80 lines
3.3 KiB
Python
80 lines
3.3 KiB
Python
|
from typing import Union
|
||
|
import numpy as np
|
||
|
from astropy import units as u
|
||
|
from .IPSF import IPSF
|
||
|
from scipy.optimize import newton
|
||
|
from scipy.special import j0, j1
|
||
|
from ...lib.helpers import error
|
||
|
|
||
|
|
||
|
class Airy(IPSF):
|
||
|
"""
|
||
|
A class for modelling the PSF using an airy disk.
|
||
|
"""
|
||
|
|
||
|
@u.quantity_input(wl="length", d_aperture="length")
|
||
|
def __init__(self, wl: u.Quantity, d_aperture: u.Quantity):
|
||
|
self.__wl = wl
|
||
|
self.__d_aperture = d_aperture
|
||
|
|
||
|
def calcReducedObservationAngle(self, contained_energy: Union[str, int, float, u.Quantity]) -> u.Quantity:
|
||
|
"""
|
||
|
Calculate the reduced observation angle in lambda / d_ap for the given contained energy.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
contained_energy : Union[str, int, float, u.Quantity]
|
||
|
The percentage of energy to be contained within a circle with the diameter reduced observation angle.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
reduced_observation_angle: Quantity
|
||
|
The reduced observation angle in lambda / d_ap
|
||
|
"""
|
||
|
# Calculate the reduced observation angle in lambda / D for the given encircled energy
|
||
|
if type(contained_energy) == str:
|
||
|
# Encircled energy is of type string
|
||
|
if contained_energy.lower() == "peak":
|
||
|
# For the peak value of the PSF, the observation angle becomes zero which leads to one exposed
|
||
|
# pixel later in the code
|
||
|
reduced_observation_angle = 0
|
||
|
elif contained_energy.lower() == "fwhm":
|
||
|
# Width of the FWHM of the airy disk
|
||
|
reduced_observation_angle = 1.028
|
||
|
elif contained_energy.lower() == "min":
|
||
|
# Width of the first minimum of the airy disk
|
||
|
reduced_observation_angle = 1.22 * 2
|
||
|
else:
|
||
|
# Try to parse the encircled energy to float
|
||
|
reduced_observation_angle = 0
|
||
|
try:
|
||
|
contained_energy = float(contained_energy) / 100.0 * u.dimensionless_unscaled
|
||
|
# Calculate the width numerically from the integral of the airy disk
|
||
|
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
|
||
|
reduced_observation_angle = 2 * newton(lambda x: 1 - j0(np.pi * x) ** 2 - j1(np.pi * x) ** 2 -
|
||
|
contained_energy, 1, tol=1e-6)
|
||
|
|
||
|
except ValueError:
|
||
|
error("Could not convert encircled energy to float.")
|
||
|
else:
|
||
|
# Calculate the width numerically from the integral of the airy disk
|
||
|
reduced_observation_angle = 2 * newton(lambda x: 1 - j0(np.pi * x) ** 2 - j1(np.pi * x) ** 2 -
|
||
|
contained_energy.value, 1, tol=1e-6)
|
||
|
return reduced_observation_angle * u.dimensionless_unscaled
|
||
|
|
||
|
def mapToGrid(self, grid: np.ndarray) -> np.ndarray:
|
||
|
"""
|
||
|
Map the integrated PSF values to a sensor grid.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
grid : ndarray
|
||
|
The grid to map the values to. The values will only be mapped onto entries with the value 1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
grid : ndarray
|
||
|
The grid with the mapped values.
|
||
|
"""
|
||
|
pass
|