Merge branch 'eive/develop' into meier/uioMapper

This commit is contained in:
Jakob Meier 2022-01-25 18:48:22 +01:00
commit faf7da2743
82 changed files with 2236 additions and 461 deletions

7
.clang-format Normal file
View File

@ -0,0 +1,7 @@
---
BasedOnStyle: Google
IndentWidth: 2
---
Language: Cpp
ColumnLimit: 100
---

View File

@ -4,6 +4,9 @@ set(FSFW_VERSION 2)
set(FSFW_SUBVERSION 0)
set(FSFW_REVISION 0)
# Add the cmake folder so the FindSphinx module is found
set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
option(FSFW_GENERATE_SECTIONS
"Generate function and data sections. Required to remove unused code" ON
)
@ -12,6 +15,7 @@ if(FSFW_GENERATE_SECTIONS)
endif()
option(FSFW_BUILD_UNITTESTS "Build unittest binary in addition to static library" OFF)
option(FSFW_BUILD_DOCS "Build documentation with Sphinx and Doxygen" OFF)
if(FSFW_BUILD_UNITTESTS)
option(FSFW_TESTS_GEN_COV "Generate coverage data for unittests" ON)
endif()
@ -36,7 +40,9 @@ option(FSFW_ADD_SGP4_PROPAGATOR "Add SGP4 propagator code" OFF)
set(LIB_FSFW_NAME fsfw)
set(FSFW_TEST_TGT fsfw-tests)
set(FSFW_DUMMY_TGT fsfw-dummy)
project(${LIB_FSFW_NAME})
add_library(${LIB_FSFW_NAME})
if(FSFW_BUILD_UNITTESTS)
@ -59,7 +65,6 @@ if(FSFW_BUILD_UNITTESTS)
set(FSFW_CONFIG_PATH tests/src/fsfw_tests/unit/testcfg)
configure_file(tests/src/fsfw_tests/unit/testcfg/FSFWConfig.h.in FSFWConfig.h)
configure_file(tests/src/fsfw_tests/unit/testcfg/TestsConfig.h.in tests/TestsConfig.h)
configure_file(tests/src/fsfw_tests/unit/testcfg/OBSWConfig.h.in OBSWConfig.h)
project(${FSFW_TEST_TGT} CXX C)
add_executable(${FSFW_TEST_TGT})
@ -147,7 +152,7 @@ else()
set(OS_FSFW "host")
endif()
if(FSFW_BUILD_UNITTESTS)
if(FSFW_BUILD_UNITTESTS OR FSFW_BUILD_DOCS)
configure_file(src/fsfw/FSFW.h.in fsfw/FSFW.h)
configure_file(src/fsfw/FSFWVersion.h.in fsfw/FSFWVersion.h)
else()
@ -163,6 +168,9 @@ if(FSFW_ADD_HAL)
add_subdirectory(hal)
endif()
add_subdirectory(contrib)
if(FSFW_BUILD_DOCS)
add_subdirectory(docs)
endif()
if(FSFW_BUILD_UNITTESTS)
if(FSFW_TESTS_GEN_COV)
@ -234,9 +242,11 @@ endif()
# The project CMakeLists file has to set the FSFW_CONFIG_PATH and add it.
# If this is not given, we include the default configuration and emit a warning.
if(NOT FSFW_CONFIG_PATH)
message(WARNING "Flight Software Framework configuration path not set!")
set(DEF_CONF_PATH misc/defaultcfg/fsfwconfig)
message(WARNING "Setting default configuration from ${DEF_CONF_PATH} ..")
if(NOT FSFW_BUILD_DOCS)
message(WARNING "Flight Software Framework configuration path not set!")
message(WARNING "Setting default configuration from ${DEF_CONF_PATH} ..")
endif()
add_subdirectory(${DEF_CONF_PATH})
set(FSFW_CONFIG_PATH ${DEF_CONF_PATH})
endif()

View File

@ -42,7 +42,7 @@ There are some functions like `printChar` which are different depending on the t
and need to be implemented by the mission developer.
A template configuration folder was provided and can be copied into the project root to have
a starting point. The [configuration section](doc/README-config.md#top) provides more specific
a starting point. The [configuration section](docs/README-config.md#top) provides more specific
information about the possible options.
## Adding the library
@ -107,16 +107,22 @@ cmake --build . -- fsfw-tests_coverage -j
The `coverage.py` script located in the `script` folder can also be used to do this conveniently.
## Formatting the sources
The formatting is done by the `clang-format` tool. The configuration is contained within the
`.clang-format` file in the repository root. As long as `clang-format` is installed, you
can run the `apply-clang-format.sh` helper script to format all source files consistently.
## Index
[1. High-level overview](doc/README-highlevel.md#top) <br>
[2. Core components](doc/README-core.md#top) <br>
[3. Configuration](doc/README-config.md#top) <br>
[4. OSAL overview](doc/README-osal.md#top) <br>
[5. PUS services](doc/README-pus.md#top) <br>
[6. Device Handler overview](doc/README-devicehandlers.md#top) <br>
[7. Controller overview](doc/README-controllers.md#top) <br>
[8. Local Data Pools](doc/README-localpools.md#top) <br>
[1. High-level overview](docs/README-highlevel.md#top) <br>
[2. Core components](docs/README-core.md#top) <br>
[3. Configuration](docs/README-config.md#top) <br>
[4. OSAL overview](docs/README-osal.md#top) <br>
[5. PUS services](docs/README-pus.md#top) <br>
[6. Device Handler overview](docs/README-devicehandlers.md#top) <br>
[7. Controller overview](docs/README-controllers.md#top) <br>
[8. Local Data Pools](docs/README-localpools.md#top) <br>

13
cmake/FindSphinx.cmake Normal file
View File

@ -0,0 +1,13 @@
# Look for an executable called sphinx-build
find_program(SPHINX_EXECUTABLE
NAMES sphinx-build
DOC "Path to sphinx-build executable")
include(FindPackageHandleStandardArgs)
# Handle standard arguments to find_package like REQUIRED and QUIET
find_package_handle_standard_args(
Sphinx
"Failed to find sphinx-build executable"
SPHINX_EXECUTABLE
)

66
docs/CMakeLists.txt Normal file
View File

@ -0,0 +1,66 @@
# This is based on this excellent posting provided by Sy:
# https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
find_package(Doxygen REQUIRED)
find_package(Sphinx REQUIRED)
get_target_property(LIB_FSFW_PUBLIC_HEADER_DIRS ${LIB_FSFW_NAME} INTERFACE_INCLUDE_DIRECTORIES)
# TODO: Add HAL as well
file(GLOB_RECURSE LIB_FSFW_PUBLIC_HEADERS ${PROJECT_SOURCE_DIR}/src/*.h)
file(GLOB_RECURSE RST_DOC_FILES ${PROJECT_SOURCE_DIR}/docs/*.rst)
set(DOXYGEN_INPUT_DIR ${PROJECT_SOURCE_DIR}/src)
set(DOXYGEN_OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}/doxygen)
set(DOXYGEN_INDEX_FILE ${DOXYGEN_OUTPUT_DIR}/xml/index.xml)
set(DOXYFILE_IN ${CMAKE_CURRENT_SOURCE_DIR}/Doxyfile.in)
set(DOXYFILE_OUT ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile)
# Replace variables inside @@ with the current values
configure_file(${DOXYFILE_IN} ${DOXYFILE_OUT} @ONLY)
# Doxygen won't create this for us
file(MAKE_DIRECTORY ${DOXYGEN_OUTPUT_DIR})
# Only regenerate Doxygen when the Doxyfile or public headers change
add_custom_command(
OUTPUT ${DOXYGEN_INDEX_FILE}
DEPENDS ${LIB_FSFW_PUBLIC_HEADERS}
COMMAND ${DOXYGEN_EXECUTABLE} ${DOXYFILE_OUT}
MAIN_DEPENDENCY ${DOXYFILE_OUT} ${DOXYFILE_IN}
COMMENT "Generating docs"
VERBATIM
)
# Nice named target so we can run the job easily
add_custom_target(Doxygen ALL DEPENDS ${DOXYGEN_INDEX_FILE})
set(SPHINX_SOURCE ${CMAKE_CURRENT_SOURCE_DIR})
set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR}/sphinx)
set(SPHINX_INDEX_FILE ${SPHINX_BUILD}/index.html)
# Only regenerate Sphinx when:
# - Doxygen has rerun
# - Our doc files have been updated
# - The Sphinx config has been updated
add_custom_command(
OUTPUT ${SPHINX_INDEX_FILE}
COMMAND
${SPHINX_EXECUTABLE} -b html
# Tell Breathe where to find the Doxygen output
-Dbreathe_projects.fsfw=${DOXYGEN_OUTPUT_DIR}/xml
${SPHINX_SOURCE} ${SPHINX_BUILD}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS
# Other docs files you want to track should go here (or in some variable)
${RST_DOC_FILES}
${DOXYGEN_INDEX_FILE}
MAIN_DEPENDENCY ${SPHINX_SOURCE}/conf.py
COMMENT "Generating documentation with Sphinx"
)
# Nice named target so we can run the job easily
add_custom_target(Sphinx ALL DEPENDS ${SPHINX_INDEX_FILE})
# Add an install target to install the docs
include(GNUInstallDirs)
install(DIRECTORY ${SPHINX_BUILD}
DESTINATION ${CMAKE_INSTALL_DOCDIR})

7
docs/Doxyfile.in Normal file
View File

@ -0,0 +1,7 @@
INPUT = "@DOXYGEN_INPUT_DIR@"
RECURSIVE = YES
OUTPUT_DIRECTORY = "@DOXYGEN_OUTPUT_DIR@"
GENERATE_XML = YES

20
docs/Makefile Normal file
View File

@ -0,0 +1,20 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@ -31,7 +31,9 @@ cohesive pool variables. These sets simply iterator over the list of variables a
`read` and `commit` functions of each variable. The following diagram shows the
high-level architecture of the local data pools.
<img align="center" src="./images/PoolArchitecture.png" width="50%"> <br>
.. image:: ../misc/logo/FSFW_Logo_V3_bw.png
:alt: FSFW Logo
An example is shown for using the local data pools with a Gyroscope.
For example, the following code shows an implementation to access data from a Gyroscope taken

16
docs/api.rst Normal file
View File

@ -0,0 +1,16 @@
API
====
.. toctree::
:maxdepth: 4
api/objectmanager
api/task
api/ipc
api/returnvalue
api/event
api/modes
api/health
api/action
api/devicehandler
api/controller

15
docs/api/action.rst Normal file
View File

@ -0,0 +1,15 @@
Action Module API
=================
``ActionHelper``
-----------------
.. doxygenclass:: ActionHelper
:members:
``HasActionsIF``
-----------------
.. doxygenclass:: HasActionsIF
:members:
:protected-members:

16
docs/api/controller.rst Normal file
View File

@ -0,0 +1,16 @@
Controller API
=================
``ControllerBase``
-------------------------
.. doxygenclass:: ControllerBase
:members:
:protected-members:
``ExtendedControllerBase``
-----------------------------
.. doxygenclass:: ExtendedControllerBase
:members:
:protected-members:

View File

@ -0,0 +1,16 @@
Device Handler Base API
=========================
``DeviceHandlerBase``
-----------------------
.. doxygenclass:: DeviceHandlerBase
:members:
:protected-members:
``DeviceHandlerIF``
-----------------------
.. doxygenclass:: DeviceHandlerIF
:members:
:protected-members:

6
docs/api/event.rst Normal file
View File

@ -0,0 +1,6 @@
.. _eventapi:
Event API
============
.. doxygenfile:: Event.h

9
docs/api/health.rst Normal file
View File

@ -0,0 +1,9 @@
Health API
===========
``HasHealthIF``
------------------
.. doxygenclass:: HasHealthIF
:members:
:protected-members:

9
docs/api/ipc.rst Normal file
View File

@ -0,0 +1,9 @@
IPC Module API
=================
``MessageQueueIF``
-------------------
.. doxygenclass:: MessageQueueIF
:members:
:protected-members:

10
docs/api/modes.rst Normal file
View File

@ -0,0 +1,10 @@
Modes API
=========
``HasModesIF``
---------------
.. doxygenclass:: HasModesIF
:members:
:protected-members:

View File

@ -0,0 +1,30 @@
Object Manager API
=========================
``SystemObject``
--------------------
.. doxygenclass:: SystemObject
:members:
:protected-members:
``ObjectManager``
-----------------------
.. doxygenclass:: ObjectManager
:members:
:protected-members:
``SystemObjectIF``
--------------------
.. doxygenclass:: SystemObjectIF
:members:
:protected-members:
``ObjectManagerIF``
-----------------------
.. doxygenclass:: ObjectManagerIF
:members:
:protected-members:

10
docs/api/returnvalue.rst Normal file
View File

@ -0,0 +1,10 @@
.. _retvalapi:
Returnvalue API
==================
.. doxygenfile:: HasReturnvaluesIF.h
.. _fwclassids:
.. doxygenfile:: FwClassIds.h

8
docs/api/task.rst Normal file
View File

@ -0,0 +1,8 @@
Task API
=========
``ExecutableObjectIF``
-----------------------
.. doxygenclass:: ExecutableObjectIF
:members:

56
docs/conf.py Normal file
View File

@ -0,0 +1,56 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
# -- Project information -----------------------------------------------------
project = 'Flight Software Framework'
copyright = '2021, Institute of Space Systems (IRS)'
author = 'Institute of Space Systems (IRS)'
# The full version, including alpha/beta/rc tags
release = '2.0.1'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [ "breathe" ]
breathe_default_project = "fsfw"
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'alabaster'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []

41
docs/config.rst Normal file
View File

@ -0,0 +1,41 @@
Configuring the FSFW
=====================
The FSFW can be configured via the ``fsfwconfig`` folder. A template folder has been provided in
``misc/defaultcfg`` to have a starting point for this. The folder should be added
to the include path. The primary configuration file is the ``FSFWConfig.h`` folder. Some
of the available options will be explained in more detail here.
Auto-Translation of Events
----------------------------
The FSFW allows the automatic translation of events, which allows developers to track triggered
events directly via console output. Using this feature requires:
1. ``FSFW_OBJ_EVENT_TRANSLATION`` set to 1 in the configuration file.
2. Special auto-generated translation files which translate event IDs and object IDs into
human readable strings. These files can be generated using the
`fsfwgen Python scripts <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-gen>`_.
3. The generated translation files for the object IDs should be named ``translatesObjects.cpp``
and ``translateObjects.h`` and should be copied to the ``fsfwconfig/objects`` folder
4. The generated translation files for the event IDs should be named ``translateEvents.cpp`` and
``translateEvents.h`` and should be copied to the ``fsfwconfig/events`` folder
An example implementations of these translation file generators can be found as part
of the `SOURCE project here <https://git.ksat-stuttgart.de/source/sourceobsw/-/tree/develop/generators>`_
or the `FSFW example <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted/src/branch/master/generators>`_
Configuring the Event Manager
----------------------------------
The number of allowed subscriptions can be modified with the following
parameters:
.. code-block:: cpp
namespace fsfwconfig {
//! Configure the allocated pool sizes for the event manager.
static constexpr size_t FSFW_EVENTMGMR_MATCHTREE_NODES = 240;
static constexpr size_t FSFW_EVENTMGMT_EVENTIDMATCHERS = 120;
static constexpr size_t FSFW_EVENTMGMR_RANGEMATCHERS = 120;
}

2
docs/controllers.rst Normal file
View File

@ -0,0 +1,2 @@
Controllers
=============

70
docs/core.rst Normal file
View File

@ -0,0 +1,70 @@
.. _core:
Core Modules
=============
The core modules provide the most important functionalities of the Flight Software Framework.
Clock
------
- This is a class of static functions that can be used at anytime
- Leap Seconds must be set if any time conversions from UTC to other times is used
Object Manager
---------------
- Must be created during program startup
- The component which handles all references. All :cpp:class:`SystemObject`\s register at this
component.
- All :cpp:class:`SystemObject`\s needs to have a unique Object ID. Those can be managed like
framework objects.
- A reference to an object can be retrieved by calling the ``get`` function of
:cpp:class:`ObjectManagerIF`. The target type must be specified as a template argument.
A ``nullptr`` check of the returning pointer must be done. This function is based on
run-time type information.
.. code-block:: cpp
template <typename T> T* ObjectManagerIF::get(object_id_t id);
- A typical way to create all objects on startup is a handing a static produce function to the
ObjectManager on creation. By calling ``ObjectManager::instance()->initialize(produceFunc)`` the
produce function will be called and all :cpp:class:`SystemObject`\s will be initialized
afterwards.
Event Manager
---------------
- Component which allows routing of events
- Other objects can subscribe to specific events, ranges of events or all events of an object.
- Subscriptions can be done during runtime but should be done during initialization
- Amounts of allowed subscriptions can be configured in ``FSFWConfig.h``
Health Table
---------------
- A component which holds every health state
- Provides a thread safe way to access all health states without the need of message exchanges
Stores
--------------
- The message based communication can only exchange a few bytes of information inside the message
itself. Therefore, additional information can be exchanged with Stores. With this, only the
store address must be exchanged in the message.
- Internally, the FSFW uses an IPC Store to exchange data between processes. For incoming TCs a TC
Store is used. For outgoing TM a TM store is used.
- All of them should use the Thread Safe Class storagemanager/PoolManager
Tasks
---------
There are two different types of tasks:
- The PeriodicTask just executes objects that are of type ExecutableObjectIF in the order of the
insertion to the Tasks.
- FixedTimeslotTask executes a list of calls in the order of the given list. This is intended for
DeviceHandlers, where polling should be in a defined order. An example can be found in
``defaultcfg/fsfwconfig/pollingSequence`` folder

3
docs/devicehandlers.rst Normal file
View File

@ -0,0 +1,3 @@
Device Handlers
==================

115
docs/getting_started.rst Normal file
View File

@ -0,0 +1,115 @@
Getting Started
================
Getting started
----------------
The `Hosted FSFW example`_ provides a good starting point and a demo to see the FSFW capabilities.
It is recommended to get started by building and playing around with the demo application.
There are also other examples provided for all OSALs using the popular embedded platforms
Raspberry Pi, Beagle Bone Black and STM32H7.
Generally, the FSFW is included in a project by providing
a configuration folder, building the static library and linking against it.
There are some functions like ``printChar`` which are different depending on the target architecture
and need to be implemented by the mission developer.
A template configuration folder was provided and can be copied into the project root to have
a starting point. The [configuration section](docs/README-config.md#top) provides more specific
information about the possible options.
Adding the library
-------------------
The following steps show how to add and use FSFW components. It is still recommended to
try out the example mentioned above to get started, but the following steps show how to
add and link against the FSFW library in general.
1. Add this repository as a submodule
.. code-block:: console
git submodule add https://egit.irs.uni-stuttgart.de/fsfw/fsfw.git fsfw
2. Add the following directive inside the uppermost ``CMakeLists.txt`` file of your project
.. code-block:: cmake
add_subdirectory(fsfw)
3. Make sure to provide a configuration folder and supply the path to that folder with
the `FSFW_CONFIG_PATH` CMake variable from the uppermost `CMakeLists.txt` file.
It is also necessary to provide the `printChar` function. You can find an example
implementation for a hosted build
`here <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted/src/branch/master/bsp_hosted/utility/printChar.c>`_.
4. Link against the FSFW library
.. code-block:: cmake
target_link_libraries(<YourProjectName> PRIVATE fsfw)
5. It should now be possible use the FSFW as a static library from the user code.
Building the unittests
-------------------------
The FSFW also has unittests which use the `Catch2 library`_.
These are built by setting the CMake option ``FSFW_BUILD_UNITTESTS`` to ``ON`` or `TRUE`
from your project `CMakeLists.txt` file or from the command line.
The fsfw-tests binary will be built as part of the static library and dropped alongside it.
If the unittests are built, the library and the tests will be built with coverage information by
default. This can be disabled by setting the `FSFW_TESTS_COV_GEN` option to `OFF` or `FALSE`.
You can use the following commands inside the ``fsfw`` folder to set up the build system
.. code-block:: console
mkdir build-tests && cd build-tests
cmake -DFSFW_BUILD_UNITTESTS=ON -DFSFW_OSAL=host ..
You can also use ``-DFSFW_OSAL=linux`` on Linux systems.
Coverage data in HTML format can be generated using the `Code coverage`_ CMake module.
To build the unittests, run them and then generare the coverage data in this format,
the following command can be used inside the build directory after the build system was set up
.. code-block:: console
cmake --build . -- fsfw-tests_coverage -j
The ``helper.py`` script located in the ``script`` folder can also be used to create, build
and open the unittests conveniently. Try ``helper.py -h`` for more information.
Building the documentation
----------------------------
The FSFW documentation is built using the tools Sphinx, doxygen and breathe based on the
instructions provided in `this blogpost <https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/>`_. You can set up a
documentation build system using the following commands
.. code-block:: bash
mkdir build-docs && cd build-docs
cmake -DFSFW_BUILD_DOCS=ON -DFSFW_OSAL=host ..
Then you can generate the documentation using
.. code-block:: bash
cmake --build . -j
You can find the generated documentation inside the ``docs/sphinx`` folder inside the build
folder. Simply open the ``index.html`` in the webbrowser of your choice.
The ``helper.py`` script located in the ``script`` folder can also be used to create, build
and open the documentation conveniently. Try ``helper.py -h`` for more information.
.. _`Hosted FSFW example`: https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted
.. _`Catch2 library`: https://github.com/catchorg/Catch2
.. _`Code coverage`: https://github.com/bilke/cmake-modules/tree/master

149
docs/highlevel.rst Normal file
View File

@ -0,0 +1,149 @@
.. _highlevel:
High-level overview
===================
Structure
----------
The general structure is driven by the usage of interfaces provided by objects.
The FSFW uses C++11 as baseline. The intention behind this is that this C++ Standard should be
widely available, even with older compilers.
The FSFW uses dynamic allocation during the initialization but provides static containers during runtime.
This simplifies the instantiation of objects and allows the usage of some standard containers.
Dynamic Allocation after initialization is discouraged and different solutions are provided in the
FSFW to achieve that. The fsfw uses run-time type information but exceptions are not allowed.
Failure Handling
-----------------
Functions should return a defined :cpp:type:`ReturnValue_t` to signal to the caller that something has
gone wrong. Returnvalues must be unique. For this the function :cpp:func:`HasReturnvaluesIF::makeReturnCode`
or the :ref:`macro MAKE_RETURN_CODE <retvalapi>` can be used. The ``CLASS_ID`` is a unique ID for that type of object.
See the :ref:`FSFW Class IDs file <fwclassids>`. The user can add custom ``CLASS_ID``\s via the
``fsfwconfig`` folder.
OSAL
------------
The FSFW provides operation system abstraction layers for Linux, FreeRTOS and RTEMS.
The OSAL provides periodic tasks, message queues, clocks and semaphores as well as mutexes.
The :ref:`OSAL README <osal>` provides more detailed information on provided components
and how to use them.
Core Components
----------------
The FSFW has following core components. More detailed informations can be found in the
:ref:`core component section <core>`:
1. Tasks: Abstraction for different (periodic) task types like periodic tasks or tasks
with fixed timeslots
2. ObjectManager: This module stores all `SystemObjects` by mapping a provided unique object ID
to the object handles.
3. Static Stores: Different stores are provided to store data of variable size (like telecommands
or small telemetry) in a pool structure without using dynamic memory allocation.
These pools are allocated up front.
4. Clock: This module provided common time related functions
5. EventManager: This module allows routing of events generated by `SystemObjects`
6. HealthTable: A component which stores the health states of objects
Static IDs in the framework
--------------------------------
Some parts of the framework use a static routing address for communication.
An example setup of IDs can be found in the example config in ``misc/defaultcfg/fsfwconfig/objects``
inside the function ``Factory::setStaticFrameworkObjectIds``.
Events
----------------
Events are tied to objects. EventIds can be generated by calling the
:ref:`macro MAKE_EVENT <eventapi>` or the function :cpp:func:`event::makeEvent`.
This works analog to the returnvalues. Every object that needs own Event IDs has to get a
unique ``SUBSYSTEM_ID``. Every :cpp:class:`SystemObject` can call
:cpp:func:`SystemObject::triggerEvent` from the parent class.
Therefore, event messages contain the specific EventId and the objectId of the object that
has triggered.
Internal Communication
-------------------------
Components communicate mostly via Messages through Queues.
Those queues are created by calling the singleton ``QueueFactory::instance()->create`` which
will create `MessageQueue` instances for the used OSAL.
External Communication
--------------------------
The external communication with the mission control system is mostly up to the user implementation.
The FSFW provides PUS Services which can be used to but don't need to be used.
The services can be seen as a conversion from a TC to a message based communication and back.
TMTC Communication
~~~~~~~~~~~~~~~~~~~
The FSFW provides some components to facilitate TMTC handling via the PUS commands.
For example, a UDP or TCP PUS server socket can be opened on a specific port using the
files located in ``osal/common``. The FSFW example uses this functionality to allow sending
telecommands and receiving telemetry using the
`TMTC commander application <https://github.com/robamu-org/tmtccmd>`_.
Simple commands like the PUS Service 17 ping service can be tested by simply running the
``tmtc_client_cli.py`` or ``tmtc_client_gui.py`` utility in
the `example tmtc folder <https://egit.irs.uni-stuttgart.de/fsfw/fsfw_example_public/src/branch/master/tmtc>`_
while the `fsfw_example` application is running.
More generally, any class responsible for handling incoming telecommands and sending telemetry
can implement the generic ``TmTcBridge`` class located in ``tmtcservices``. Many applications
also use a dedicated polling task for reading telecommands which passes telecommands
to the ``TmTcBridge`` implementation.
CCSDS Frames, CCSDS Space Packets and PUS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the communication is based on CCSDS Frames and Space Packets, several classes can be used to
distributed the packets to the corresponding services. Those can be found in ``tcdistribution``.
If Space Packets are used, a timestamper has to be provided by the user.
An example can be found in the ``timemanager`` folder, which uses ``CCSDSTime::CDS_short``.
Device Handlers
--------------------------
DeviceHandlers are another important component of the FSFW. The idea is, to have a software
counterpart of every physical device to provide a simple mode, health and commanding interface.
By separating the underlying Communication Interface with
``DeviceCommunicationIF``, a device handler (DH) can be tested on different hardware.
The DH has mechanisms to monitor the communication with the physical device which allow
for FDIR reaction. Device Handlers can be created by implementing ``DeviceHandlerBase``.
A standard FDIR component for the DH will be created automatically but can
be overwritten by the user. More information on DeviceHandlers can be found in the
related [documentation section](doc/README-devicehandlers.md#top).
Modes and Health
--------------------
The two interfaces ``HasModesIF`` and ``HasHealthIF`` provide access for commanding and monitoring
of components. On-board mode management is implement in hierarchy system.
- Device handlers and controllers are the lowest part of the hierarchy.
- The next layer are assemblies. Those assemblies act as a component which handle
redundancies of handlers. Assemblies share a common core with the top level subsystem components
- The top level subsystem components are used to group assemblies, controllers and device handlers.
For example, a spacecraft can have a atttitude control subsystem and a power subsystem.
Those assemblies are intended to act as auto-generated components from a database which describes
the subsystem modes. The definitions contain transition and target tables which contain the DH,
Assembly and Controller Modes to be commanded.
Transition tables contain as many steps as needed to reach the mode from any other mode, e.g. a
switch into any higher AOCS mode might first turn on the sensors, than the actuators and the
controller as last component.
The target table is used to describe the state that is checked continuously by the subsystem.
All of this allows System Modes to be generated as Subsystem object as well from the same database.
This System contains list of subsystem modes in the transition and target tables.
Therefore, it allows a modular system to create system modes and easy commanding of those, because
only the highest components must be commanded.
The health state represents if the component is able to perform its tasks.
This can be used to signal the system to avoid using this component instead of a redundant one.
The on-board FDIR uses the health state for isolation and recovery.

View File

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 52 KiB

69
docs/index.rst Normal file
View File

@ -0,0 +1,69 @@
.. Flight Software Framework documentation master file, created by
sphinx-quickstart on Tue Nov 30 10:56:03 2021.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Flight Software Framework (FSFW) documentation
================================================
.. image:: ../misc/logo/FSFW_Logo_V3_bw.png
:alt: FSFW Logo
The Flight Software Framework is a C++ Object Oriented Framework for unmanned,
automated systems like Satellites.
The initial version of the Flight Software Framework was developed during
the Flying Laptop Project by the University of Stuttgart in cooperation
with Airbus Defence and Space GmbH.
Quick facts
---------------
The framework is designed for systems, which communicate with external devices, perform control
loops, receive telecommands and send telemetry, and need to maintain a high level of availability.
Therefore, a mode and health system provides control over the states of the software and the
controlled devices. In addition, a simple mechanism of event based fault detection, isolation and
recovery is implemented as well.
The FSFW provides abstraction layers for operating systems to provide a uniform operating system
abstraction layer (OSAL). Some components of this OSAL are required internally by the FSFW but is
also very useful for developers to implement the same application logic on different operating
systems with a uniform interface.
Currently, the FSFW provides the following OSALs:
- Linux
- Host
- FreeRTOS
- RTEMS
The recommended hardware is a microprocessor with more than 1 MB of RAM and 1 MB of non-volatile
memory. For reference, current applications use a Cobham Gaisler UT699 (LEON3FT), a
ISISPACE IOBC or a Zynq-7020 SoC. The ``fsfw`` was also successfully run on the
STM32H743ZI-Nucleo board and on a Raspberry Pi and is currently running on the active
satellite mission Flying Laptop.
Index
-------
.. toctree::
:maxdepth: 2
:caption: Contents:
getting_started
highlevel
core
config
osal
pus
devicehandlers
controllers
localpools
api
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

181
docs/localpools.rst Normal file
View File

@ -0,0 +1,181 @@
Local Data Pools
=========================================
The following text is targeted towards mission software developers which would like
to use the local data pools provided by the FSFW to store data like sensor values so they can be
used by other software objects like controllers as well. If a custom class should have a local
pool which can be used by other software objects as well, following steps have to be performed:
1. Create a ``LocalDataPoolManager`` member object in the custom class
2. Implement the ``HasLocalDataPoolIF`` with specifies the interface between the local pool
manager and the class owning the local pool.
The local data pool manager is also able to process housekeeping service requests in form
of messages, generate periodic housekeeping packet, generate notification and snapshots of changed
variables and datasets and process notifications and snapshots coming from other objects.
The two former tasks are related to the external interface using telemetry and telecommands (TMTC)
while the later two are related to data consumers like controllers only acting on data change
detected by the data creator instead of checking the data manually each cycle. Two important
framework classes ``DeviceHandlerBase`` and ``ExtendedControllerBase`` already perform the two steps
shown above so the steps required are altered slightly.
Storing and Accessing pool data
-------------------------------------
The pool manager is responsible for thread-safe access of the pool data, but the actual
access to the pool data from the point of view of a mission software developer happens via proxy
classes like pool variable classes. These classes store a copy
of the pool variable with the matching datatype and copy the actual data from the local pool
on a ``read`` call. Changed variables can then be written to the local pool with a ``commit`` call.
The ``read`` and ``commit`` calls are thread-safe and can be called concurrently from data creators
and data consumers. Generally, a user will create a dataset class which in turn groups all
cohesive pool variables. These sets simply iterator over the list of variables and call the
``read`` and ``commit`` functions of each variable. The following diagram shows the
high-level architecture of the local data pools.
.. image:: ../docs/images/PoolArchitecture.png
:alt: Pool Architecture
An example is shown for using the local data pools with a Gyroscope.
For example, the following code shows an implementation to access data from a Gyroscope taken
from the SOURCE CubeSat project:
.. code-block:: cpp
class GyroPrimaryDataset: public StaticLocalDataSet<3 * sizeof(float)> {
public:
/**
* Constructor for data users
* @param gyroId
*/
GyroPrimaryDataset(object_id_t gyroId):
StaticLocalDataSet(sid_t(gyroId, gyrodefs::GYRO_DATA_SET_ID)) {
setAllVariablesReadOnly();
}
lp_var_t<float> angVelocityX = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_X, this);
lp_var_t<float> angVelocityY = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_Y, this);
lp_var_t<float> angVelocityZ = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_Z, this);
private:
friend class GyroHandler;
/**
* Constructor for data creator
* @param hkOwner
*/
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, gyrodefs::GYRO_DATA_SET_ID) {}
};
There is a public constructor for users which sets all variables to read-only and there is a
constructor for the GyroHandler data creator by marking it private and declaring the ``GyroHandler``
as a friend class. Both the atittude controller and the ``GyroHandler`` can now
use the same class definition to access the pool variables with ``read`` and ``commit`` semantics
in a thread-safe way. Generally, each class requiring access will have the set class as a member
class. The data creator will also be generally a ``DeviceHandlerBase`` subclass and some additional
steps are necessary to expose the set for housekeeping purposes.
Using the local data pools in a ``DeviceHandlerBase`` subclass
--------------------------------------------------------------
It is very common to store data generated by devices like a sensor into a pool which can
then be used by other objects. Therefore, the ``DeviceHandlerBase`` already has a
local pool. Using the aforementioned example, the ``GyroHandler`` will now have the set class
as a member:
.. code-block:: cpp
class GyroHandler: ... {
public:
...
private:
...
GyroPrimaryDataset gyroData;
...
};
The constructor used for the creators expects the owner class as a parameter, so we initialize
the object in the `GyroHandler` constructor like this:
.. code-block:: cpp
GyroHandler::GyroHandler(object_id_t objectId, object_id_t comIF,
CookieIF *comCookie, uint8_t switchId):
DeviceHandlerBase(objectId, comIF, comCookie), switchId(switchId),
gyroData(this) {}
We need to assign the set to a reply ID used in the ``DeviceHandlerBase``.
The combination of the ``GyroHandler`` object ID and the reply ID will be the 64-bit structure ID
``sid_t`` and is used to globally identify the set, for example when requesting housekeeping data or
generating update messages. We need to assign our custom set class in some way so that the local
pool manager can access the custom data sets as well.
By default, the ``getDataSetHandle`` will take care of this tasks. The default implementation for a
``DeviceHandlerBase`` subclass will use the internal command map to retrieve
a handle to a dataset from a given reply ID. Therefore,
we assign the set in the ``fillCommandAndReplyMap`` function:
.. code-block:: cpp
void GyroHandler::fillCommandAndReplyMap() {
...
this->insertInCommandAndReplyMap(gyrodefs::GYRO_DATA, 3, &gyroData);
...
}
Now, we need to create the actual pool entries as well, using the ``initializeLocalDataPool``
function. Here, we also immediately subscribe for periodic housekeeping packets
with an interval of 4 seconds. They are still disabled in this example and can be enabled
with a housekeeping service command.
.. code-block:: cpp
ReturnValue_t GyroHandler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_Z,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::GENERAL_CONFIG_REG42,
new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(gyrodefs::RANGE_CONFIG_REG43,
new PoolEntry<uint8_t>({0}));
poolManager.subscribeForPeriodicPacket(gyroData.getSid(), false, 4.0, false);
return HasReturnvaluesIF::RETURN_OK;
}
Now, if we receive some sensor data and converted them into the right format,
we can write it into the pool like this, using a guard class to ensure the set is commited back
in any case:
.. code-block:: cpp
PoolReadGuard readHelper(&gyroData);
if(readHelper.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
if(not gyroData.isValid()) {
gyroData.setValidity(true, true);
}
gyroData.angVelocityX = angularVelocityX;
gyroData.angVelocityY = angularVelocityY;
gyroData.angVelocityZ = angularVelocityZ;
}
The guard class will commit the changed data on destruction automatically.
Using the local data pools in a ``ExtendedControllerBase`` subclass
----------------------------------------------------------------------
Coming soon

35
docs/make.bat Normal file
View File

@ -0,0 +1,35 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=.
set BUILDDIR=_build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

63
docs/osal.rst Normal file
View File

@ -0,0 +1,63 @@
.. _osal:
Operating System Abstraction Layer (OSAL)
============================================
Some specific information on the provided OSALs are provided.
Linux
-------
This OSAL can be used to compile for Linux host systems like Ubuntu 20.04 or for
embedded Linux targets like the Raspberry Pi. This OSAL generally requires threading support
and real-time functionalities. For most UNIX systems, this is done by adding ``-lrt`` and
``-lpthread`` to the linked libraries in the compilation process. The CMake build support provided
will do this automatically for the ``fsfw`` target. It should be noted that most UNIX systems need
to be configured specifically to allow the real-time functionalities required by the FSFW.
Hosted OSAL
-------------------
This is the newest OSAL. Support for Semaphores has not been implemented yet and will propably be
implemented as soon as C++20 with Semaphore support has matured. This OSAL can be used to run the
FSFW on any host system, but currently has only been tested on Windows 10 and Ubuntu 20.04. Unlike
the other OSALs, it uses dynamic memory allocation (e.g. for the message queue implementation).
Cross-platform serial port (USB) support might be added soon.
FreeRTOS OSAL
------------------
FreeRTOS is not included and the developer needs to take care of compiling the FreeRTOS sources and
adding the ``FreeRTOSConfig.h`` file location to the include path. This OSAL has only been tested
extensively with the pre-emptive scheduler configuration so far but it should in principle also be
possible to use a cooperative scheduler. It is recommended to use the `heap_4` allocation scheme.
When using newlib (nano), it is also recommended to add ``#define configUSE_NEWLIB_REENTRANT`` to
the FreeRTOS configuration file to ensure thread-safety.
When using this OSAL, developers also need to provide an implementation for the
``vRequestContextSwitchFromISR`` function. This has been done because the call to request a context
switch from an ISR is generally located in the ``portmacro.h`` header and is different depending on
the target architecture or device.
RTEMS OSAL
---------------
The RTEMS OSAL was the first implemented OSAL which is also used on the active satellite Flying Laptop.
TCP/IP socket abstraction
------------------------------
The Linux and Host OSAL provide abstraction layers for the socket API. Currently, only UDP sockets
have been imlemented. This is very useful to test TMTC handling either on the host computer
directly (targeting localhost with a TMTC application) or on embedded Linux devices, sending
TMTC packets via Ethernet.
Example Applications
----------------------
There are example applications available for each OSAL
- `Hosted OSAL <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted>`_
- `Linux OSAL for MCUs <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-linux-mcu>`_
- `FreeRTOS OSAL on the STM32H743ZIT <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-stm32h7-freertos>`_
- `RTEMS OSAL on the STM32H743ZIT <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-stm32h7-rtems>`_

2
docs/pus.rst Normal file
View File

@ -0,0 +1,2 @@
PUS Services
==============

View File

@ -16,8 +16,8 @@ enum Levels: uint8_t {
};
enum Direction: uint8_t {
IN = 0,
OUT = 1
DIR_IN = 0,
DIR_OUT = 1
};
enum GpioOperation {
@ -30,7 +30,7 @@ enum class GpioTypes {
GPIO_REGULAR_BY_CHIP,
GPIO_REGULAR_BY_LABEL,
GPIO_REGULAR_BY_LINE_NAME,
CALLBACK
TYPE_CALLBACK
};
static constexpr gpioId_t NO_GPIO = -1;
@ -68,7 +68,7 @@ public:
// Can be used to cast GpioBase to a concrete child implementation
gpio::GpioTypes gpioType = gpio::GpioTypes::NONE;
std::string consumer;
gpio::Direction direction = gpio::Direction::IN;
gpio::Direction direction = gpio::Direction::DIR_IN;
gpio::Levels initValue = gpio::Levels::NONE;
};
@ -92,7 +92,7 @@ class GpiodRegularByChip: public GpiodRegularBase {
public:
GpiodRegularByChip() :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP,
std::string(), gpio::Direction::IN, gpio::LOW, 0) {
std::string(), gpio::Direction::DIR_IN, gpio::LOW, 0) {
}
GpiodRegularByChip(std::string chipname_, int lineNum_, std::string consumer_,
@ -104,7 +104,7 @@ public:
GpiodRegularByChip(std::string chipname_, int lineNum_, std::string consumer_) :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP, consumer_,
gpio::Direction::IN, gpio::LOW, lineNum_),
gpio::Direction::DIR_IN, gpio::LOW, lineNum_),
chipname(chipname_) {
}
@ -122,7 +122,7 @@ public:
GpiodRegularByLabel(std::string label_, int lineNum_, std::string consumer_) :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL, consumer_,
gpio::Direction::IN, gpio::LOW, lineNum_),
gpio::Direction::DIR_IN, gpio::LOW, lineNum_),
label(label_) {
}
@ -144,7 +144,7 @@ public:
GpiodRegularByLineName(std::string lineName_, std::string consumer_) :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME, consumer_,
gpio::Direction::IN, gpio::LOW), lineName(lineName_) {
gpio::Direction::DIR_IN, gpio::LOW), lineName(lineName_) {
}
std::string lineName;
@ -154,7 +154,7 @@ class GpioCallback: public GpioBase {
public:
GpioCallback(std::string consumer, gpio::Direction direction_, gpio::Levels initValue_,
gpio::gpio_cb_t callback, void* callbackArgs):
GpioBase(gpio::GpioTypes::CALLBACK, consumer, direction_, initValue_),
GpioBase(gpio::GpioTypes::TYPE_CALLBACK, consumer, direction_, initValue_),
callback(callback), callbackArgs(callbackArgs) {}
gpio::gpio_cb_t callback = nullptr;

View File

@ -9,7 +9,7 @@ GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceC
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
transitionDelayMs(transitionDelayMs), dataset(this) {
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
debugDivider = new PeriodicOperationDivider(3);
debugDivider = new PeriodicOperationDivider(10);
#endif
}

View File

@ -12,7 +12,7 @@ MgmLIS3MDLHandler::MgmLIS3MDLHandler(object_id_t objectId, object_id_t deviceCom
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
dataset(this), transitionDelay(transitionDelay) {
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
debugDivider = new PeriodicOperationDivider(3);
debugDivider = new PeriodicOperationDivider(10);
#endif
// Set to default values right away
registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT;
@ -283,7 +283,7 @@ ReturnValue_t MgmLIS3MDLHandler::interpretDeviceReply(DeviceCommandId_t id,
int16_t mgmMeasurementRawZ = packet[MGMLIS3MDL::Z_HIGHBYTE_IDX] << 8
| packet[MGMLIS3MDL::Z_LOWBYTE_IDX] ;
/* Target value in microtesla */
// Target value in microtesla
float mgmX = static_cast<float>(mgmMeasurementRawX) * sensitivityFactor
* MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR;
float mgmY = static_cast<float>(mgmMeasurementRawY) * sensitivityFactor
@ -339,7 +339,7 @@ ReturnValue_t MgmLIS3MDLHandler::interpretDeviceReply(DeviceCommandId_t id,
case MGMLIS3MDL::READ_TEMPERATURE: {
int16_t tempValueRaw = packet[2] << 8 | packet[1];
float tempValue = 25.0 + ((static_cast<float>(tempValueRaw)) / 8.0);
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
if(debugDivider->check()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MGMHandlerLIS3: Temperature: " << tempValue << " C" <<
@ -489,7 +489,7 @@ ReturnValue_t MgmLIS3MDLHandler::prepareCtrlRegisterWrite() {
}
void MgmLIS3MDLHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
DeviceHandlerBase::doTransition(modeFrom, subModeFrom);
}
uint32_t MgmLIS3MDLHandler::getTransitionDelayMs(Mode_t from, Mode_t to) {

View File

@ -12,7 +12,7 @@ MgmRM3100Handler::MgmRM3100Handler(object_id_t objectId,
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
primaryDataset(this), transitionDelay(transitionDelay) {
#if FSFW_HAL_RM3100_MGM_DEBUG == 1
debugDivider = new PeriodicOperationDivider(3);
debugDivider = new PeriodicOperationDivider(10);
#endif
}

View File

@ -4,6 +4,7 @@ endif()
target_sources(${LIB_FSFW_NAME} PRIVATE
UnixFileGuard.cpp
CommandExecutor.cpp
utility.cpp
)

View File

@ -0,0 +1,210 @@
#include "CommandExecutor.h"
#include "fsfw/serviceinterface.h"
#include "fsfw/container/SimpleRingBuffer.h"
#include "fsfw/container/DynamicFIFO.h"
#include <unistd.h>
#include <cstring>
CommandExecutor::CommandExecutor(const size_t maxSize):
readVec(maxSize) {
waiter.events = POLLIN;
}
ReturnValue_t CommandExecutor::load(std::string command, bool blocking, bool printOutput) {
if(state == States::PENDING) {
return COMMAND_PENDING;
}
currentCmd = command;
this->blocking = blocking;
this->printOutput = printOutput;
if(state == States::IDLE) {
state = States::COMMAND_LOADED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t CommandExecutor::execute() {
if(state == States::IDLE) {
return NO_COMMAND_LOADED_OR_PENDING;
}
else if(state == States::PENDING) {
return COMMAND_PENDING;
}
currentCmdFile = popen(currentCmd.c_str(), "r");
if(currentCmdFile == nullptr) {
lastError = errno;
return HasReturnvaluesIF::RETURN_FAILED;
}
if(blocking) {
return executeBlocking();
}
else {
currentFd = fileno(currentCmdFile);
waiter.fd = currentFd;
}
state = States::PENDING;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t CommandExecutor::close() {
if(state == States::PENDING) {
// Attempt to close process, irrespective of if it is running or not
if(currentCmdFile != nullptr) {
pclose(currentCmdFile);
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void CommandExecutor::printLastError(std::string funcName) const {
if(lastError != 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << funcName << " pclose failed with code " << lastError << ": " <<
strerror(lastError) << std::endl;
#else
sif::printError("%s pclose failed with code %d: %s\n",
funcName, lastError, strerror(lastError));
#endif
}
}
void CommandExecutor::setRingBuffer(SimpleRingBuffer *ringBuffer,
DynamicFIFO<uint16_t>* sizesFifo) {
this->ringBuffer = ringBuffer;
this->sizesFifo = sizesFifo;
}
ReturnValue_t CommandExecutor::check(bool& bytesRead) {
if(blocking) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(state) {
case(States::IDLE):
case(States::COMMAND_LOADED): {
return NO_COMMAND_LOADED_OR_PENDING;
}
case(States::PENDING): {
break;
}
}
int result = poll(&waiter, 1, 0);
switch(result) {
case(0): {
return HasReturnvaluesIF::RETURN_OK;
break;
}
case(1): {
if (waiter.revents & POLLIN) {
ssize_t readBytes = read(currentFd, readVec.data(), readVec.size());
if(readBytes == 0) {
// Should not happen
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "CommandExecutor::check: No bytes read "
"after poll event.." << std::endl;
#else
sif::printWarning("CommandExecutor::check: No bytes read after poll event..\n");
#endif
break;
}
else if(readBytes > 0) {
bytesRead = true;
if(printOutput) {
// It is assumed the command output is line terminated
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << currentCmd << " | " << readVec.data();
#else
sif::printInfo("%s | %s", currentCmd, readVec.data());
#endif
}
if(ringBuffer != nullptr) {
ringBuffer->writeData(reinterpret_cast<const uint8_t*>(
readVec.data()), readBytes);
}
if(sizesFifo != nullptr) {
if(not sizesFifo->full()) {
sizesFifo->insert(readBytes);
}
}
return BYTES_READ;
}
else {
// Should also not happen
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "CommandExecutor::check: Error " << errno << ": " <<
strerror(errno) << std::endl;
#else
sif::printWarning("CommandExecutor::check: Error %d: %s\n", errno, strerror(errno));
#endif
}
}
else if(waiter.revents & POLLERR) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "CommandExecuter::check: Poll error" << std::endl;
#else
sif::printWarning("CommandExecuter::check: Poll error\n");
#endif
return COMMAND_ERROR;
}
else if(waiter.revents & POLLHUP) {
int result = pclose(currentCmdFile);
if(result != 0) {
lastError = result;
return HasReturnvaluesIF::RETURN_FAILED;
}
state = States::IDLE;
currentCmdFile = nullptr;
currentFd = 0;
return EXECUTION_FINISHED;
}
break;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void CommandExecutor::reset() {
CommandExecutor::close();
currentCmdFile = nullptr;
currentFd = 0;
state = States::IDLE;
}
int CommandExecutor::getLastError() const {
return this->lastError;
}
CommandExecutor::States CommandExecutor::getCurrentState() const {
return state;
}
ReturnValue_t CommandExecutor::executeBlocking() {
while(fgets(readVec.data(), readVec.size(), currentCmdFile) != nullptr) {
std::string output(readVec.data());
if(printOutput) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << currentCmd << " | " << output;
#else
sif::printInfo("%s | %s", currentCmd, output);
#endif
}
if(ringBuffer != nullptr) {
ringBuffer->writeData(reinterpret_cast<const uint8_t*>(output.data()), output.size());
}
if(sizesFifo != nullptr) {
if(not sizesFifo->full()) {
sizesFifo->insert(output.size());
}
}
}
int result = pclose(currentCmdFile);
if(result != 0) {
lastError = result;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,134 @@
#ifndef FSFW_SRC_FSFW_OSAL_LINUX_COMMANDEXECUTOR_H_
#define FSFW_SRC_FSFW_OSAL_LINUX_COMMANDEXECUTOR_H_
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include "fsfw/returnvalues/FwClassIds.h"
#include <poll.h>
#include <string>
#include <vector>
class SimpleRingBuffer;
template <typename T> class DynamicFIFO;
/**
* @brief Helper class to execute shell commands in blocking and non-blocking mode
* @details
* This class is able to execute processes by using the Linux popen call. It also has the
* capability of writing the read output of a process into a provided ring buffer.
*
* The executor works by first loading the command which should be executed and specifying
* whether it should be executed blocking or non-blocking. After that, execution can be started
* with the execute command. In blocking mode, the execute command will block until the command
* has finished
*/
class CommandExecutor {
public:
enum class States {
IDLE,
COMMAND_LOADED,
PENDING
};
static constexpr uint8_t CLASS_ID = CLASS_ID::LINUX_OSAL;
//! [EXPORT] : [COMMENT] Execution of the current command has finished
static constexpr ReturnValue_t EXECUTION_FINISHED =
HasReturnvaluesIF::makeReturnCode(CLASS_ID, 0);
//! [EXPORT] : [COMMENT] Command is pending. This will also be returned if the user tries
//! to load another command but a command is still pending
static constexpr ReturnValue_t COMMAND_PENDING =
HasReturnvaluesIF::makeReturnCode(CLASS_ID, 1);
//! [EXPORT] : [COMMENT] Some bytes have been read from the executing process
static constexpr ReturnValue_t BYTES_READ =
HasReturnvaluesIF::makeReturnCode(CLASS_ID, 2);
//! [EXPORT] : [COMMENT] Command execution failed
static constexpr ReturnValue_t COMMAND_ERROR =
HasReturnvaluesIF::makeReturnCode(CLASS_ID, 3);
//! [EXPORT] : [COMMENT]
static constexpr ReturnValue_t NO_COMMAND_LOADED_OR_PENDING =
HasReturnvaluesIF::makeReturnCode(CLASS_ID, 4);
static constexpr ReturnValue_t PCLOSE_CALL_ERROR =
HasReturnvaluesIF::makeReturnCode(CLASS_ID, 6);
/**
* Constructor. Is initialized with maximum size of internal buffer to read data from the
* executed process.
* @param maxSize
*/
CommandExecutor(const size_t maxSize);
/**
* Load a new command which should be executed
* @param command
* @param blocking
* @param printOutput
* @return
*/
ReturnValue_t load(std::string command, bool blocking, bool printOutput = true);
/**
* Execute the loaded command.
* @return
* - In blocking mode, it will return RETURN_FAILED if
* the result of the system call was not 0. The error value can be accessed using
* getLastError
* - In non-blocking mode, this call will start
* the execution and then return RETURN_OK
*/
ReturnValue_t execute();
/**
* Only used in non-blocking mode. Checks the currently running command.
* @param bytesRead Will be set to the number of bytes read, if bytes have been read
* @return
* - BYTES_READ if bytes have been read from the executing process. It is recommended to call
* check again after this
* - RETURN_OK execution is pending, but no bytes have been read from the executing process
* - RETURN_FAILED if execution has failed, error value can be accessed using getLastError
* - EXECUTION_FINISHED if the process was executed successfully
* - COMMAND_ERROR internal poll error
*/
ReturnValue_t check(bool& bytesRead);
/**
* Abort the current command. Should normally not be necessary, check can be used to find
* out whether command execution was successful
* @return RETURN_OK
*/
ReturnValue_t close();
States getCurrentState() const;
int getLastError() const;
void printLastError(std::string funcName) const;
/**
* Assign a ring buffer and a FIFO which will be filled by the executor with the output
* read from the started process
* @param ringBuffer
* @param sizesFifo
*/
void setRingBuffer(SimpleRingBuffer* ringBuffer, DynamicFIFO<uint16_t>* sizesFifo);
/**
* Reset the executor. This calls close internally and then reset the state machine so new
* commands can be loaded and executed
*/
void reset();
private:
std::string currentCmd;
bool blocking = true;
FILE* currentCmdFile = nullptr;
int currentFd = 0;
bool printOutput = true;
std::vector<char> readVec;
struct pollfd waiter {};
SimpleRingBuffer* ringBuffer = nullptr;
DynamicFIFO<uint16_t>* sizesFifo = nullptr;
States state = States::IDLE;
int lastError = 0;
ReturnValue_t executeBlocking();
};
#endif /* FSFW_SRC_FSFW_OSAL_LINUX_COMMANDEXECUTOR_H_ */

View File

@ -75,7 +75,7 @@ ReturnValue_t LinuxLibgpioIF::configureGpios(GpioMap& mapToAdd) {
configureGpioByLineName(gpioConfig.first, *regularGpio);
break;
}
case(gpio::GpioTypes::CALLBACK): {
case(gpio::GpioTypes::TYPE_CALLBACK): {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
@ -163,12 +163,12 @@ ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, struct gpiod
consumer = regularGpio.consumer;
/* Configure direction and add a description to the GPIO */
switch (direction) {
case(gpio::OUT): {
case(gpio::DIR_OUT): {
result = gpiod_line_request_output(lineHandle, consumer.c_str(),
regularGpio.initValue);
break;
}
case(gpio::IN): {
case(gpio::DIR_IN): {
result = gpiod_line_request_input(lineHandle, consumer.c_str());
break;
}
@ -330,7 +330,7 @@ ReturnValue_t LinuxLibgpioIF::checkForConflicts(GpioMap& mapToAdd){
}
break;
}
case(gpio::GpioTypes::CALLBACK): {
case(gpio::GpioTypes::TYPE_CALLBACK): {
auto callbackGpio = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(callbackGpio == nullptr) {
return GPIO_TYPE_FAILURE;
@ -371,13 +371,13 @@ ReturnValue_t LinuxLibgpioIF::checkForConflictsById(gpioId_t gpioIdToCheck,
case(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP):
case(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL):
case(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME): {
if(gpioType == gpio::GpioTypes::NONE or gpioType == gpio::GpioTypes::CALLBACK) {
if(gpioType == gpio::GpioTypes::NONE or gpioType == gpio::GpioTypes::TYPE_CALLBACK) {
eraseDuplicateDifferentType = true;
}
break;
}
case(gpio::GpioTypes::CALLBACK): {
if(gpioType != gpio::GpioTypes::CALLBACK) {
case(gpio::GpioTypes::TYPE_CALLBACK): {
if(gpioType != gpio::GpioTypes::TYPE_CALLBACK) {
eraseDuplicateDifferentType = true;
}
}

View File

@ -7,7 +7,7 @@
ReturnValue_t gpio::createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue) {
std::string consumer, gpio::Direction direction, gpio::Levels initValue) {
if(cookie == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}

View File

@ -20,7 +20,7 @@ namespace gpio {
* @return
*/
ReturnValue_t createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue);
std::string consumer, gpio::Direction direction, gpio::Levels initValue);
}
#endif /* BSP_RPI_GPIO_GPIORPI_H_ */

View File

@ -1,23 +1,49 @@
target_include_directories(${TARGET_NAME} PRIVATE
if(DEFINED TARGET_NAME)
target_include_directories(${TARGET_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
)
target_sources(${TARGET_NAME} PRIVATE
ipc/missionMessageTypes.cpp
pollingsequence/PollingSequenceFactory.cpp
objects/FsfwFactory.cpp
)
# If a special translation file for object IDs exists, compile it.
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/objects/translateObjects.cpp")
target_sources(${TARGET_NAME} PRIVATE
objects/translateObjects.cpp
)
endif()
# If a special translation file for events exists, compile it.
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/objects/translateObjects.cpp")
target_sources(${TARGET_NAME} PRIVATE
events/translateEvents.cpp
ipc/missionMessageTypes.cpp
pollingsequence/PollingSequenceFactory.cpp
objects/FsfwFactory.cpp
)
# If a special translation file for object IDs exists, compile it.
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/objects/translateObjects.cpp")
target_sources(${TARGET_NAME} PRIVATE
objects/translateObjects.cpp
)
endif()
# If a special translation file for events exists, compile it.
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/objects/translateObjects.cpp")
target_sources(${TARGET_NAME} PRIVATE
events/translateEvents.cpp
)
endif()
else()
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
)
target_sources(${LIB_FSFW_NAME} PRIVATE
ipc/missionMessageTypes.cpp
pollingsequence/PollingSequenceFactory.cpp
objects/FsfwFactory.cpp
)
# If a special translation file for object IDs exists, compile it.
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/objects/translateObjects.cpp")
target_sources(${LIB_FSFW_NAME} PRIVATE
objects/translateObjects.cpp
)
endif()
# If a special translation file for events exists, compile it.
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/objects/translateObjects.cpp")
target_sources(${LIB_FSFW_NAME} PRIVATE
events/translateEvents.cpp
)
endif()
endif()

View File

@ -7,7 +7,7 @@
#include <fsfw/tmtcpacket/pus/tm/TmPacketStored.h>
#include <fsfw/tmtcservices/CommandingServiceBase.h>
#include <fsfw/tmtcservices/PusServiceBase.h>
#include <fsfw/internalError/InternalErrorReporter.h>
#include <fsfw/internalerror/InternalErrorReporter.h>
#include <cstdint>
@ -48,6 +48,6 @@ void Factory::setStaticFrameworkObjectIds() {
DeviceHandlerFailureIsolation::powerConfirmationId = objects::NO_OBJECT;
TmPacketStored::timeStamperId = objects::NO_OBJECT;
TmPacketBase::timeStamperId = objects::NO_OBJECT;
}

8
scripts/apply-clang-format.sh Executable file
View File

@ -0,0 +1,8 @@
#!/bin/bash
if [[ ! -f README.md ]]; then
cd ..
fi
find ./src -iname *.h -o -iname *.cpp -o -iname *.c | xargs clang-format --style=file -i
find ./hal -iname *.h -o -iname *.cpp -o -iname *.c | xargs clang-format --style=file -i
find ./tests -iname *.h -o -iname *.cpp -o -iname *.c | xargs clang-format --style=file -i

View File

@ -1,76 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*
"""Small portable helper script to generate LCOV HTML coverage data"""
import os
import platform
import sys
import time
import argparse
from typing import List
"""Copy this helper script into your project folder. It will try to determine a CMake build folder
and then attempt to build your project with coverage information.
See Unittest documentation at https://egit.irs.uni-stuttgart.de/fsfw/fsfw for more
information how to set up the build folder.
"""
def main():
parser = argparse.ArgumentParser(description="Processing arguments for LCOV helper script.")
build_dir_list = []
if not os.path.isfile('README.md'):
os.chdir('..')
for directory in os.listdir("."):
if os.path.isdir(directory):
os.chdir(directory)
check_for_cmake_build_dir(build_dir_list)
os.chdir("..")
if len(build_dir_list) == 0:
print("No valid CMake build directory found. Trying to set up hosted build")
build_directory = 'build-Debug-Host'
os.mkdir(build_directory)
os.chdir(build_directory)
os.system('cmake -DFSFW_OSAL=host -DFSFW_BUILD_UNITTESTS=ON ..')
os.chdir('..')
elif len(build_dir_list) == 1:
build_directory = build_dir_list[0]
else:
print("Multiple build directories found!")
build_directory = determine_build_dir(build_dir_list)
perform_lcov_operation(build_directory)
def check_for_cmake_build_dir(build_dir_dict: list):
if os.path.isfile("CMakeCache.txt"):
build_dir_dict.append(os.getcwd())
def perform_lcov_operation(directory):
os.chdir(directory)
os.system("cmake --build . -- fsfw-tests_coverage -j")
def determine_build_dir(build_dir_list: List[str]):
build_directory = ""
for idx, directory in enumerate(build_dir_list):
print(f"{idx + 1}: {directory}")
while True:
idx = input("Pick the directory to perform LCOV HTML generation by index: ")
if not idx.isdigit():
print("Invalid input!")
continue
idx = int(idx)
if idx > len(build_dir_list) or idx < 1:
print("Invalid input!")
continue
build_directory = build_dir_list[idx - 1]
break
return build_directory
if __name__ == "__main__":
main()

188
scripts/helper.py Executable file
View File

@ -0,0 +1,188 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*
"""Small portable helper script to generate test or doc configuration for the
flight software framework
"""
import os
import argparse
import webbrowser
import shutil
import sys
import time
from typing import List
UNITTEST_FOLDER_NAME = 'build-tests'
DOCS_FOLDER_NAME = 'build-docs'
def main():
parser = argparse.ArgumentParser(description="FSFW helper script")
choices = ('docs', 'tests')
parser.add_argument(
'type', metavar='type', choices=choices,
help=f'Target type. Choices: {choices}'
)
parser.add_argument(
'-a', '--all', action='store_true',
help='Create, build and open specified type'
)
parser.add_argument(
'-c', '--create', action='store_true',
help='Create docs or test build configuration'
)
parser.add_argument(
'-b', '--build', action='store_true',
help='Build the specified type'
)
parser.add_argument(
'-o', '--open', action='store_true',
help='Open test or documentation data in webbrowser'
)
args = parser.parse_args()
if args.all:
args.build = True
args.create = True
args.open = True
elif not args.build and not args.create and not args.open:
print(
'Please select at least one operation to perform. '
'Use helper.py -h for more information'
)
sys.exit(1)
# This script can be called from root and from script folder
if not os.path.isfile('README.md'):
os.chdir('..')
build_dir_list = []
if not args.create:
build_dir_list = build_build_dir_list()
if args.type == 'tests':
handle_tests_type(args, build_dir_list)
elif args.type == 'docs':
handle_docs_type(args, build_dir_list)
else:
print('Invalid or unknown type')
sys.exit(1)
def handle_docs_type(args, build_dir_list: list):
if args.create:
if os.path.exists(DOCS_FOLDER_NAME):
shutil.rmtree(DOCS_FOLDER_NAME)
create_docs_build_cfg()
build_directory = DOCS_FOLDER_NAME
elif len(build_dir_list) == 0:
print('No valid CMake docs build directory found. Trying to set up docs build system')
shutil.rmtree(DOCS_FOLDER_NAME)
create_docs_build_cfg()
build_directory = DOCS_FOLDER_NAME
elif len(build_dir_list) == 1:
build_directory = build_dir_list[0]
else:
print("Multiple build directories found!")
build_directory = determine_build_dir(build_dir_list)
os.chdir(build_directory)
if args.build:
os.system('cmake --build . -j')
if args.open:
if not os.path.isfile('docs/sphinx/index.html'):
# try again..
os.system('cmake --build . -j')
if not os.path.isfile('docs/sphinx/index.html'):
print(
"No Sphinx documentation file detected. "
"Try to build it first with the -b argument"
)
sys.exit(1)
webbrowser.open('docs/sphinx/index.html')
def handle_tests_type(args, build_dir_list: list):
if args.create:
if os.path.exists(UNITTEST_FOLDER_NAME):
shutil.rmtree(UNITTEST_FOLDER_NAME)
create_tests_build_cfg()
build_directory = UNITTEST_FOLDER_NAME
elif len(build_dir_list) == 0:
print(
'No valid CMake tests build directory found. '
'Trying to set up test build system'
)
create_tests_build_cfg()
build_directory = UNITTEST_FOLDER_NAME
elif len(build_dir_list) == 1:
build_directory = build_dir_list[0]
else:
print("Multiple build directories found!")
build_directory = determine_build_dir(build_dir_list)
os.chdir(build_directory)
if args.build:
perform_lcov_operation(build_directory, False)
if args.open:
if not os.path.isdir('fsfw-tests_coverage'):
print("No Unittest folder detected. Try to build them first with the -b argument")
sys.exit(1)
webbrowser.open('fsfw-tests_coverage/index.html')
def create_tests_build_cfg():
os.mkdir(UNITTEST_FOLDER_NAME)
os.chdir(UNITTEST_FOLDER_NAME)
os.system('cmake -DFSFW_OSAL=host -DFSFW_BUILD_UNITTESTS=ON ..')
os.chdir('..')
def create_docs_build_cfg():
os.mkdir(DOCS_FOLDER_NAME)
os.chdir(DOCS_FOLDER_NAME)
os.system('cmake -DFSFW_OSAL=host -DFSFW_BUILD_DOCS=ON ..')
os.chdir('..')
def build_build_dir_list() -> list:
build_dir_list = []
for directory in os.listdir("."):
if os.path.isdir(directory):
os.chdir(directory)
build_dir_list = check_for_cmake_build_dir(build_dir_list)
os.chdir("..")
return build_dir_list
def check_for_cmake_build_dir(build_dir_list: list) -> list:
if os.path.isfile("CMakeCache.txt"):
build_dir_list.append(os.getcwd())
return build_dir_list
def perform_lcov_operation(directory: str, chdir: bool):
if chdir:
os.chdir(directory)
os.system("cmake --build . -- fsfw-tests_coverage -j")
def determine_build_dir(build_dir_list: List[str]):
build_directory = ""
for idx, directory in enumerate(build_dir_list):
print(f"{idx + 1}: {directory}")
while True:
idx = input("Pick the directory: ")
if not idx.isdigit():
print("Invalid input!")
continue
idx = int(idx)
if idx > len(build_dir_list) or idx < 1:
print("Invalid input!")
continue
build_directory = build_dir_list[idx - 1]
break
return build_directory
if __name__ == "__main__":
main()

View File

@ -18,6 +18,10 @@
// FSFW core defines
#ifndef FSFW_TCP_RECV_WIRETAPPING_ENABLED
#define FSFW_TCP_RECV_WIRETAPPING_ENABLED 0
#endif
#ifndef FSFW_CPP_OSTREAM_ENABLED
#define FSFW_CPP_OSTREAM_ENABLED 1
#endif /* FSFW_CPP_OSTREAM_ENABLED */

View File

@ -5,8 +5,7 @@
#include <cstddef>
/**
* @brief Circular buffer implementation, useful for buffering
* into data streams.
* @brief Circular buffer implementation, useful for buffering into data streams.
* @details
* Note that the deleteData() has to be called to increment the read pointer.
* This class allocated dynamically, so
@ -20,8 +19,8 @@ public:
* @param size
* @param overwriteOld If the ring buffer is overflowing at a write
* operation, the oldest data will be overwritten.
* @param maxExcessBytes These additional bytes will be allocated in addtion
* to the specified size to accomodate contiguous write operations
* @param maxExcessBytes These additional bytes will be allocated in addition
* to the specified size to accommodate continuous write operations
* with getFreeElement.
*
*/
@ -32,10 +31,10 @@ public:
* @param buffer
* @param size
* @param overwriteOld
* If the ring buffer is overflowing at a write operartion, the oldest data
* If the ring buffer is overflowing at a write operation, the oldest data
* will be overwritten.
* @param maxExcessBytes
* If the buffer can accomodate additional bytes for contigous write
* If the buffer can accommodate additional bytes for contiguous write
* operations with getFreeElement, this is the maximum allowed additional
* size
*/
@ -48,7 +47,7 @@ public:
* Write to circular buffer and increment write pointer by amount.
* @param data
* @param amount
* @return -@c RETURN_OK if write operation was successfull
* @return -@c RETURN_OK if write operation was successful
* -@c RETURN_FAILED if
*/
ReturnValue_t writeData(const uint8_t* data, size_t amount);
@ -108,7 +107,7 @@ public:
* Delete data by incrementing read pointer.
* @param amount
* @param deleteRemaining
* If the amount specified is larger than the remaing size to read and this
* If the amount specified is larger than the remaining size to read and this
* is set to true, the remaining amount will be deleted as well
* @param trueAmount [out]
* If deleteRemaining was set to true, the amount deleted will be assigned

View File

@ -321,3 +321,7 @@ float LocalPoolDataSetBase::getCollectionInterval() const {
return 0.0;
}
}
void LocalPoolDataSetBase::printSet() {
return;
}

View File

@ -176,6 +176,11 @@ public:
*/
float getCollectionInterval() const;
/**
* @brief Can be overwritten by a specific implementation of a dataset to print the set.
*/
virtual void printSet();
protected:
sid_t sid;
//! This mutex is used if the data is created by one object only.
@ -234,7 +239,6 @@ protected:
PeriodicHousekeepingHelper* periodicHelper = nullptr;
LocalDataPoolManager* poolManager = nullptr;
};

View File

@ -46,11 +46,12 @@ LocalPoolObjectBase::LocalPoolObjectBase(object_id_t poolOwner, lp_id_t poolId,
HasLocalDataPoolIF* hkOwner = ObjectManager::instance()->get<HasLocalDataPoolIF>(poolOwner);
if(hkOwner == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "LocalPoolVariable: The supplied pool owner did not implement the correct "
"interface HasLocalDataPoolIF!" << std::endl;
sif::error << "LocalPoolVariable: The supplied pool owner 0x" << std::hex <<
poolOwner << std::dec << " did not implement the correct interface " <<
"HasLocalDataPoolIF" << std::endl;
#else
sif::printError( "LocalPoolVariable: The supplied pool owner did not implement the correct "
"interface HasLocalDataPoolIF!\n");
sif::printError( "LocalPoolVariable: The supplied pool owner 0x%08x did not implement the correct "
"interface HasLocalDataPoolIF\n", poolOwner);
#endif
return;
}

View File

@ -7,7 +7,7 @@
/**
* @brief Base class to implement reconfiguration and failure handling for
* redundant devices by monitoring their modes health states.
* redundant devices by monitoring their modes and health states.
* @details
* Documentation: Dissertation Baetz p.156, 157.
*

View File

@ -85,9 +85,10 @@ public:
* Called by DHB in the GET_WRITE doGetWrite().
* Get send confirmation that the data in sendMessage() was sent successfully.
* @param cookie
* @return - @c RETURN_OK if data was sent successfull
* - Everything else triggers falure event with
* returnvalue as parameter 1
* @return
* - @c RETURN_OK if data was sent successfully but a reply is expected
* - NO_REPLY_EXPECTED if data was sent successfully and no reply is expected
* - Everything else to indicate failure
*/
virtual ReturnValue_t getSendSuccess(CookieIF *cookie) = 0;

View File

@ -684,6 +684,11 @@ void DeviceHandlerBase::doGetWrite() {
void DeviceHandlerBase::doSendRead() {
ReturnValue_t result;
result = doSendReadHook();
if (result != RETURN_OK){
return;
}
size_t replyLen = 0;
if(cookieInfo.pendingCommand != deviceCommandMap.end()) {
replyLen = getNextReplyLength(cookieInfo.pendingCommand->first);
@ -950,6 +955,10 @@ void DeviceHandlerBase::commandSwitch(ReturnValue_t onOff) {
}
}
ReturnValue_t DeviceHandlerBase::doSendReadHook() {
return RETURN_OK;
}
ReturnValue_t DeviceHandlerBase::getSwitches(const uint8_t **switches,
uint8_t *numberOfSwitches) {
return DeviceHandlerBase::NO_SWITCH;

View File

@ -334,8 +334,7 @@ protected:
* - @c RETURN_OK to send command after #rawPacket and #rawPacketLen
* have been set.
* - @c HasActionsIF::EXECUTION_COMPLETE to generate a finish reply immediately. This can
* be used if no reply is expected. Otherwise, the developer can call #actionHelper.finish
* to finish the command handling.
* be used if no reply is expected
* - Anything else triggers an event with the return code as a parameter as well as a
* step reply failed with the return code
*/
@ -1095,6 +1094,12 @@ protected:
*/
void commandSwitch(ReturnValue_t onOff);
/**
* @brief This function can be used to insert device specific code during the do-send-read
* step.
*/
virtual ReturnValue_t doSendReadHook();
private:
/**

View File

@ -120,7 +120,8 @@ public:
static const ReturnValue_t WRONG_MODE_FOR_COMMAND = MAKE_RETURN_CODE(0xA5);
static const ReturnValue_t TIMEOUT = MAKE_RETURN_CODE(0xA6);
static const ReturnValue_t BUSY = MAKE_RETURN_CODE(0xA7);
static const ReturnValue_t NO_REPLY_EXPECTED = MAKE_RETURN_CODE(0xA8); //!< Used to indicate that this is a command-only command.
//!< Used to indicate that this is a command-only command.
static const ReturnValue_t NO_REPLY_EXPECTED = MAKE_RETURN_CODE(0xA8);
static const ReturnValue_t NON_OP_TEMPERATURE = MAKE_RETURN_CODE(0xA9);
static const ReturnValue_t COMMAND_NOT_IMPLEMENTED = MAKE_RETURN_CODE(0xAA);

View File

@ -2,8 +2,9 @@
#define TIMEVALOPERATIONS_H_
#include <stdint.h>
#include <fsfw/platform.h>
#ifdef WIN32
#ifdef PLATFORM_WIN
#include <winsock2.h>
#else
#include <sys/time.h>

View File

@ -1,30 +1,29 @@
target_sources(${LIB_FSFW_NAME}
PRIVATE
Clock.cpp
BinarySemaphore.cpp
CountingSemaphore.cpp
FixedTimeslotTask.cpp
InternalErrorCodes.cpp
MessageQueue.cpp
Mutex.cpp
MutexFactory.cpp
PeriodicPosixTask.cpp
PosixThread.cpp
QueueFactory.cpp
SemaphoreFactory.cpp
TaskFactory.cpp
tcpipHelpers.cpp
unixUtility.cpp
target_sources(${LIB_FSFW_NAME} PRIVATE
Clock.cpp
BinarySemaphore.cpp
CountingSemaphore.cpp
FixedTimeslotTask.cpp
InternalErrorCodes.cpp
MessageQueue.cpp
Mutex.cpp
MutexFactory.cpp
PeriodicPosixTask.cpp
PosixThread.cpp
QueueFactory.cpp
SemaphoreFactory.cpp
TaskFactory.cpp
tcpipHelpers.cpp
unixUtility.cpp
)
find_package(Threads REQUIRED)
target_link_libraries(${LIB_FSFW_NAME} PRIVATE
${CMAKE_THREAD_LIBS_INIT}
rt
${CMAKE_THREAD_LIBS_INIT}
rt
)
target_link_libraries(${LIB_FSFW_NAME} INTERFACE
${CMAKE_THREAD_LIBS_INIT}
${CMAKE_THREAD_LIBS_INIT}
)

View File

@ -108,8 +108,6 @@ ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
timespec timeUnix;
int status = clock_gettime(CLOCK_REALTIME,&timeUnix);

View File

@ -285,10 +285,10 @@ ReturnValue_t MessageQueue::sendMessageFromMessageQueue(MessageQueueId_t sendTo,
utility::printUnixErrorGeneric(CLASS_NAME, "sendMessageFromMessageQueue", "EBADF");
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "mq_send to: " << sendTo << " sent from "
<< sentFrom << "failed" << std::endl;
sif::warning << "mq_send to " << sendTo << " sent from "
<< sentFrom << " failed" << std::endl;
#else
sif::printWarning("mq_send to: %d sent from %d failed\n", sendTo, sentFrom);
sif::printWarning("mq_send to %d sent from %d failed\n", sendTo, sentFrom);
#endif
return DESTINATION_INVALID;
}

View File

@ -7,7 +7,7 @@
#include <cstddef>
#include <type_traits>
/**
/**
* @brief These adapters provides an interface to use the SerializeIF functions
* with arbitrary template objects to facilitate and simplify the
* serialization of classes with different multiple different data types
@ -20,174 +20,250 @@
*/
class SerializeAdapter {
public:
/***
* This function can be used to serialize a trivial copy-able type or a
* child of SerializeIF.
* The right template to be called is determined in the function itself.
* For objects of non trivial copy-able type this function is almost never
* called by the user directly. Instead helpers for specific types like
* SerialArrayListAdapter or SerialLinkedListAdapter is the right choice here.
*
* @param[in] object Object to serialize, the used type is deduced from this pointer
* @param[in/out] buffer Buffer to serialize into. Will be moved by the function.
* @param[in/out] size Size of current written buffer. Will be incremented by the function.
* @param[in] maxSize Max size of Buffer
* @param[in] streamEndianness Endianness of serialized element as in according to SerializeIF::Endianness
* @return
* - @c BUFFER_TOO_SHORT The given buffer in is too short
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful serialization
*/
template<typename T>
static ReturnValue_t serialize(const T *object, uint8_t **buffer,
size_t *size, size_t maxSize,
SerializeIF::Endianness streamEndianness) {
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.serialize(object, buffer, size, maxSize,
streamEndianness);
}
/**
* Function to return the serialized size of the object in the pointer.
* May be a trivially copy-able object or a Child of SerializeIF
*
* @param object Pointer to Object
* @return Serialized size of object
*/
template<typename T>
static size_t getSerializedSize(const T *object){
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.getSerializedSize(object);
}
/**
* @brief
* Deserializes a object from a given buffer of given size.
* Object Must be trivially copy-able or a child of SerializeIF.
*
* @details
* Buffer will be moved to the current read location. Size will be decreased by the function.
*
* @param[in/out] buffer Buffer to deSerialize from. Will be moved by the function.
* @param[in/out] size Remaining size of the buffer to read from. Will be decreased by function.
* @param[in] streamEndianness Endianness as in according to SerializeIF::Endianness
* @return
* - @c STREAM_TOO_SHORT The input stream is too short to deSerialize the object
* - @c TOO_MANY_ELEMENTS The buffer has more inputs than expected
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful deserialization
*/
template<typename T>
static ReturnValue_t deSerialize(T *object, const uint8_t **buffer,
size_t *size, SerializeIF::Endianness streamEndianness) {
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.deSerialize(object, buffer, size, streamEndianness);
}
/***
* @brief Serialize a trivial copy-able type or a child of SerializeIF.
* @details
* The right template to be called is determined in the function itself.
* For objects of non trivial copy-able type this function is almost never
* called by the user directly. Instead helpers for specific types like
* SerialArrayListAdapter or SerialLinkedListAdapter are the right choice here.
*
* @param[in] object: Object to serialize, the used type is deduced from this pointer
* @param[in/out] buffer: Pointer to the buffer to serialize into. Buffer position will be
* incremented by the function.
* @param[in/out] size: Pointer to size of current written buffer.
* SIze will be incremented by the function.
* @param[in] maxSize: Max size of Buffer
* @param[in] streamEndianness: Endianness of serialized element as in according to
* SerializeIF::Endianness
* @return
* - @c BUFFER_TOO_SHORT The given buffer in is too short
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful serialization
*/
template<typename T>
static ReturnValue_t serialize(const T *object, uint8_t **buffer,
size_t *size, size_t maxSize,
SerializeIF::Endianness streamEndianness) {
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.serialize(object, buffer, size, maxSize,
streamEndianness);
}
/***
* This function can be used to serialize a trivial copy-able type or a child of SerializeIF.
* The right template to be called is determined in the function itself.
* For objects of non trivial copy-able type this function is almost never
* called by the user directly. Instead helpers for specific types like
* SerialArrayListAdapter or SerialLinkedListAdapter are the right choice here.
*
* @param[in] object: Object to serialize, the used type is deduced from this pointer
* @param[in/out] buffer: Buffer to serialize into.
* @param[out] serSize: Serialized size
* @param[in] maxSize: Max size of buffer
* @param[in] streamEndianness: Endianness of serialized element as in according to
* SerializeIF::Endianness
* @return
* - @c BUFFER_TOO_SHORT The given buffer in is too short
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful serialization
*/
template<typename T>
static ReturnValue_t serialize(const T *object, uint8_t* const buffer, size_t* serSize,
size_t maxSize, SerializeIF::Endianness streamEndianness) {
if(object == nullptr or buffer == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
uint8_t** tempPtr = const_cast<uint8_t**>(&buffer);
size_t tmpSize = 0;
ReturnValue_t result = adapter.serialize(object, tempPtr, &tmpSize, maxSize,
streamEndianness);
if(serSize != nullptr) {
*serSize = tmpSize;
}
return result;
}
/**
* @brief Function to return the serialized size of the object in the pointer.
* @details
* May be a trivially copy-able object or a child of SerializeIF.
*
* @param object Pointer to Object
* @return Serialized size of object
*/
template<typename T>
static size_t getSerializedSize(const T *object){
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.getSerializedSize(object);
}
/**
* @brief Deserializes a object from a given buffer of given size.
*
* @details
* Object Must be trivially copy-able or a child of SerializeIF.
* Buffer will be moved to the current read location. Size will be decreased by the function.
*
* @param[in] object: Pointer to object to deserialize
* @param[in/out] buffer: Pointer to the buffer to deSerialize from. Buffer position will be
* incremented by the function
* @param[in/out] size: Pointer to remaining size of the buffer to read from.
* Will be decreased by function.
* @param[in] streamEndianness: Endianness as in according to SerializeIF::Endianness
* @return
* - @c STREAM_TOO_SHORT The input stream is too short to deSerialize the object
* - @c TOO_MANY_ELEMENTS The buffer has more inputs than expected
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful deserialization
*/
template<typename T>
static ReturnValue_t deSerialize(T *object, const uint8_t **buffer,
size_t *size, SerializeIF::Endianness streamEndianness) {
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.deSerialize(object, buffer, size, streamEndianness);
}
/**
* @brief Deserializes a object from a given buffer of given size.
*
* @details
* Object Must be trivially copy-able or a child of SerializeIF.
*
* @param[in] object: Pointer to object to deserialize
* @param[in] buffer: Buffer to deSerialize from
* @param[out] deserSize: Deserialized length
* @param[in] streamEndianness: Endianness as in according to SerializeIF::Endianness
* @return
* - @c STREAM_TOO_SHORT The input stream is too short to deSerialize the object
* - @c TOO_MANY_ELEMENTS The buffer has more inputs than expected
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful deserialization
*/
template<typename T>
static ReturnValue_t deSerialize(T *object, const uint8_t* buffer,
size_t* deserSize, SerializeIF::Endianness streamEndianness) {
if(object == nullptr or buffer == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
const uint8_t** tempPtr = &buffer;
size_t maxVal = -1;
ReturnValue_t result = adapter.deSerialize(object, tempPtr, &maxVal, streamEndianness);
if(deserSize != nullptr) {
*deserSize = -1 - maxVal;
}
return result;
}
private:
/**
* Internal template to deduce the right function calls at compile time
*/
template<typename T, bool> class InternalSerializeAdapter;
/**
* Internal template to deduce the right function calls at compile time
*/
template<typename T, bool> class InternalSerializeAdapter;
/**
* Template to be used if T is not a child of SerializeIF
*
* @tparam T T must be trivially_copyable
*/
template<typename T>
class InternalSerializeAdapter<T, false> {
static_assert (std::is_trivially_copyable<T>::value,
"If a type needs to be serialized it must be a child of "
"SerializeIF or trivially copy-able");
public:
static ReturnValue_t serialize(const T *object, uint8_t **buffer,
size_t *size, size_t max_size,
SerializeIF::Endianness streamEndianness) {
size_t ignoredSize = 0;
if (size == nullptr) {
size = &ignoredSize;
}
// Check remaining size is large enough and check integer
// overflow of *size
size_t newSize = sizeof(T) + *size;
if ((newSize <= max_size) and (newSize > *size)) {
T tmp;
switch (streamEndianness) {
case SerializeIF::Endianness::BIG:
tmp = EndianConverter::convertBigEndian<T>(*object);
break;
case SerializeIF::Endianness::LITTLE:
tmp = EndianConverter::convertLittleEndian<T>(*object);
break;
default:
case SerializeIF::Endianness::MACHINE:
tmp = *object;
break;
}
std::memcpy(*buffer, &tmp, sizeof(T));
*size += sizeof(T);
(*buffer) += sizeof(T);
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::BUFFER_TOO_SHORT;
}
}
/**
* Template to be used if T is not a child of SerializeIF
*
* @tparam T T must be trivially_copyable
*/
template<typename T>
class InternalSerializeAdapter<T, false> {
static_assert (std::is_trivially_copyable<T>::value,
"If a type needs to be serialized it must be a child of "
"SerializeIF or trivially copy-able");
public:
static ReturnValue_t serialize(const T *object, uint8_t **buffer,
size_t *size, size_t max_size,
SerializeIF::Endianness streamEndianness) {
size_t ignoredSize = 0;
if (size == nullptr) {
size = &ignoredSize;
}
// Check remaining size is large enough and check integer
// overflow of *size
size_t newSize = sizeof(T) + *size;
if ((newSize <= max_size) and (newSize > *size)) {
T tmp;
switch (streamEndianness) {
case SerializeIF::Endianness::BIG:
tmp = EndianConverter::convertBigEndian<T>(*object);
break;
case SerializeIF::Endianness::LITTLE:
tmp = EndianConverter::convertLittleEndian<T>(*object);
break;
default:
case SerializeIF::Endianness::MACHINE:
tmp = *object;
break;
}
std::memcpy(*buffer, &tmp, sizeof(T));
*size += sizeof(T);
(*buffer) += sizeof(T);
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::BUFFER_TOO_SHORT;
}
}
ReturnValue_t deSerialize(T *object, const uint8_t **buffer,
size_t *size, SerializeIF::Endianness streamEndianness) {
T tmp;
if (*size >= sizeof(T)) {
*size -= sizeof(T);
std::memcpy(&tmp, *buffer, sizeof(T));
switch (streamEndianness) {
case SerializeIF::Endianness::BIG:
*object = EndianConverter::convertBigEndian<T>(tmp);
break;
case SerializeIF::Endianness::LITTLE:
*object = EndianConverter::convertLittleEndian<T>(tmp);
break;
default:
case SerializeIF::Endianness::MACHINE:
*object = tmp;
break;
}
ReturnValue_t deSerialize(T *object, const uint8_t **buffer,
size_t *size, SerializeIF::Endianness streamEndianness) {
T tmp;
if (*size >= sizeof(T)) {
*size -= sizeof(T);
std::memcpy(&tmp, *buffer, sizeof(T));
switch (streamEndianness) {
case SerializeIF::Endianness::BIG:
*object = EndianConverter::convertBigEndian<T>(tmp);
break;
case SerializeIF::Endianness::LITTLE:
*object = EndianConverter::convertLittleEndian<T>(tmp);
break;
default:
case SerializeIF::Endianness::MACHINE:
*object = tmp;
break;
}
*buffer += sizeof(T);
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::STREAM_TOO_SHORT;
}
}
*buffer += sizeof(T);
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::STREAM_TOO_SHORT;
}
}
uint32_t getSerializedSize(const T *object) {
return sizeof(T);
}
};
uint32_t getSerializedSize(const T *object) {
return sizeof(T);
}
};
/**
* Template for objects that inherit from SerializeIF
*
* @tparam T A child of SerializeIF
*/
template<typename T>
class InternalSerializeAdapter<T, true> {
public:
ReturnValue_t serialize(const T *object, uint8_t **buffer, size_t *size,
size_t max_size,
SerializeIF::Endianness streamEndianness) const {
size_t ignoredSize = 0;
if (size == nullptr) {
size = &ignoredSize;
}
return object->serialize(buffer, size, max_size, streamEndianness);
}
size_t getSerializedSize(const T *object) const {
return object->getSerializedSize();
}
/**
* Template for objects that inherit from SerializeIF
*
* @tparam T A child of SerializeIF
*/
template<typename T>
class InternalSerializeAdapter<T, true> {
public:
ReturnValue_t serialize(const T *object, uint8_t **buffer, size_t *size,
size_t max_size,
SerializeIF::Endianness streamEndianness) const {
size_t ignoredSize = 0;
if (size == nullptr) {
size = &ignoredSize;
}
return object->serialize(buffer, size, max_size, streamEndianness);
}
size_t getSerializedSize(const T *object) const {
return object->getSerializedSize();
}
ReturnValue_t deSerialize(T *object, const uint8_t **buffer,
size_t *size, SerializeIF::Endianness streamEndianness) {
return object->deSerialize(buffer, size, streamEndianness);
}
};
ReturnValue_t deSerialize(T *object, const uint8_t **buffer,
size_t *size, SerializeIF::Endianness streamEndianness) {
return object->deSerialize(buffer, size, streamEndianness);
}
};
};
#endif /* _FSFW_SERIALIZE_SERIALIZEADAPTER_H_ */

View File

@ -62,7 +62,8 @@ protected:
struct ChildInfo {
MessageQueueId_t commandQueue;
Mode_t mode;
Submode_t submode;bool healthChanged;
Submode_t submode;
bool healthChanged;
};
Mode_t mode;

View File

@ -99,6 +99,14 @@ public:
*/
static ReturnValue_t getDateAndTime(TimeOfDay_t *time);
/**
* Convert to time of day struct given the POSIX timeval struct
* @param from
* @param to
* @return
*/
static ReturnValue_t convertTimevalToTimeOfDay(const timeval *from,
TimeOfDay_t *to);
/**
* Converts a time of day struct to POSIX seconds.
* @param time The time of day as input

View File

@ -42,6 +42,20 @@ ReturnValue_t Clock::getLeapSeconds(uint16_t *leapSeconds_) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertTimevalToTimeOfDay(const timeval* from, TimeOfDay_t* to) {
struct tm* timeInfo;
timeInfo = gmtime(&from->tv_sec);
to->year = timeInfo->tm_year + 1900;
to->month = timeInfo->tm_mon+1;
to->day = timeInfo->tm_mday;
to->hour = timeInfo->tm_hour;
to->minute = timeInfo->tm_min;
to->second = timeInfo->tm_sec;
to->usecond = from->tv_usec;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::checkOrCreateClockMutex() {
if (timeMutex == nullptr) {
MutexFactory *mutexFactory = MutexFactory::instance();

View File

@ -73,7 +73,7 @@ namespace spacepacket {
constexpr uint16_t getSpacePacketIdFromApid(bool isTc, uint16_t apid,
bool secondaryHeaderFlag = true) {
return (((isTc << 5) & 0x10) | ((secondaryHeaderFlag << 4) & 0x08) |
return ((isTc << 4) | (secondaryHeaderFlag << 3) |
((apid >> 8) & 0x07)) << 8 | (apid & 0x00ff);
}

View File

@ -183,13 +183,16 @@ ReturnValue_t TmTcBridge::storeDownlinkData(TmTcMessage *message) {
}
if(tmFifo->full()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TmTcBridge::storeDownlinkData: TM downlink max. number "
"of stored packet IDs reached!" << std::endl;
#else
sif::printWarning("TmTcBridge::storeDownlinkData: TM downlink max. number "
"of stored packet IDs reached!\n");
#endif
if(warningLatch) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TmTcBridge::storeDownlinkData: TM downlink max. number "
"of stored packet IDs reached!" << std::endl;
#else
sif::printWarning("TmTcBridge::storeDownlinkData: TM downlink max. number "
"of stored packet IDs reached!\n");
#endif
warningLatch = true;
}
if(overwriteOld) {
tmFifo->retrieve(&storeId);
tmStore->deleteData(storeId);

View File

@ -75,6 +75,7 @@ public:
virtual uint16_t getIdentifier() override;
virtual MessageQueueId_t getRequestQueue() override;
bool warningLatch = true;
protected:
//! Cached for initialize function.
object_id_t tmStoreId = objects::NO_OBJECT;

View File

@ -1,3 +1,3 @@
target_sources(${TARGET_NAME} PRIVATE
target_sources(${LIB_FSFW_NAME} PRIVATE
TestTask.cpp
)

View File

@ -3,128 +3,213 @@
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <fsfw/serialize/SerialBufferAdapter.h>
#include <array>
static bool test_value_bool = true;
static uint8_t tv_uint8 {5};
static uint16_t tv_uint16 {283};
static uint32_t tv_uint32 {929221};
static uint64_t tv_uint64 {2929329429};
static bool testBool = true;
static uint8_t tvUint8 {5};
static uint16_t tvUint16 {283};
static uint32_t tvUint32 {929221};
static uint64_t tvUint64 {2929329429};
static int8_t tv_int8 {-16};
static int16_t tv_int16 {-829};
static int32_t tv_int32 {-2312};
static int8_t tvInt8 {-16};
static int16_t tvInt16 {-829};
static int32_t tvInt32 {-2312};
static float tv_float {8.2149214};
static float tv_sfloat = {-922.2321321};
static double tv_double {9.2132142141e8};
static double tv_sdouble {-2.2421e19};
static float tvFloat {8.2149214};
static float tvSfloat = {-922.2321321};
static double tvDouble {9.2132142141e8};
static double tvSdouble {-2.2421e19};
static std::array<uint8_t, 512> test_array;
static std::array<uint8_t, 512> TEST_ARRAY;
TEST_CASE( "Serialization size tests", "[TestSerialization]") {
TEST_CASE( "Serialization size tests", "[SerSizeTest]") {
//REQUIRE(unitTestClass.test_autoserialization() == 0);
REQUIRE(SerializeAdapter::getSerializedSize(&test_value_bool) ==
sizeof(test_value_bool));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_uint8) ==
sizeof(tv_uint8));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_uint16) ==
sizeof(tv_uint16));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_uint32 ) ==
sizeof(tv_uint32));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_uint64) ==
sizeof(tv_uint64));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_int8) ==
sizeof(tv_int8));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_int16) ==
sizeof(tv_int16));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_int32) ==
sizeof(tv_int32));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_float) ==
sizeof(tv_float));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_sfloat) ==
sizeof(tv_sfloat ));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_double) ==
sizeof(tv_double));
REQUIRE(SerializeAdapter::getSerializedSize(&tv_sdouble) ==
sizeof(tv_sdouble));
REQUIRE(SerializeAdapter::getSerializedSize(&testBool) ==
sizeof(testBool));
REQUIRE(SerializeAdapter::getSerializedSize(&tvUint8) ==
sizeof(tvUint8));
REQUIRE(SerializeAdapter::getSerializedSize(&tvUint16) ==
sizeof(tvUint16));
REQUIRE(SerializeAdapter::getSerializedSize(&tvUint32 ) ==
sizeof(tvUint32));
REQUIRE(SerializeAdapter::getSerializedSize(&tvUint64) ==
sizeof(tvUint64));
REQUIRE(SerializeAdapter::getSerializedSize(&tvInt8) ==
sizeof(tvInt8));
REQUIRE(SerializeAdapter::getSerializedSize(&tvInt16) ==
sizeof(tvInt16));
REQUIRE(SerializeAdapter::getSerializedSize(&tvInt32) ==
sizeof(tvInt32));
REQUIRE(SerializeAdapter::getSerializedSize(&tvFloat) ==
sizeof(tvFloat));
REQUIRE(SerializeAdapter::getSerializedSize(&tvSfloat) ==
sizeof(tvSfloat ));
REQUIRE(SerializeAdapter::getSerializedSize(&tvDouble) ==
sizeof(tvDouble));
REQUIRE(SerializeAdapter::getSerializedSize(&tvSdouble) ==
sizeof(tvSdouble));
}
TEST_CASE("Auto Serialize Adapter", "[SerAdapter]") {
size_t serializedSize = 0;
uint8_t * pArray = TEST_ARRAY.data();
TEST_CASE("Auto Serialize Adapter testing", "[single-file]") {
size_t serialized_size = 0;
uint8_t * p_array = test_array.data();
SECTION("SerDe") {
size_t deserSize = 0;
SerializeAdapter::serialize(&testBool, TEST_ARRAY.data(), &deserSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 1);
REQUIRE(TEST_ARRAY[0] == true);
bool readBack = false;
SerializeAdapter::deSerialize(&readBack, TEST_ARRAY.data(), &deserSize,
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 1);
REQUIRE(readBack == true);
SerializeAdapter::serialize(&tvUint8, TEST_ARRAY.data(), &deserSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 1);
REQUIRE(TEST_ARRAY[0] == 5);
uint8_t readBackUint8 = 0;
uint8_t* const testPtr = TEST_ARRAY.data();
uint8_t* const shouldStayConst = testPtr;
SerializeAdapter::deSerialize(&readBackUint8, testPtr, &deserSize,
SerializeIF::Endianness::MACHINE);
REQUIRE(testPtr == shouldStayConst);
REQUIRE(deserSize == 1);
REQUIRE(readBackUint8 == 5);
SerializeAdapter::serialize(&tvUint16, TEST_ARRAY.data(), &deserSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 2);
deserSize = 0;
uint16_t readBackUint16 = 0;
SerializeAdapter::deSerialize(&readBackUint16, TEST_ARRAY.data(), &deserSize,
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 2);
REQUIRE(readBackUint16 == 283);
SECTION("Serializing...") {
SerializeAdapter::serialize(&test_value_bool, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_uint8, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_uint16, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_uint32, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_int8, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_int16, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_int32, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_uint64, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_float, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_double, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_sfloat, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tv_sdouble, &p_array,
&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE);
REQUIRE (serialized_size == 47);
SerializeAdapter::serialize(&tvUint32, TEST_ARRAY.data(), &deserSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 4);
uint32_t readBackUint32 = 0;
deserSize = 0;
SerializeAdapter::deSerialize(&readBackUint32, TEST_ARRAY.data(), &deserSize,
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 4);
REQUIRE(readBackUint32 == 929221);
SerializeAdapter::serialize(&tvInt16, TEST_ARRAY.data(), &deserSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 2);
int16_t readBackInt16 = 0;
SerializeAdapter::deSerialize(&readBackInt16, TEST_ARRAY.data(), &deserSize,
SerializeIF::Endianness::MACHINE);
REQUIRE(readBackInt16 == -829);
REQUIRE(deserSize == 2);
SerializeAdapter::serialize(&tvFloat, TEST_ARRAY.data(), &deserSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
float readBackFloat = 0.0;
SerializeAdapter::deSerialize(&readBackFloat, TEST_ARRAY.data(), &deserSize,
SerializeIF::Endianness::MACHINE);
REQUIRE(readBackFloat == Catch::Approx(8.214921));
SerializeAdapter::serialize(&tvSdouble, TEST_ARRAY.data(), &deserSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
double readBackSignedDouble = 0.0;
SerializeAdapter::deSerialize(&readBackSignedDouble, TEST_ARRAY.data(), &deserSize,
SerializeIF::Endianness::MACHINE);
REQUIRE(readBackSignedDouble == Catch::Approx(-2.2421e19));
uint8_t testBuf[4] = {1, 2, 3, 4};
SerialBufferAdapter<uint8_t> bufferAdapter(testBuf, sizeof(testBuf));
SerializeAdapter::serialize(&bufferAdapter, TEST_ARRAY.data(), &deserSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 4);
for(uint8_t idx = 0; idx < 4; idx++) {
REQUIRE(TEST_ARRAY[idx] == idx + 1);
}
deserSize = 0;
testBuf[0] = 0;
testBuf[1] = 12;
SerializeAdapter::deSerialize(&bufferAdapter, TEST_ARRAY.data(), &deserSize,
SerializeIF::Endianness::MACHINE);
REQUIRE(deserSize == 4);
for(uint8_t idx = 0; idx < 4; idx++) {
REQUIRE(testBuf[idx] == idx + 1);
}
}
SECTION("Serialize incrementing") {
SerializeAdapter::serialize(&testBool, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvUint8, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvUint16, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvUint32, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvInt8, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvInt16, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvInt32, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvUint64, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvFloat, &pArray, &serializedSize,
TEST_ARRAY.size(), SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvDouble, &pArray, &serializedSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvSfloat, &pArray, &serializedSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&tvSdouble, &pArray, &serializedSize, TEST_ARRAY.size(),
SerializeIF::Endianness::MACHINE);
REQUIRE (serializedSize == 47);
}
SECTION("Deserializing") {
p_array = test_array.data();
size_t remaining_size = serialized_size;
SerializeAdapter::deSerialize(&test_value_bool,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_uint8,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_uint16,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_uint32,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_int8,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_int16,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_int32,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_uint64,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_float,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_double,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_sfloat,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tv_sdouble,
const_cast<const uint8_t**>(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE);
SECTION("Deserialize decrementing") {
pArray = TEST_ARRAY.data();
size_t remaining_size = serializedSize;
SerializeAdapter::deSerialize(&testBool, const_cast<const uint8_t**>(&pArray),
&remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvUint8, const_cast<const uint8_t**>(&pArray),
&remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvUint16, const_cast<const uint8_t**>(&pArray),
&remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvUint32, const_cast<const uint8_t**>(&pArray),
&remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvInt8, const_cast<const uint8_t**>(&pArray),
&remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvInt16, const_cast<const uint8_t**>(&pArray),
&remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvInt32, const_cast<const uint8_t**>(&pArray),
&remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvUint64,
const_cast<const uint8_t**>(&pArray), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvFloat,
const_cast<const uint8_t**>(&pArray), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvDouble,
const_cast<const uint8_t**>(&pArray), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvSfloat,
const_cast<const uint8_t**>(&pArray), &remaining_size, SerializeIF::Endianness::MACHINE);
SerializeAdapter::deSerialize(&tvSdouble,
const_cast<const uint8_t**>(&pArray), &remaining_size, SerializeIF::Endianness::MACHINE);
REQUIRE(test_value_bool == true);
REQUIRE(tv_uint8 == 5);
REQUIRE(tv_uint16 == 283);
REQUIRE(tv_uint32 == 929221);
REQUIRE(tv_uint64 == 2929329429);
REQUIRE(tv_int8 == -16);
REQUIRE(tv_int16 == -829);
REQUIRE(tv_int32 == -2312);
REQUIRE(testBool == true);
REQUIRE(tvUint8 == 5);
REQUIRE(tvUint16 == 283);
REQUIRE(tvUint32 == 929221);
REQUIRE(tvUint64 == 2929329429);
REQUIRE(tvInt8 == -16);
REQUIRE(tvInt16 == -829);
REQUIRE(tvInt32 == -2312);
REQUIRE(tv_float == Catch::Approx(8.214921));
REQUIRE(tv_double == Catch::Approx(9.2132142141e8));
REQUIRE(tv_sfloat == Catch::Approx(-922.2321321));
REQUIRE(tv_sdouble == Catch::Approx(-2.2421e19));
REQUIRE(tvFloat == Catch::Approx(8.214921));
REQUIRE(tvDouble == Catch::Approx(9.2132142141e8));
REQUIRE(tvSfloat == Catch::Approx(-922.2321321));
REQUIRE(tvSdouble == Catch::Approx(-2.2421e19));
}
}

View File

@ -1,3 +1,3 @@
target_sources(${FSFW_TEST_TGT} PRIVATE
PusTmTest.cpp
testCcsds.cpp
)

View File

@ -0,0 +1,11 @@
#include <catch2/catch_test_macros.hpp>
#include "fsfw/tmtcpacket/SpacePacket.h"
TEST_CASE( "CCSDS Test" , "[ccsds]") {
REQUIRE(spacepacket::getTcSpacePacketIdFromApid(0x22) == 0x1822);
REQUIRE(spacepacket::getTmSpacePacketIdFromApid(0x22) == 0x0822);
REQUIRE(spacepacket::getTcSpacePacketIdFromApid(0x7ff) == 0x1fff);
REQUIRE(spacepacket::getTmSpacePacketIdFromApid(0x7ff) == 0xfff);
}