ESBO-ETC/esbo_etc/classes/psf/Airy.py

267 lines
13 KiB
Python
Raw Normal View History

2020-04-29 17:37:23 +02:00
from typing import Union
import numpy as np
from astropy import units as u
from .IPSF import IPSF
2020-05-13 14:34:07 +02:00
from ..sensor.PixelMask import PixelMask
2020-05-11 10:36:59 +02:00
from scipy.optimize import newton, fmin, bisect
2020-04-29 17:37:23 +02:00
from scipy.special import j0, j1
2020-05-06 16:59:51 +02:00
from scipy.signal import fftconvolve
2020-05-11 10:36:59 +02:00
from scipy.integrate import quad
2020-05-14 15:03:03 +02:00
from scipy.interpolate import interp1d
2020-04-29 17:37:23 +02:00
class Airy(IPSF):
"""
A class for modelling the PSF using an airy disk.
"""
@u.quantity_input(wl="length", d_aperture="length")
2020-05-06 16:59:51 +02:00
def __init__(self, f_number: float, wl: u.Quantity, d_aperture: u.Quantity, osf: float, pixel_size: u.Quantity):
"""
Initialize a new PSF from a airy disk.
Parameters
----------
f_number : float
The working focal number of the optical system
wl : Quantity
The central wavelength which is used for calculating the PSF
d_aperture : Quantity
The diameter of the telescope's aperture.
osf : float
The oversampling factor to be used for oversampling the PSF with regards to the pixel size.
pixel_size : Quantity
The size of a pixel as length-quantity.
"""
self.__f_number = f_number
2020-04-29 17:37:23 +02:00
self.__wl = wl
self.__d_aperture = d_aperture
2020-05-06 16:59:51 +02:00
self.__osf = osf
self.__pixel_size = pixel_size
2020-05-14 15:02:44 +02:00
self.__psf_jitter = None
2020-04-29 17:37:23 +02:00
2020-05-11 10:36:59 +02:00
def calcReducedObservationAngle(self, contained_energy: Union[str, int, float],
jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> u.Quantity:
2020-04-29 17:37:23 +02:00
"""
Calculate the reduced observation angle in lambda / d_ap for the given contained energy.
Parameters
----------
2020-05-11 10:36:59 +02:00
contained_energy : Union[str, int, float]
2020-04-29 17:37:23 +02:00
The percentage of energy to be contained within a circle with the diameter reduced observation angle.
2020-05-06 10:21:46 +02:00
jitter_sigma : Quantity
Sigma of the telescope's jitter in arcsec
2020-05-11 10:36:59 +02:00
obstruction : float
The central obstruction as ratio A_ob / A_ap
2020-04-29 17:37:23 +02:00
Returns
-------
reduced_observation_angle: Quantity
The reduced observation angle in lambda / d_ap
"""
# Calculate the reduced observation angle in lambda / D for the given encircled energy
2020-05-11 10:36:59 +02:00
reduced_observation_angle = 0 * u.dimensionless_unscaled
2020-04-29 17:37:23 +02:00
if type(contained_energy) == str:
# Encircled energy is of type string
if contained_energy.lower() == "peak":
# For the peak value of the PSF, the observation angle becomes zero which leads to one exposed
# pixel later in the code
2020-05-11 10:36:59 +02:00
reduced_observation_angle = 0 * u.dimensionless_unscaled
2020-04-29 17:37:23 +02:00
elif contained_energy.lower() == "fwhm":
# Width of the FWHM of the airy disk
reduced_observation_angle = 1.028
2020-05-11 10:36:59 +02:00
if not np.isclose(obstruction, 0.0):
# Use obstructed airy disk
2020-05-20 09:12:08 +02:00
reduced_observation_angle = newton(lambda y: self.__airy(np.pi * y, np.sqrt(obstruction)) - 0.5,
2020-05-11 10:36:59 +02:00
reduced_observation_angle / 2) * 2
2020-05-11 13:51:52 +02:00
contained_energy = "fwhm"
2020-04-29 17:37:23 +02:00
elif contained_energy.lower() == "min":
# Width of the first minimum of the airy disk
reduced_observation_angle = 1.22 * 2
2020-05-06 16:59:51 +02:00
contained_energy = 0.8377 * u.dimensionless_unscaled
2020-05-11 10:36:59 +02:00
if not np.isclose(obstruction, 0.0):
# Use obstructed airy disk
2020-05-20 09:12:08 +02:00
reduced_observation_angle = fmin(lambda y: self.__airy(np.pi * y, np.sqrt(obstruction)),
2020-05-11 10:36:59 +02:00
reduced_observation_angle / 2, disp=False)[0] * 2
2020-05-20 09:12:08 +02:00
contained_energy = self.__airy_int(np.pi * reduced_observation_angle / 2,
np.sqrt(obstruction)) * u.dimensionless_unscaled
2020-04-29 17:37:23 +02:00
else:
# Calculate the width numerically from the integral of the airy disk
2020-05-11 10:36:59 +02:00
contained_energy = contained_energy / 100 * u.dimensionless_unscaled
reduced_observation_angle = 2 * bisect(
2020-05-20 09:12:08 +02:00
lambda y: self.__airy_int(np.pi * y, np.sqrt(obstruction)) - contained_energy.value, 0, 100)
2020-05-11 13:51:52 +02:00
if jitter_sigma is not None and (isinstance(contained_energy, u.Quantity) or isinstance(contained_energy, str)
and contained_energy.lower() == "fwhm"):
2020-05-06 16:59:51 +02:00
# Convert jitter to reduced observation angle in lambda / d_ap
jitter_sigma = jitter_sigma.to(u.rad).value * self.__d_aperture / self.__wl.to(u.m)
# Calculate necessary grid length to accommodate the psf and 3-sigma of the gaussian
grid_width = (reduced_observation_angle / 2 + 3 * jitter_sigma)
# Calculate the reduced observation angle of a single detector pixel
reduced_observation_angle_pixel = (self.__pixel_size / (
2020-05-11 13:51:52 +02:00
self.__f_number * self.__d_aperture) * self.__d_aperture / self.__wl).decompose()
2020-05-06 16:59:51 +02:00
# Calculate the width of each grid element
2020-05-14 15:02:44 +02:00
dx = reduced_observation_angle_pixel.value / self.__osf
2020-05-06 16:59:51 +02:00
# Calculate the necessary number of points on the grid
n_points = np.ceil(grid_width / dx).value
# Calculate the corresponding x-coordinates of each grid element
x = np.arange(1, n_points + 1) * dx
# Calculate the psf from an airy disk for each element on the grid
2020-05-20 09:12:08 +02:00
psf = self.__airy(np.pi * x, np.sqrt(obstruction))
2020-05-11 10:36:59 +02:00
# Calculate the integral of the undisturbed airy disk in order to scale the result of the convolution
2020-05-06 16:59:51 +02:00
total = np.sum(psf * x) * dx * 2 * np.pi
# Mirror the PSF to the negative x-domain
psf = np.concatenate((np.flip(psf), np.array([1]), psf))
# Calculate a gaussian kernel
kernel = 1 / (2 * np.pi * jitter_sigma ** 2) * np.exp(
- np.concatenate((np.flip(x), np.array([0]), x)) ** 2 / (2 * jitter_sigma ** 2))
# Normalize the kernel
kernel = kernel / np.sum(kernel)
# Convolve the PSF with gaussian kernel
2020-05-13 14:34:07 +02:00
psf = fftconvolve(np.pad(psf, int(n_points), mode="constant", constant_values=0), kernel, mode="same")
2020-05-06 16:59:51 +02:00
# Reduce the PSF to the positive x-domain
psf = psf[int((psf.shape[0] - 1) / 2):]
2020-05-14 15:02:44 +02:00
# Scale the integral of the disturbed PSF equal to the undisturbed PSF
psf = psf / (np.sum(psf * np.arange(psf.shape[0]) * dx) * dx * 2 * np.pi) * total
self.__psf_jitter = psf
2020-05-11 13:51:52 +02:00
if isinstance(contained_energy, str) and contained_energy.lower() == "fwhm":
2020-05-14 15:02:44 +02:00
reduced_observation_angle = np.argmax(psf < psf[0] / 2) * reduced_observation_angle_pixel.value / \
2020-05-11 13:51:52 +02:00
self.__osf * 2
else:
# Calculate the rolling integral of the PSF
2020-05-14 15:02:44 +02:00
psf_int = np.cumsum(psf * np.arange(psf.shape[0]) * dx) * dx * 2 * np.pi
2020-05-11 13:51:52 +02:00
# Scale the integral of the disturbed PSF equal to the undisturbed PSF
psf_int = psf_int / (4 / np.pi) * (1 - obstruction)
2020-05-11 13:51:52 +02:00
# Calculate the reduced observation angle
reduced_observation_angle = np.argmax(
psf_int > contained_energy) * reduced_observation_angle_pixel.value / self.__osf * 2
2020-05-06 16:59:51 +02:00
2020-04-29 17:37:23 +02:00
return reduced_observation_angle * u.dimensionless_unscaled
2020-05-11 10:36:59 +02:00
@staticmethod
2020-05-20 09:12:08 +02:00
def __airy(x: Union[float, np.ndarray], obstruction: float = None) -> Union[float, np.ndarray]:
2020-05-11 10:36:59 +02:00
"""
Calculate function values of the airy disk
Parameters
----------
x : Union[float, np.ndarray]
radial coordinate to calculate the function value for.
obstruction : float
The linear central obstruction ratio of the aperture.
Returns
-------
res : Union[float, np.ndarray]
The function values of the airy disk at the given coordinates
"""
# Standardize input values
if not isinstance(x, np.ndarray):
x = np.array([x])
# Initialize return values and assign values for the singularity at x=0
2020-05-13 14:34:07 +02:00
res = np.zeros(x.shape)
2020-05-11 10:36:59 +02:00
res[np.isclose(x, 0.0)] = 1.0
x_temp = x[np.invert(np.isclose(x, 0.0))]
if obstruction and not np.isclose(obstruction, 0.0):
# Use obstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Obscured_Airy_pattern
res[np.invert(np.isclose(x, 0.0))] = 1 / (1 - obstruction ** 2) ** 2 * (
2 * (j1(x_temp) - obstruction * j1(obstruction * x_temp)) / x_temp) ** 2
else:
# Use unobstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
res[np.invert(np.isclose(x, 0.0))] = (2 * j1(x_temp) / x_temp) ** 2
# Unbox arrays of length 1
2020-05-13 14:34:07 +02:00
if len(res.shape) == 1 and len(res) == 1:
2020-05-11 10:36:59 +02:00
res = res[0]
return res
@staticmethod
2020-05-20 09:12:08 +02:00
def __airy_int(x: float, obstruction: float = None) -> float:
2020-05-11 10:36:59 +02:00
"""
Calculate the integral of the airy disk from 0 to x.
Parameters
----------
x : float
The upper limit for the integration.
obstruction : float
The linear central obstruction ratio of the aperture.
Returns
-------
res : float
The integral of the airy disk.
"""
if np.isclose(x, 0.0):
# Short circuit for an integration-range of length 0
return 0.
else:
if obstruction and not np.isclose(obstruction, 0.0):
# Use integral of obstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Obscured_Airy_pattern
return 1 / (1 - obstruction ** 2) * (1 - j0(x) ** 2 - j1(x) ** 2 + obstruction ** 2 * (
1 - j0(obstruction * x) ** 2 - j1(obstruction * x) ** 2) - 4 * obstruction * quad(
lambda y: j1(y) * j1(obstruction * y) / y, 0, x, limit=100, epsrel=1e-6)[0])
else:
# Use unobstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
return 1 - j0(x) ** 2 - j1(x) ** 2
2020-05-14 15:03:03 +02:00
def mapToPixelMask(self, mask: PixelMask, jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> PixelMask:
2020-04-29 17:37:23 +02:00
"""
Map the integrated PSF values to a sensor grid.
Parameters
----------
2020-05-14 15:03:03 +02:00
obstruction
2020-05-13 14:34:07 +02:00
mask : PixelMask
The pixel mask to map the values to. The values will only be mapped onto entries with the value 1.
jitter_sigma : Quantity
Sigma of the telescope's jitter in arcsec
2020-05-14 15:03:03 +02:00
obstruction : float
The central obstruction as ratio A_ob / A_ap
2020-04-29 17:37:23 +02:00
Returns
-------
2020-05-13 14:34:07 +02:00
mask : PixelMask
The pixel mask with the integrated PSF values mapped onto each pixel.
2020-04-29 17:37:23 +02:00
"""
2020-05-14 15:03:03 +02:00
# Calculate the indices of all non-zero elements of the mask
y_ind, x_ind = np.nonzero(mask)
# Extract a rectangle containing all non-zero values of the mask
mask_red = mask[y_ind.min():(y_ind.max() + 1), x_ind.min():(x_ind.max() + 1)]
# Calculate the new PSF-center indices of the reduced mask
psf_center_ind = [mask.psf_center_ind[0] - y_ind.min(), mask.psf_center_ind[1] - x_ind.min()]
# Oversample the reduced mask
2020-05-20 09:12:08 +02:00
mask_red_os = self._rebin(mask_red, self.__osf).view(PixelMask)
2020-05-14 15:03:03 +02:00
# Calculate the new PSF-center indices of the reduced mask
psf_center_ind = [(x + 0.5) * self.__osf - 0.5 for x in psf_center_ind]
2020-05-14 15:03:03 +02:00
reduced_observation_angle_pixel = (mask.pixel_size / (
self.__f_number * self.__d_aperture) * self.__d_aperture / self.__wl).decompose()
x_mesh, y_mesh = np.meshgrid(
(np.arange(mask_red_os.shape[1]) - psf_center_ind[
1]) * reduced_observation_angle_pixel.value / self.__osf,
(np.arange(mask_red_os.shape[0]) - psf_center_ind[
0]) * reduced_observation_angle_pixel.value / self.__osf)
dist = np.sqrt(x_mesh ** 2 + y_mesh ** 2)
if jitter_sigma is None:
2020-05-20 09:12:08 +02:00
res = self.__airy(dist * np.pi, np.sqrt(obstruction))
2020-05-14 15:03:03 +02:00
else:
if self.__psf_jitter is None:
self.calcReducedObservationAngle("fwhm", jitter_sigma, obstruction)
psf_jitter = self.__psf_jitter
x = np.arange(psf_jitter.shape[0]) * reduced_observation_angle_pixel.value / self.__osf
psf_interp = interp1d(x=x, y=psf_jitter, kind='cubic', copy=False, bounds_error=False,
fill_value="extrapolate")
res = psf_interp(dist)
2020-05-20 09:12:08 +02:00
res = self._rebin(res, 1 / self.__osf)
2020-05-14 15:03:03 +02:00
res = (mask_red * res).view(np.ndarray)
# Integrate the reduced mask and divide by the indefinite integral to get relative intensities
res = res * (reduced_observation_angle_pixel.value / self.__osf) ** 2 / (4 / np.pi) * (1 - obstruction)
2020-05-14 15:03:03 +02:00
# reintegrate the reduced mask into the complete mask
mask[y_ind.min():(y_ind.max() + 1), x_ind.min():(x_ind.max() + 1)] = res
return mask