;
chipSelect.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(GPIOD, &chipSelect);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
}
GyroL3GD20H::~GyroL3GD20H() {
delete txDmaHandle;
delete rxDmaHandle;
if(mspCfg != nullptr) {
delete mspCfg;
}
}
ReturnValue_t GyroL3GD20H::initialize() {
// Configure the SPI peripheral
spiHandle->Instance = SPI1;
spiHandle->Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), 3900000);
spiHandle->Init.Direction = SPI_DIRECTION_2LINES;
spi::assignSpiMode(spi::SpiModes::MODE_3, *spiHandle);
spiHandle->Init.DataSize = SPI_DATASIZE_8BIT;
spiHandle->Init.FirstBit = SPI_FIRSTBIT_MSB;
spiHandle->Init.TIMode = SPI_TIMODE_DISABLE;
spiHandle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spiHandle->Init.CRCPolynomial = 7;
spiHandle->Init.CRCLength = SPI_CRC_LENGTH_8BIT;
spiHandle->Init.NSS = SPI_NSS_SOFT;
spiHandle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
// Recommended setting to avoid glitches
spiHandle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spiHandle->Init.Mode = SPI_MODE_MASTER;
if(HAL_SPI_Init(spiHandle) != HAL_OK) {
sif::printWarning("Error initializing SPI\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
delete mspCfg;
transferState = TransferStates::WAIT;
sif::printInfo("GyroL3GD20H::performOperation: Reading WHO AM I register\n");
txBuffer[0] = WHO_AM_I_REG | STM_READ_MASK;
txBuffer[1] = 0;
switch(transferMode) {
case(spi::TransferModes::DMA): {
return handleDmaTransferInit();
}
case(spi::TransferModes::INTERRUPT): {
return handleInterruptTransferInit();
}
case(spi::TransferModes::POLLING): {
return handlePollingTransferInit();
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::performOperation() {
switch(transferMode) {
case(spi::TransferModes::DMA): {
return handleDmaSensorRead();
}
case(spi::TransferModes::POLLING): {
return handlePollingSensorRead();
}
case(spi::TransferModes::INTERRUPT): {
return handleInterruptSensorRead();
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleDmaTransferInit() {
/* Clean D-cache */
/* Make sure the address is 32-byte aligned and add 32-bytes to length,
in case it overlaps cacheline */
// See https://community.st.com/s/article/FAQ-DMA-is-not-working-on-STM32H7-devices
HAL_StatusTypeDef result = performDmaTransfer(2);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("GyroL3GD20H::initialize: Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::initialize: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("Transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
result = performDmaTransfer(6);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
sif::printInfo("GyroL3GD20H::initialize: Configuration transfer success\n");
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
result = performDmaTransfer(6);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleDmaSensorRead() {
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_StatusTypeDef result = performDmaTransfer(15);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printDebug("GyroL3GD20H::handleDmaSensorRead: Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
handleSensorReadout();
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::handleDmaSensorRead: Sensor read failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
HAL_StatusTypeDef GyroL3GD20H::performDmaTransfer(size_t sendSize) {
transferState = TransferStates::WAIT;
#if STM_USE_PERIPHERAL_TX_BUFFER_MPU_PROTECTION == 0
SCB_CleanDCache_by_Addr((uint32_t*)(((uint32_t)txBuffer.data()) & ~(uint32_t)0x1F),
txBuffer.size()+32);
#endif
// Start SPI transfer via DMA
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
return HAL_SPI_TransmitReceive_DMA(spiHandle, txBuffer.data(), rxBuffer.data(), sendSize);
}
ReturnValue_t GyroL3GD20H::handlePollingTransferInit() {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 2, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
sif::printInfo("GyroL3GD20H::initialize: Polling transfer success\n");
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::performOperation: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handlePollingSensorRead() {
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 15, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
handleSensorReadout();
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleInterruptTransferInit() {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 2)) {
case(HAL_OK): {
sif::printInfo("GyroL3GD20H::initialize: Interrupt transfer success\n");
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::initialize: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
transferState = TransferStates::WAIT;
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
transferState = TransferStates::WAIT;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleInterruptSensorRead() {
transferState = TransferStates::WAIT;
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 15)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
handleSensorReadout();
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Sensor read failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void GyroL3GD20H::prepareConfigRegs(uint8_t* configRegs) {
// Enable sensor
configRegs[0] = 0b00001111;
configRegs[1] = 0b00000000;
configRegs[2] = 0b00000000;
// Big endian select
configRegs[3] = 0b01000000;
configRegs[4] = 0b00000000;
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK;
std::memcpy(txBuffer.data() + 1, configRegs, 5);
}
uint8_t GyroL3GD20H::readRegPolling(uint8_t reg) {
uint8_t rxBuf[2] = {};
uint8_t txBuf[2] = {};
txBuf[0] = reg | STM_READ_MASK;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuf, rxBuf, 2, 1000);
if(result) {};
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
return rxBuf[1];
}
void GyroL3GD20H::handleSensorReadout() {
uint8_t statusReg = rxBuffer[8];
int16_t gyroXRaw = rxBuffer[9] << 8 | rxBuffer[10];
float gyroX = static_cast<float>(gyroXRaw) * 0.00875;
int16_t gyroYRaw = rxBuffer[11] << 8 | rxBuffer[12];
float gyroY = static_cast<float>(gyroYRaw) * 0.00875;
int16_t gyroZRaw = rxBuffer[13] << 8 | rxBuffer[14];
float gyroZ = static_cast<float>(gyroZRaw) * 0.00875;
sif::printInfo("Status register: 0b" BYTE_TO_BINARY_PATTERN "\n", BYTE_TO_BINARY(statusReg));
sif::printInfo("Gyro X: %f\n", gyroX);
sif::printInfo("Gyro Y: %f\n", gyroY);
sif::printInfo("Gyro Z: %f\n", gyroZ);
}
void GyroL3GD20H::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args) {
transferState = TransferStates::SUCCESS;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
if(GyroL3GD20H::transferMode == spi::TransferModes::DMA) {
// Invalidate cache prior to access by CPU
SCB_InvalidateDCache_by_Addr ((uint32_t *)GyroL3GD20H::rxBuffer.data(),
GyroL3GD20H::recvBufferSize);
}
}
/**
* @brief SPI error callbacks.
* @param hspi: SPI handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void GyroL3GD20H::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args) {
transferState = TransferStates::FAILURE;
}

83
hal/src/stm32h7/dma.cpp Normal file
View File

@ -0,0 +1,83 @@
#include <fsfw_hal/stm32h7/dma.h>
#include <stdint.h>
#include <stddef.h>
user_handler_t DMA_1_USER_HANDLERS[8];
user_args_t DMA_1_USER_ARGS[8];
user_handler_t DMA_2_USER_HANDLERS[8];
user_args_t DMA_2_USER_ARGS[8];
void dma::assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx,
user_handler_t user_handler, user_args_t user_args) {
if(dma_idx == DMA_1) {
DMA_1_USER_HANDLERS[stream_idx] = user_handler;
DMA_1_USER_ARGS[stream_idx] = user_args;
}
else if(dma_idx == DMA_2) {
DMA_2_USER_HANDLERS[stream_idx] = user_handler;
DMA_2_USER_ARGS[stream_idx] = user_args;
}
}
// The interrupt handlers in the format required for the IRQ vector table
/* Do not change these function names! They need to be exactly equal to the name of the functions
defined in the startup_stm32h743xx.s files! */
#define GENERIC_DMA_IRQ_HANDLER(DMA_IDX, STREAM_IDX) \
if(DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX] != NULL) { \
DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX](DMA_##DMA_IDX##_USER_ARGS[STREAM_IDX]); \
return; \
} \
Default_Handler() \
extern"C" void DMA1_Stream0_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 0);
}
extern"C" void DMA1_Stream1_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 1);
}
extern"C" void DMA1_Stream2_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 2);
}
extern"C" void DMA1_Stream3_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 3);
}
extern"C" void DMA1_Stream4_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 4);
}
extern"C" void DMA1_Stream5_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 5);
}
extern"C" void DMA1_Stream6_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 6);
}
extern"C" void DMA1_Stream7_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 7);
}
extern"C" void DMA2_Stream0_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 0);
}
extern"C" void DMA2_Stream1_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 1);
}
extern"C" void DMA2_Stream2_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 2);
}
extern"C" void DMA2_Stream3_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 3);
}
extern"C" void DMA2_Stream4_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 4);
}
extern"C" void DMA2_Stream5_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 5);
}
extern"C" void DMA2_Stream6_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 6);
}
extern"C" void DMA2_Stream7_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 7);
}

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
gpio.cpp
)

View File

@ -0,0 +1,71 @@
#include "gpio.h"
#include "stm32h7xx_hal_rcc.h"
void gpio::initializeGpioClock(GPIO_TypeDef* gpioPort) {
#ifdef GPIOA
if(gpioPort == GPIOA) {
__HAL_RCC_GPIOA_CLK_ENABLE();
}
#endif
#ifdef GPIOB
if(gpioPort == GPIOB) {
__HAL_RCC_GPIOB_CLK_ENABLE();
}
#endif
#ifdef GPIOC
if(gpioPort == GPIOC) {
__HAL_RCC_GPIOC_CLK_ENABLE();
}
#endif
#ifdef GPIOD
if(gpioPort == GPIOD) {
__HAL_RCC_GPIOD_CLK_ENABLE();
}
#endif
#ifdef GPIOE
if(gpioPort == GPIOE) {
__HAL_RCC_GPIOE_CLK_ENABLE();
}
#endif
#ifdef GPIOF
if(gpioPort == GPIOF) {
__HAL_RCC_GPIOF_CLK_ENABLE();
}
#endif
#ifdef GPIOG
if(gpioPort == GPIOG) {
__HAL_RCC_GPIOG_CLK_ENABLE();
}
#endif
#ifdef GPIOH
if(gpioPort == GPIOH) {
__HAL_RCC_GPIOH_CLK_ENABLE();
}
#endif
#ifdef GPIOI
if(gpioPort == GPIOI) {
__HAL_RCC_GPIOI_CLK_ENABLE();
}
#endif
#ifdef GPIOJ
if(gpioPort == GPIOJ) {
__HAL_RCC_GPIOJ_CLK_ENABLE();
}
#endif
#ifdef GPIOK
if(gpioPort == GPIOK) {
__HAL_RCC_GPIOK_CLK_ENABLE();
}
#endif
}

View File

@ -0,0 +1,2 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
)

View File

@ -0,0 +1,9 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
spiCore.cpp
spiDefinitions.cpp
spiInterrupts.cpp
mspInit.cpp
SpiCookie.cpp
SpiComIF.cpp
stm32h743ziSpi.cpp
)

View File

@ -0,0 +1,453 @@
#include "SpiComIF.h"
#include "SpiCookie.h"
#include "fsfw/tasks/SemaphoreFactory.h"
#include "fsfw/osal/FreeRTOS/TaskManagement.h"
#include "fsfw_hal/stm32h7/spi/spiCore.h"
#include "fsfw_hal/stm32h7/spi/spiInterrupts.h"
#include "fsfw_hal/stm32h7/spi/mspInit.h"
#include "fsfw_hal/stm32h7/gpio/gpio.h"
#include "stm32h7xx_hal_gpio.h"
SpiComIF::SpiComIF(object_id_t objectId): SystemObject(objectId) {
void* irqArgsVoided = reinterpret_cast<void*>(&irqArgs);
spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, irqArgsVoided);
spi::assignTransferRxCompleteCallback(&spiTransferRxCompleteCallback, irqArgsVoided);
spi::assignTransferTxCompleteCallback(&spiTransferTxCompleteCallback, irqArgsVoided);
spi::assignTransferErrorCallback(&spiTransferErrorCallback, irqArgsVoided);
}
void SpiComIF::configureCacheMaintenanceOnTxBuffer(bool enable) {
this->cacheMaintenanceOnTxBuffer = enable;
}
void SpiComIF::addDmaHandles(DMA_HandleTypeDef *txHandle, DMA_HandleTypeDef *rxHandle) {
spi::setDmaHandles(txHandle, rxHandle);
}
ReturnValue_t SpiComIF::initialize() {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error < "SpiComIF::initializeInterface: Invalid cookie" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: Invalid cookie\n");
#endif
return NULLPOINTER;
}
auto transferMode = spiCookie->getTransferMode();
if(transferMode == spi::TransferModes::DMA) {
DMA_HandleTypeDef *txHandle = nullptr;
DMA_HandleTypeDef *rxHandle = nullptr;
spi::getDmaHandles(&txHandle, &rxHandle);
if(txHandle == nullptr or rxHandle == nullptr) {
sif::printError("SpiComIF::initialize: DMA handles not set!\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
// This semaphore ensures thread-safety for a given bus
spiSemaphore = dynamic_cast<BinarySemaphore*>(
SemaphoreFactory::instance()->createBinarySemaphore());
address_t spiAddress = spiCookie->getDeviceAddress();
auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) {
size_t bufferSize = spiCookie->getMaxRecvSize();
auto statusPair = spiDeviceMap.emplace(spiAddress, SpiInstance(bufferSize));
if (not statusPair.second) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: Failed to insert device with address " <<
spiAddress << "to SPI device map" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: Failed to insert device with address "
"%lu to SPI device map\n", static_cast<unsigned long>(spiAddress));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
}
auto gpioPin = spiCookie->getChipSelectGpioPin();
auto gpioPort = spiCookie->getChipSelectGpioPort();
SPI_HandleTypeDef& spiHandle = spiCookie->getSpiHandle();
auto spiIdx = spiCookie->getSpiIdx();
if(spiIdx == spi::SpiBus::SPI_1) {
#ifdef SPI1
spiHandle.Instance = SPI1;
#endif
}
else if(spiIdx == spi::SpiBus::SPI_2) {
#ifdef SPI2
spiHandle.Instance = SPI2;
#endif
}
else {
printCfgError("SPI Bus Index");
return HasReturnvaluesIF::RETURN_FAILED;
}
auto mspCfg = spiCookie->getMspCfg();
if(transferMode == spi::TransferModes::POLLING) {
auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct*>(mspCfg);
if(typedCfg == nullptr) {
printCfgError("Polling MSP");
return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiPollingMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::INTERRUPT) {
auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct*>(mspCfg);
if(typedCfg == nullptr) {
printCfgError("IRQ MSP");
return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiIrqMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::DMA) {
auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct*>(mspCfg);
if(typedCfg == nullptr) {
printCfgError("DMA MSP");
return HasReturnvaluesIF::RETURN_FAILED;
}
// Check DMA handles
DMA_HandleTypeDef* txHandle = nullptr;
DMA_HandleTypeDef* rxHandle = nullptr;
spi::getDmaHandles(&txHandle, &rxHandle);
if(txHandle == nullptr or rxHandle == nullptr) {
printCfgError("DMA Handle");
return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiDmaMspFunctions(typedCfg);
}
gpio::initializeGpioClock(gpioPort);
GPIO_InitTypeDef chipSelect = {};
chipSelect.Pin = gpioPin;
chipSelect.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(gpioPort, &chipSelect);
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_SET);
if(HAL_SPI_Init(&spiHandle) != HAL_OK) {
sif::printWarning("SpiComIF::initialize: Error initializing SPI\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
// The MSP configuration struct is not required anymore
spiCookie->deleteMspCfg();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
SPI_HandleTypeDef& spiHandle = spiCookie->getSpiHandle();
auto iter = spiDeviceMap.find(spiCookie->getDeviceAddress());
if(iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
iter->second.currentTransferLen = sendLen;
auto transferMode = spiCookie->getTransferMode();
switch(spiCookie->getTransferState()) {
case(spi::TransferStates::IDLE): {
break;
}
case(spi::TransferStates::WAIT):
case(spi::TransferStates::FAILURE):
case(spi::TransferStates::SUCCESS):
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
switch(transferMode) {
case(spi::TransferModes::POLLING): {
return handlePollingSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen);
}
case(spi::TransferModes::INTERRUPT): {
return handleInterruptSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen);
}
case(spi::TransferModes::DMA): {
return handleDmaSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen);
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
switch(spiCookie->getTransferState()) {
case(spi::TransferStates::SUCCESS): {
auto iter = spiDeviceMap.find(spiCookie->getDeviceAddress());
if(iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = iter->second.replyBuffer.data();
*size = iter->second.currentTransferLen;
spiCookie->setTransferState(spi::TransferStates::IDLE);
break;
}
case(spi::TransferStates::FAILURE): {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::readReceivedMessage: Transfer failure" << std::endl;
#else
sif::printWarning("SpiComIF::readReceivedMessage: Transfer failure\n");
#endif
#endif
spiCookie->setTransferState(spi::TransferStates::IDLE);
return HasReturnvaluesIF::RETURN_FAILED;
}
case(spi::TransferStates::WAIT):
case(spi::TransferStates::IDLE): {
break;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void SpiComIF::setDefaultPollingTimeout(dur_millis_t timeout) {
this->defaultPollingTimeout = timeout;
}
ReturnValue_t SpiComIF::handlePollingSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) {
auto gpioPort = spiCookie.getChipSelectGpioPort();
auto gpioPin = spiCookie.getChipSelectGpioPin();
auto returnval = spiSemaphore->acquire(timeoutType, timeoutMs);
if(returnval != HasReturnvaluesIF::RETURN_OK) {
return returnval;
}
spiCookie.setTransferState(spi::TransferStates::WAIT);
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(&spiHandle, const_cast<uint8_t*>(sendData),
recvPtr, sendLen, defaultPollingTimeout);
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_SET);
spiSemaphore->release();
switch(result) {
case(HAL_OK): {
spiCookie.setTransferState(spi::TransferStates::SUCCESS);
break;
}
case(HAL_TIMEOUT): {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Polling Mode | Timeout for SPI device" <<
spiCookie->getDeviceAddress() << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Polling Mode | Timeout for SPI device %d\n",
spiCookie.getDeviceAddress());
#endif
#endif
spiCookie.setTransferState(spi::TransferStates::FAILURE);
return spi::HAL_TIMEOUT_RETVAL;
}
case(HAL_ERROR):
default: {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Polling Mode | HAL error for SPI device" <<
spiCookie->getDeviceAddress() << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Polling Mode | HAL error for SPI device %d\n",
spiCookie.getDeviceAddress());
#endif
#endif
spiCookie.setTransferState(spi::TransferStates::FAILURE);
return spi::HAL_ERROR_RETVAL;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::handleInterruptSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen) {
return handleIrqSendOperation(recvPtr, spiHandle, spiCookie, sendData, sendLen);
}
ReturnValue_t SpiComIF::handleDmaSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen) {
return handleIrqSendOperation(recvPtr, spiHandle, spiCookie, sendData, sendLen);
}
ReturnValue_t SpiComIF::handleIrqSendOperation(uint8_t *recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) {
ReturnValue_t result = genericIrqSendSetup(recvPtr, spiHandle, spiCookie, sendData, sendLen);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
// yet another HAL driver which is not const-correct..
HAL_StatusTypeDef status = HAL_OK;
auto transferMode = spiCookie.getTransferMode();
if(transferMode == spi::TransferModes::DMA) {
if(cacheMaintenanceOnTxBuffer) {
/* Clean D-cache. Make sure the address is 32-byte aligned and add 32-bytes to length,
in case it overlaps cacheline */
SCB_CleanDCache_by_Addr((uint32_t*)(((uint32_t) sendData ) & ~(uint32_t)0x1F),
sendLen + 32);
}
status = HAL_SPI_TransmitReceive_DMA(&spiHandle, const_cast<uint8_t*>(sendData),
currentRecvPtr, sendLen);
}
else {
status = HAL_SPI_TransmitReceive_IT(&spiHandle, const_cast<uint8_t*>(sendData),
currentRecvPtr, sendLen);
}
switch(status) {
case(HAL_OK): {
break;
}
default: {
return halErrorHandler(status, transferMode);
}
}
return result;
}
ReturnValue_t SpiComIF::halErrorHandler(HAL_StatusTypeDef status, spi::TransferModes transferMode) {
char modeString[10];
if(transferMode == spi::TransferModes::DMA) {
std::snprintf(modeString, sizeof(modeString), "Dma");
}
else {
std::snprintf(modeString, sizeof(modeString), "Interrupt");
}
sif::printWarning("SpiComIF::handle%sSendOperation: HAL error %d occured\n", modeString,
status);
switch(status) {
case(HAL_BUSY): {
return spi::HAL_BUSY_RETVAL;
}
case(HAL_ERROR): {
return spi::HAL_ERROR_RETVAL;
}
case(HAL_TIMEOUT): {
return spi::HAL_TIMEOUT_RETVAL;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
}
ReturnValue_t SpiComIF::genericIrqSendSetup(uint8_t *recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) {
currentRecvPtr = recvPtr;
currentRecvBuffSize = sendLen;
// Take the semaphore which will be released by a callback when the transfer is complete
ReturnValue_t result = spiSemaphore->acquire(SemaphoreIF::TimeoutType::WAITING, timeoutMs);
if(result != HasReturnvaluesIF::RETURN_OK) {
// Configuration error
sif::printWarning("SpiComIF::handleInterruptSendOperation: Semaphore "
"could not be acquired after %d ms\n", timeoutMs);
return result;
}
// Cache the current SPI handle in any case
spi::setSpiHandle(&spiHandle);
// Assign the IRQ arguments for the user callbacks
irqArgs.comIF = this;
irqArgs.spiCookie = &spiCookie;
// The SPI handle is passed to the default SPI callback as a void argument. This callback
// is different from the user callbacks specified above!
spi::assignSpiUserArgs(spiCookie.getSpiIdx(), reinterpret_cast<void*>(&spiHandle));
HAL_GPIO_WritePin(spiCookie.getChipSelectGpioPort(), spiCookie.getChipSelectGpioPin(),
GPIO_PIN_RESET);
return HasReturnvaluesIF::RETURN_OK;
}
void SpiComIF::spiTransferTxCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS);
}
void SpiComIF::spiTransferRxCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS);
}
void SpiComIF::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS);
}
void SpiComIF::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::FAILURE);
}
void SpiComIF::genericIrqHandler(void *irqArgsVoid, spi::TransferStates targetState) {
IrqArgs* irqArgs = reinterpret_cast<IrqArgs*>(irqArgsVoid);
if(irqArgs == nullptr) {
return;
}
SpiCookie* spiCookie = irqArgs->spiCookie;
SpiComIF* comIF = irqArgs->comIF;
if(spiCookie == nullptr or comIF == nullptr) {
return;
}
spiCookie->setTransferState(targetState);
// Pull CS pin high again
HAL_GPIO_WritePin(spiCookie->getChipSelectGpioPort(), spiCookie->getChipSelectGpioPin(),
GPIO_PIN_SET);
// Release the task semaphore
BaseType_t taskWoken = pdFALSE;
ReturnValue_t result = BinarySemaphore::releaseFromISR(comIF->spiSemaphore->getSemaphore(),
&taskWoken);
if(result != HasReturnvaluesIF::RETURN_OK) {
// Configuration error
printf("SpiComIF::genericIrqHandler: Failure releasing Semaphore!\n");
}
// Perform cache maintenance operation for DMA transfers
if(spiCookie->getTransferMode() == spi::TransferModes::DMA) {
// Invalidate cache prior to access by CPU
SCB_InvalidateDCache_by_Addr ((uint32_t *) comIF->currentRecvPtr,
comIF->currentRecvBuffSize);
}
/* Request a context switch if the SPI ComIF task was woken up and has a higher priority
than the currently running task */
if(taskWoken == pdTRUE) {
TaskManagement::requestContextSwitch(CallContext::ISR);
}
}
void SpiComIF::printCfgError(const char *const type) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::initializeInterface: Invalid " << type << " configuration"
<< std::endl;
#else
sif::printWarning("SpiComIF::initializeInterface: Invalid %s configuration\n", type);
#endif
}

View File

@ -0,0 +1,78 @@
#include "SpiCookie.h"
SpiCookie::SpiCookie(address_t deviceAddress, spi::SpiBus spiIdx, spi::TransferModes transferMode,
spi::MspCfgBase* mspCfg, uint32_t spiSpeed, spi::SpiModes spiMode,
uint16_t chipSelectGpioPin, GPIO_TypeDef* chipSelectGpioPort, size_t maxRecvSize):
deviceAddress(deviceAddress), spiIdx(spiIdx), spiSpeed(spiSpeed), spiMode(spiMode),
transferMode(transferMode), chipSelectGpioPin(chipSelectGpioPin),
chipSelectGpioPort(chipSelectGpioPort), mspCfg(mspCfg), maxRecvSize(maxRecvSize) {
spiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
spiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
spiHandle.Init.TIMode = SPI_TIMODE_DISABLE;
spiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spiHandle.Init.CRCPolynomial = 7;
spiHandle.Init.CRCLength = SPI_CRC_LENGTH_8BIT;
spiHandle.Init.NSS = SPI_NSS_SOFT;
spiHandle.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
spiHandle.Init.Direction = SPI_DIRECTION_2LINES;
// Recommended setting to avoid glitches
spiHandle.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spiHandle.Init.Mode = SPI_MODE_MASTER;
spi::assignSpiMode(spiMode, spiHandle);
spiHandle.Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), spiSpeed);
}
uint16_t SpiCookie::getChipSelectGpioPin() const {
return chipSelectGpioPin;
}
GPIO_TypeDef* SpiCookie::getChipSelectGpioPort() {
return chipSelectGpioPort;
}
address_t SpiCookie::getDeviceAddress() const {
return deviceAddress;
}
spi::SpiBus SpiCookie::getSpiIdx() const {
return spiIdx;
}
spi::SpiModes SpiCookie::getSpiMode() const {
return spiMode;
}
uint32_t SpiCookie::getSpiSpeed() const {
return spiSpeed;
}
size_t SpiCookie::getMaxRecvSize() const {
return maxRecvSize;
}
SPI_HandleTypeDef& SpiCookie::getSpiHandle() {
return spiHandle;
}
spi::MspCfgBase* SpiCookie::getMspCfg() {
return mspCfg;
}
void SpiCookie::deleteMspCfg() {
if(mspCfg != nullptr) {
delete mspCfg;
}
}
spi::TransferModes SpiCookie::getTransferMode() const {
return transferMode;
}
void SpiCookie::setTransferState(spi::TransferStates transferState) {
this->transferState = transferState;
}
spi::TransferStates SpiCookie::getTransferState() const {
return this->transferState;
}

View File

@ -0,0 +1,252 @@
#include <fsfw_hal/stm32h7/dma.h>
#include "mspInit.h"
#include "spiCore.h"
#include "spiInterrupts.h"
#include "stm32h743xx.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h7xx_hal_dma.h"
#include "stm32h7xx_hal_def.h"
#include <stdio.h>
spi::msp_func_t mspInitFunc = nullptr;
spi::MspCfgBase* mspInitArgs = nullptr;
spi::msp_func_t mspDeinitFunc = nullptr;
spi::MspCfgBase* mspDeinitArgs = nullptr;
/**
* @brief SPI MSP Initialization
* This function configures the hardware resources used in this example:
* - Peripheral's clock enable
* - Peripheral's GPIO Configuration
* - DMA configuration for transmission request by peripheral
* - NVIC configuration for DMA interrupt request enable
* @param hspi: SPI handle pointer
* @retval None
*/
void spi::halMspInitDma(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspDmaConfigStruct*>(cfgBase);
if(hspi == nullptr or cfg == nullptr) {
return;
}
setSpiHandle(hspi);
DMA_HandleTypeDef* hdma_tx = nullptr;
DMA_HandleTypeDef* hdma_rx = nullptr;
spi::getDmaHandles(&hdma_tx, &hdma_rx);
if(hdma_tx == nullptr or hdma_rx == nullptr) {
printf("HAL_SPI_MspInit: Invalid DMA handles. Make sure to call setDmaHandles!\n");
return;
}
spi::halMspInitInterrupt(hspi, cfg);
// DMA setup
if(cfg->dmaClkEnableWrapper == nullptr) {
mspErrorHandler("spi::halMspInitDma", "DMA Clock init invalid");
}
cfg->dmaClkEnableWrapper();
// Configure the DMA
/* Configure the DMA handler for Transmission process */
if(hdma_tx->Instance == nullptr) {
// Assume it was not configured properly
mspErrorHandler("spi::halMspInitDma", "DMA TX handle invalid");
}
HAL_DMA_Init(hdma_tx);
/* Associate the initialized DMA handle to the the SPI handle */
__HAL_LINKDMA(hspi, hdmatx, *hdma_tx);
HAL_DMA_Init(hdma_rx);
/* Associate the initialized DMA handle to the the SPI handle */
__HAL_LINKDMA(hspi, hdmarx, *hdma_rx);
/*##-4- Configure the NVIC for DMA #########################################*/
/* NVIC configuration for DMA transfer complete interrupt (SPI1_RX) */
// Assign the interrupt handler
dma::assignDmaUserHandler(cfg->rxDmaIndex, cfg->rxDmaStream, &spi::dmaRxIrqHandler, hdma_rx);
HAL_NVIC_SetPriority(cfg->rxDmaIrqNumber, cfg->rxPreEmptPriority, cfg->rxSubpriority);
HAL_NVIC_EnableIRQ(cfg->rxDmaIrqNumber);
/* NVIC configuration for DMA transfer complete interrupt (SPI1_TX) */
// Assign the interrupt handler
dma::assignDmaUserHandler(cfg->txDmaIndex, cfg->txDmaStream,
&spi::dmaTxIrqHandler, hdma_tx);
HAL_NVIC_SetPriority(cfg->txDmaIrqNumber, cfg->txPreEmptPriority, cfg->txSubpriority);
HAL_NVIC_EnableIRQ(cfg->txDmaIrqNumber);
}
/**
* @brief SPI MSP De-Initialization
* This function frees the hardware resources used in this example:
* - Disable the Peripheral's clock
* - Revert GPIO, DMA and NVIC configuration to their default state
* @param hspi: SPI handle pointer
* @retval None
*/
void spi::halMspDeinitDma(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspDmaConfigStruct*>(cfgBase);
if(hspi == nullptr or cfg == nullptr) {
return;
}
spi::halMspDeinitInterrupt(hspi, cfgBase);
DMA_HandleTypeDef* hdma_tx = NULL;
DMA_HandleTypeDef* hdma_rx = NULL;
spi::getDmaHandles(&hdma_tx, &hdma_rx);
if(hdma_tx == NULL || hdma_rx == NULL) {
printf("HAL_SPI_MspInit: Invalid DMA handles. Make sure to call setDmaHandles!\n");
}
else {
// Disable the DMA
/* De-Initialize the DMA associated to transmission process */
HAL_DMA_DeInit(hdma_tx);
/* De-Initialize the DMA associated to reception process */
HAL_DMA_DeInit(hdma_rx);
}
// Disable the NVIC for DMA
HAL_NVIC_DisableIRQ(cfg->txDmaIrqNumber);
HAL_NVIC_DisableIRQ(cfg->rxDmaIrqNumber);
}
void spi::halMspInitPolling(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspPollingConfigStruct*>(cfgBase);
GPIO_InitTypeDef GPIO_InitStruct = {};
/*##-1- Enable peripherals and GPIO Clocks #################################*/
/* Enable GPIO TX/RX clock */
cfg->setupMacroWrapper();
/*##-2- Configure peripheral GPIO ##########################################*/
/* SPI SCK GPIO pin configuration */
GPIO_InitStruct.Pin = cfg->sckPin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = cfg->sckAlternateFunction;
HAL_GPIO_Init(cfg->sckPort, &GPIO_InitStruct);
/* SPI MISO GPIO pin configuration */
GPIO_InitStruct.Pin = cfg->misoPin;
GPIO_InitStruct.Alternate = cfg->misoAlternateFunction;
HAL_GPIO_Init(cfg->misoPort, &GPIO_InitStruct);
/* SPI MOSI GPIO pin configuration */
GPIO_InitStruct.Pin = cfg->mosiPin;
GPIO_InitStruct.Alternate = cfg->mosiAlternateFunction;
HAL_GPIO_Init(cfg->mosiPort, &GPIO_InitStruct);
}
void spi::halMspDeinitPolling(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = reinterpret_cast<MspPollingConfigStruct*>(cfgBase);
// Reset peripherals
cfg->cleanUpMacroWrapper();
// Disable peripherals and GPIO Clocks
/* Configure SPI SCK as alternate function */
HAL_GPIO_DeInit(cfg->sckPort, cfg->sckPin);
/* Configure SPI MISO as alternate function */
HAL_GPIO_DeInit(cfg->misoPort, cfg->misoPin);
/* Configure SPI MOSI as alternate function */
HAL_GPIO_DeInit(cfg->mosiPort, cfg->mosiPin);
}
void spi::halMspInitInterrupt(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspIrqConfigStruct*>(cfgBase);
if(cfg == nullptr or hspi == nullptr) {
return;
}
spi::halMspInitPolling(hspi, cfg);
// Configure the NVIC for SPI
spi::assignSpiUserHandler(cfg->spiBus, cfg->spiIrqHandler, cfg->spiUserArgs);
HAL_NVIC_SetPriority(cfg->spiIrqNumber, cfg->preEmptPriority, cfg->subpriority);
HAL_NVIC_EnableIRQ(cfg->spiIrqNumber);
}
void spi::halMspDeinitInterrupt(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspIrqConfigStruct*>(cfgBase);
spi::halMspDeinitPolling(hspi, cfg);
// Disable the NVIC for SPI
HAL_NVIC_DisableIRQ(cfg->spiIrqNumber);
}
void spi::getMspInitFunction(msp_func_t* init_func, MspCfgBase** args) {
if(init_func != NULL && args != NULL) {
*init_func = mspInitFunc;
*args = mspInitArgs;
}
}
void spi::getMspDeinitFunction(msp_func_t* deinit_func, MspCfgBase** args) {
if(deinit_func != NULL && args != NULL) {
*deinit_func = mspDeinitFunc;
*args = mspDeinitArgs;
}
}
void spi::setSpiDmaMspFunctions(MspDmaConfigStruct* cfg,
msp_func_t initFunc, msp_func_t deinitFunc) {
mspInitFunc = initFunc;
mspDeinitFunc = deinitFunc;
mspInitArgs = cfg;
mspDeinitArgs = cfg;
}
void spi::setSpiIrqMspFunctions(MspIrqConfigStruct *cfg, msp_func_t initFunc,
msp_func_t deinitFunc) {
mspInitFunc = initFunc;
mspDeinitFunc = deinitFunc;
mspInitArgs = cfg;
mspDeinitArgs = cfg;
}
void spi::setSpiPollingMspFunctions(MspPollingConfigStruct *cfg, msp_func_t initFunc,
msp_func_t deinitFunc) {
mspInitFunc = initFunc;
mspDeinitFunc = deinitFunc;
mspInitArgs = cfg;
mspDeinitArgs = cfg;
}
/**
* @brief SPI MSP Initialization
* This function configures the hardware resources used in this example:
* - Peripheral's clock enable
* - Peripheral's GPIO Configuration
* - DMA configuration for transmission request by peripheral
* - NVIC configuration for DMA interrupt request enable
* @param hspi: SPI handle pointer
* @retval None
*/
extern "C" void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) {
if(mspInitFunc != NULL) {
mspInitFunc(hspi, mspInitArgs);
}
else {
printf("HAL_SPI_MspInit: Please call set_msp_functions to assign SPI MSP functions\n");
}
}
/**
* @brief SPI MSP De-Initialization
* This function frees the hardware resources used in this example:
* - Disable the Peripheral's clock
* - Revert GPIO, DMA and NVIC configuration to their default state
* @param hspi: SPI handle pointer
* @retval None
*/
extern "C" void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) {
if(mspDeinitFunc != NULL) {
mspDeinitFunc(hspi, mspDeinitArgs);
}
else {
printf("HAL_SPI_MspDeInit: Please call set_msp_functions to assign SPI MSP functions\n");
}
}
void spi::mspErrorHandler(const char* const function, const char *const message) {
printf("%s failure: %s\n", function, message);
}

View File

@ -0,0 +1,340 @@
#include "spiDefinitions.h"
#include "spiCore.h"
#include <cstdio>
SPI_HandleTypeDef* spiHandle = nullptr;
DMA_HandleTypeDef* hdmaTx = nullptr;
DMA_HandleTypeDef* hdmaRx = nullptr;
spi_transfer_cb_t rxTxCb = nullptr;
void* rxTxArgs = nullptr;
spi_transfer_cb_t txCb = nullptr;
void* txArgs = nullptr;
spi_transfer_cb_t rxCb = nullptr;
void* rxArgs = nullptr;
spi_transfer_cb_t errorCb = nullptr;
void* errorArgs = nullptr;
void mapIndexAndStream(DMA_HandleTypeDef* handle, dma::DMAType dmaType, dma::DMAIndexes dmaIdx,
dma::DMAStreams dmaStream, IRQn_Type* dmaIrqNumber);
void mapSpiBus(DMA_HandleTypeDef *handle, dma::DMAType dmaType, spi::SpiBus spiBus);
void spi::configureDmaHandle(DMA_HandleTypeDef *handle, spi::SpiBus spiBus, dma::DMAType dmaType,
dma::DMAIndexes dmaIdx, dma::DMAStreams dmaStream, IRQn_Type* dmaIrqNumber,
uint32_t dmaMode, uint32_t dmaPriority) {
using namespace dma;
mapIndexAndStream(handle, dmaType, dmaIdx, dmaStream, dmaIrqNumber);
mapSpiBus(handle, dmaType, spiBus);
if(dmaType == DMAType::TX) {
handle->Init.Direction = DMA_MEMORY_TO_PERIPH;
}
else {
handle->Init.Direction = DMA_PERIPH_TO_MEMORY;
}
handle->Init.Priority = dmaPriority;
handle->Init.Mode = dmaMode;
// Standard settings for the rest for now
handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
handle->Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
handle->Init.MemBurst = DMA_MBURST_INC4;
handle->Init.PeriphBurst = DMA_PBURST_INC4;
handle->Init.PeriphInc = DMA_PINC_DISABLE;
handle->Init.MemInc = DMA_MINC_ENABLE;
handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
}
void spi::setDmaHandles(DMA_HandleTypeDef* txHandle, DMA_HandleTypeDef* rxHandle) {
hdmaTx = txHandle;
hdmaRx = rxHandle;
}
void spi::getDmaHandles(DMA_HandleTypeDef** txHandle, DMA_HandleTypeDef** rxHandle) {
*txHandle = hdmaTx;
*rxHandle = hdmaRx;
}
void spi::setSpiHandle(SPI_HandleTypeDef *spiHandle_) {
if(spiHandle_ == NULL) {
return;
}
spiHandle = spiHandle_;
}
void spi::assignTransferRxTxCompleteCallback(spi_transfer_cb_t callback, void *userArgs) {
rxTxCb = callback;
rxTxArgs = userArgs;
}
void spi::assignTransferRxCompleteCallback(spi_transfer_cb_t callback, void *userArgs) {
rxCb = callback;
rxArgs = userArgs;
}
void spi::assignTransferTxCompleteCallback(spi_transfer_cb_t callback, void *userArgs) {
txCb = callback;
txArgs = userArgs;
}
void spi::assignTransferErrorCallback(spi_transfer_cb_t callback, void *userArgs) {
errorCb = callback;
errorArgs = userArgs;
}
SPI_HandleTypeDef* spi::getSpiHandle() {
return spiHandle;
}
/**
* @brief TxRx Transfer completed callback.
* @param hspi: SPI handle
*/
extern "C" void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) {
if(rxTxCb != NULL) {
rxTxCb(hspi, rxTxArgs);
}
else {
printf("HAL_SPI_TxRxCpltCallback: No user callback specified\n");
}
}
/**
* @brief TxRx Transfer completed callback.
* @param hspi: SPI handle
*/
extern "C" void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) {
if(txCb != NULL) {
txCb(hspi, txArgs);
}
else {
printf("HAL_SPI_TxCpltCallback: No user callback specified\n");
}
}
/**
* @brief TxRx Transfer completed callback.
* @param hspi: SPI handle
*/
extern "C" void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) {
if(rxCb != nullptr) {
rxCb(hspi, rxArgs);
}
else {
printf("HAL_SPI_RxCpltCallback: No user callback specified\n");
}
}
/**
* @brief SPI error callbacks.
* @param hspi: SPI handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
extern "C" void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) {
if(errorCb != nullptr) {
errorCb(hspi, rxArgs);
}
else {
printf("HAL_SPI_ErrorCallback: No user callback specified\n");
}
}
void mapIndexAndStream(DMA_HandleTypeDef* handle, dma::DMAType dmaType, dma::DMAIndexes dmaIdx,
dma::DMAStreams dmaStream, IRQn_Type* dmaIrqNumber) {
using namespace dma;
if(dmaIdx == DMAIndexes::DMA_1) {
#ifdef DMA1
switch(dmaStream) {
case(DMAStreams::STREAM_0): {
#ifdef DMA1_Stream0
handle->Instance = DMA1_Stream0;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream0_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_1): {
#ifdef DMA1_Stream1
handle->Instance = DMA1_Stream1;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream1_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_2): {
#ifdef DMA1_Stream2
handle->Instance = DMA1_Stream2;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream2_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_3): {
#ifdef DMA1_Stream3
handle->Instance = DMA1_Stream3;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream3_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_4): {
#ifdef DMA1_Stream4
handle->Instance = DMA1_Stream4;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream4_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_5): {
#ifdef DMA1_Stream5
handle->Instance = DMA1_Stream5;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream5_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_6): {
#ifdef DMA1_Stream6
handle->Instance = DMA1_Stream6;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream6_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_7): {
#ifdef DMA1_Stream7
handle->Instance = DMA1_Stream7;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream7_IRQn;
}
#endif
break;
}
}
if(dmaType == DMAType::TX) {
handle->Init.Request = DMA_REQUEST_SPI1_TX;
}
else {
handle->Init.Request = DMA_REQUEST_SPI1_RX;
}
#endif /* DMA1 */
}
if(dmaIdx == DMAIndexes::DMA_2) {
#ifdef DMA2
switch(dmaStream) {
case(DMAStreams::STREAM_0): {
#ifdef DMA2_Stream0
handle->Instance = DMA2_Stream0;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream0_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_1): {
#ifdef DMA2_Stream1
handle->Instance = DMA2_Stream1;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream1_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_2): {
#ifdef DMA2_Stream2
handle->Instance = DMA2_Stream2;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream2_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_3): {
#ifdef DMA2_Stream3
handle->Instance = DMA2_Stream3;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream3_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_4): {
#ifdef DMA2_Stream4
handle->Instance = DMA2_Stream4;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream4_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_5): {
#ifdef DMA2_Stream5
handle->Instance = DMA2_Stream5;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream5_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_6): {
#ifdef DMA2_Stream6
handle->Instance = DMA2_Stream6;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream6_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_7): {
#ifdef DMA2_Stream7
handle->Instance = DMA2_Stream7;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream7_IRQn;
}
#endif
break;
}
}
#endif /* DMA2 */
}
}
void mapSpiBus(DMA_HandleTypeDef *handle, dma::DMAType dmaType, spi::SpiBus spiBus) {
if(dmaType == dma::DMAType::TX) {
if(spiBus == spi::SpiBus::SPI_1) {
#ifdef DMA_REQUEST_SPI1_TX
handle->Init.Request = DMA_REQUEST_SPI1_TX;
#endif
}
else if(spiBus == spi::SpiBus::SPI_2) {
#ifdef DMA_REQUEST_SPI2_TX
handle->Init.Request = DMA_REQUEST_SPI2_TX;
#endif
}
}
else {
if(spiBus == spi::SpiBus::SPI_1) {
#ifdef DMA_REQUEST_SPI1_RX
handle->Init.Request = DMA_REQUEST_SPI1_RX;
#endif
}
else if(spiBus == spi::SpiBus::SPI_2) {
#ifdef DMA_REQUEST_SPI2_RX
handle->Init.Request = DMA_REQUEST_SPI2_RX;
#endif
}
}
}

View File

@ -0,0 +1,52 @@
#include "spiDefinitions.h"
void spi::assignSpiMode(SpiModes spiMode, SPI_HandleTypeDef& spiHandle) {
switch(spiMode) {
case(SpiModes::MODE_0): {
spiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
spiHandle.Init.CLKPhase = SPI_PHASE_1EDGE;
break;
}
case(SpiModes::MODE_1): {
spiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
spiHandle.Init.CLKPhase = SPI_PHASE_2EDGE;
break;
}
case(SpiModes::MODE_2): {
spiHandle.Init.CLKPolarity = SPI_POLARITY_HIGH;
spiHandle.Init.CLKPhase = SPI_PHASE_1EDGE;
break;
}
case(SpiModes::MODE_3): {
spiHandle.Init.CLKPolarity = SPI_POLARITY_HIGH;
spiHandle.Init.CLKPhase = SPI_PHASE_2EDGE;
break;
}
}
}
uint32_t spi::getPrescaler(uint32_t clock_src_freq, uint32_t baudrate_mbps) {
uint32_t divisor = 0;
uint32_t spi_clk = clock_src_freq;
uint32_t presc = 0;
static const uint32_t baudrate[] = {
SPI_BAUDRATEPRESCALER_2,
SPI_BAUDRATEPRESCALER_4,
SPI_BAUDRATEPRESCALER_8,
SPI_BAUDRATEPRESCALER_16,
SPI_BAUDRATEPRESCALER_32,
SPI_BAUDRATEPRESCALER_64,
SPI_BAUDRATEPRESCALER_128,
SPI_BAUDRATEPRESCALER_256,
};
while( spi_clk > baudrate_mbps) {
presc = baudrate[divisor];
if (++divisor > 7)
break;
spi_clk = ( spi_clk >> 1);
}
return presc;
}

View File

@ -0,0 +1,106 @@
#include "spiInterrupts.h"
#include "spiCore.h"
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_dma.h"
#include "stm32h7xx_hal_spi.h"
#include <stddef.h>
user_handler_t spi1UserHandler = &spi::spiIrqHandler;
user_args_t spi1UserArgs = nullptr;
user_handler_t spi2UserHandler = &spi::spiIrqHandler;
user_args_t spi2UserArgs = nullptr;
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void spi::dmaRxIrqHandler(void* dmaHandle) {
if(dmaHandle == nullptr) {
return;
}
HAL_DMA_IRQHandler((DMA_HandleTypeDef *) dmaHandle);
}
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void spi::dmaTxIrqHandler(void* dmaHandle) {
if(dmaHandle == nullptr) {
return;
}
HAL_DMA_IRQHandler((DMA_HandleTypeDef *) dmaHandle);
}
/**
* @brief This function handles SPIx interrupt request.
* @param None
* @retval None
*/
void spi::spiIrqHandler(void* spiHandle) {
if(spiHandle == nullptr) {
return;
}
//auto currentSpiHandle = spi::getSpiHandle();
HAL_SPI_IRQHandler((SPI_HandleTypeDef *) spiHandle);
}
void spi::assignSpiUserHandler(spi::SpiBus spiIdx, user_handler_t userHandler,
user_args_t userArgs) {
if(spiIdx == spi::SpiBus::SPI_1) {
spi1UserHandler = userHandler;
spi1UserArgs = userArgs;
}
else {
spi2UserHandler = userHandler;
spi2UserArgs = userArgs;
}
}
void spi::getSpiUserHandler(spi::SpiBus spiBus, user_handler_t *userHandler,
user_args_t *userArgs) {
if(userHandler == nullptr or userArgs == nullptr) {
return;
}
if(spiBus == spi::SpiBus::SPI_1) {
*userArgs = spi1UserArgs;
*userHandler = spi1UserHandler;
}
else {
*userArgs = spi2UserArgs;
*userHandler = spi2UserHandler;
}
}
void spi::assignSpiUserArgs(spi::SpiBus spiBus, user_args_t userArgs) {
if(spiBus == spi::SpiBus::SPI_1) {
spi1UserArgs = userArgs;
}
else {
spi2UserArgs = userArgs;
}
}
/* Do not change these function names! They need to be exactly equal to the name of the functions
defined in the startup_stm32h743xx.s files! */
extern "C" void SPI1_IRQHandler() {
if(spi1UserHandler != NULL) {
spi1UserHandler(spi1UserArgs);
return;
}
Default_Handler();
}
extern "C" void SPI2_IRQHandler() {
if(spi2UserHandler != nullptr) {
spi2UserHandler(spi2UserArgs);
return;
}
Default_Handler();
}

View File

@ -0,0 +1,81 @@
#include "stm32h743ziSpi.h"
#include "spiCore.h"
#include "spiInterrupts.h"
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_rcc.h"
#include <cstdio>
void spiSetupWrapper() {
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_SPI1_CLK_ENABLE();
}
void spiCleanUpWrapper() {
__HAL_RCC_SPI1_FORCE_RESET();
__HAL_RCC_SPI1_RELEASE_RESET();
}
void spiDmaClockEnableWrapper() {
__HAL_RCC_DMA2_CLK_ENABLE();
}
void spi::h743zi::standardPollingCfg(MspPollingConfigStruct& cfg) {
cfg.setupMacroWrapper = &spiSetupWrapper;
cfg.cleanUpMacroWrapper = &spiCleanUpWrapper;
cfg.sckPort = GPIOA;
cfg.sckPin = GPIO_PIN_5;
cfg.misoPort = GPIOA;
cfg.misoPin = GPIO_PIN_6;
cfg.mosiPort = GPIOA;
cfg.mosiPin = GPIO_PIN_7;
cfg.sckAlternateFunction = GPIO_AF5_SPI1;
cfg.mosiAlternateFunction = GPIO_AF5_SPI1;
cfg.misoAlternateFunction = GPIO_AF5_SPI1;
}
void spi::h743zi::standardInterruptCfg(MspIrqConfigStruct& cfg, IrqPriorities spiIrqPrio,
IrqPriorities spiSubprio) {
// High, but works on FreeRTOS as well (priorities range from 0 to 15)
cfg.preEmptPriority = spiIrqPrio;
cfg.subpriority = spiSubprio;
cfg.spiIrqNumber = SPI1_IRQn;
cfg.spiBus = SpiBus::SPI_1;
user_handler_t spiUserHandler = nullptr;
user_args_t spiUserArgs = nullptr;
getSpiUserHandler(spi::SpiBus::SPI_1, &spiUserHandler, &spiUserArgs);
if(spiUserHandler == nullptr) {
printf("spi::h743zi::standardInterruptCfg: Invalid SPI user handlers\n");
return;
}
cfg.spiUserArgs = spiUserArgs;
cfg.spiIrqHandler = spiUserHandler;
standardPollingCfg(cfg);
}
void spi::h743zi::standardDmaCfg(MspDmaConfigStruct& cfg, IrqPriorities spiIrqPrio,
IrqPriorities txIrqPrio, IrqPriorities rxIrqPrio, IrqPriorities spiSubprio,
IrqPriorities txSubprio, IrqPriorities rxSubprio) {
cfg.dmaClkEnableWrapper = &spiDmaClockEnableWrapper;
cfg.rxDmaIndex = dma::DMAIndexes::DMA_2;
cfg.txDmaIndex = dma::DMAIndexes::DMA_2;
cfg.txDmaStream = dma::DMAStreams::STREAM_3;
cfg.rxDmaStream = dma::DMAStreams::STREAM_2;
DMA_HandleTypeDef* txHandle;
DMA_HandleTypeDef* rxHandle;
spi::getDmaHandles(&txHandle, &rxHandle);
if(txHandle == nullptr or rxHandle == nullptr) {
printf("spi::h743zi::standardDmaCfg: Invalid DMA handles\n");
return;
}
spi::configureDmaHandle(txHandle, spi::SpiBus::SPI_1, dma::DMAType::TX, cfg.txDmaIndex,
cfg.txDmaStream, &cfg.txDmaIrqNumber);
spi::configureDmaHandle(rxHandle, spi::SpiBus::SPI_1, dma::DMAType::RX, cfg.rxDmaIndex,
cfg.rxDmaStream, &cfg.rxDmaIrqNumber, DMA_NORMAL, DMA_PRIORITY_HIGH);
cfg.txPreEmptPriority = txIrqPrio;
cfg.rxPreEmptPriority = txSubprio;
cfg.txSubpriority = rxIrqPrio;
cfg.rxSubpriority = rxSubprio;
standardInterruptCfg(cfg, spiIrqPrio, spiSubprio);
}

View File

@ -0,0 +1,2 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
)

11
inc/fsfw/action.h Normal file
View File

@ -0,0 +1,11 @@
#ifndef FSFW_INC_FSFW_ACTION_H_
#define FSFW_INC_FSFW_ACTION_H_
#include "action/ActionHelper.h"
#include "action/ActionMessage.h"
#include "action/CommandActionHelper.h"
#include "action/HasActionsIF.h"
#include "action/CommandsActionsIF.h"
#include "action/SimpleActionHelper.h"
#endif /* FSFW_INC_FSFW_ACTION_H_ */

View File

@ -1,9 +1,9 @@
#ifndef FSFW_ACTION_ACTIONMESSAGE_H_
#define FSFW_ACTION_ACTIONMESSAGE_H_
#include "../ipc/CommandMessage.h"
#include "../objectmanager/ObjectManagerIF.h"
#include "../storagemanager/StorageManagerIF.h"
#include "fsfw/ipc/CommandMessage.h"
#include "fsfw/objectmanager/ObjectManagerIF.h"
#include "fsfw/storagemanager/StorageManagerIF.h"
using ActionId_t = uint32_t;

View File

@ -2,11 +2,11 @@
#define COMMANDACTIONHELPER_H_
#include "ActionMessage.h"
#include "../objectmanager/ObjectManagerIF.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include "../serialize/SerializeIF.h"
#include "../storagemanager/StorageManagerIF.h"
#include "../ipc/MessageQueueIF.h"
#include "fsfw/objectmanager/ObjectManagerIF.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include "fsfw/serialize/SerializeIF.h"
#include "fsfw/storagemanager/StorageManagerIF.h"
#include "fsfw/ipc/MessageQueueIF.h"
class CommandsActionsIF;

View File

@ -3,9 +3,10 @@
#include "SimpleRingBuffer.h"
#include "DynamicFIFO.h"
#include "../ipc/MutexIF.h"
#include "../objectmanager/SystemObject.h"
#include "../timemanager/Clock.h"
#include "fsfw/ipc/MutexIF.h"
#include "fsfw/objectmanager/SystemObject.h"
#include "fsfw/timemanager/Clock.h"
/**
* @brief Ring buffer which can be shared among multiple objects

View File

@ -1,14 +1,14 @@
#ifndef FSFW_CONTROLLER_CONTROLLERBASE_H_
#define FSFW_CONTROLLER_CONTROLLERBASE_H_
#include "../health/HasHealthIF.h"
#include "../health/HealthHelper.h"
#include "../modes/HasModesIF.h"
#include "../modes/ModeHelper.h"
#include "../objectmanager/SystemObject.h"
#include "../tasks/ExecutableObjectIF.h"
#include "../tasks/PeriodicTaskIF.h"
#include "../datapool/HkSwitchHelper.h"
#include "fsfw/health/HasHealthIF.h"
#include "fsfw/health/HealthHelper.h"
#include "fsfw/modes/HasModesIF.h"
#include "fsfw/modes/ModeHelper.h"
#include "fsfw/objectmanager/SystemObject.h"
#include "fsfw/tasks/ExecutableObjectIF.h"
#include "fsfw/tasks/PeriodicTaskIF.h"
#include "fsfw/datapool/HkSwitchHelper.h"
/**
* @brief Generic base class for controller classes

Some files were not shown because too many files have changed in this diff Show More