Calculate reduced observation angle using a grid

This commit is contained in:
Lukas Klass 2020-05-06 10:21:23 +02:00
parent b57f0f4a03
commit f8e16fcc9a

View File

@ -1,13 +1,13 @@
from .IPSF import IPSF
from ...lib.helpers import error, rasterizeCircle
import numpy as np import numpy as np
import astropy.units as u
import re import re
from logging import warning from logging import warning
import astropy.units as u
from scipy.interpolate import RegularGridInterpolator
from scipy.integrate import nquad
from scipy.optimize import bisect
from .IPSF import IPSF
from typing import Union from typing import Union
from ...lib.helpers import error from scipy.optimize import bisect
from scipy.ndimage.interpolation import zoom
from scipy.signal import fftconvolve
class Zemax(IPSF): class Zemax(IPSF):
@ -15,8 +15,9 @@ class Zemax(IPSF):
A class for modelling the PSF from a Zemax output file A class for modelling the PSF from a Zemax output file
""" """
@u.quantity_input(wl="length", d_aperture="length") @u.quantity_input(wl="length", d_aperture="length", pixel_size="length")
def __init__(self, file: str, f_number: float, wl: u.Quantity, d_aperture: u.Quantity): def __init__(self, file: str, f_number: float, wl: u.Quantity, d_aperture: u.Quantity, osf: float,
pixel_size: u.Quantity):
""" """
Initialize a new PSF from a Zemax file. Initialize a new PSF from a Zemax file.
@ -30,11 +31,17 @@ class Zemax(IPSF):
The central wavelength which is used for calculating the PSF The central wavelength which is used for calculating the PSF
d_aperture : Quantity d_aperture : Quantity
The diameter of the telescope's aperture. The diameter of the telescope's aperture.
osf : float
The oversampling factor to be used for oversampling the PSF with regards to the pixel size.
pixel_size : Quantity
The size of a pixel as length-quantity.
""" """
# Store parameters # Store parameters
self.__f_number = f_number self.__f_number = f_number
self.__wl = wl self.__wl = wl
self.__d_aperture = d_aperture self.__d_aperture = d_aperture
self.__osf = osf
self.__pixel_size = pixel_size
# Read PSF from file # Read PSF from file
with open(file, encoding="utf16") as fp: with open(file, encoding="utf16") as fp:
self.__psf = np.genfromtxt((x.replace(",", ".") for x in fp), delimiter='\t', skip_header=21) self.__psf = np.genfromtxt((x.replace(",", ".") for x in fp), delimiter='\t', skip_header=21)
@ -50,12 +57,17 @@ class Zemax(IPSF):
re.findall("[0-9]+,*[0-9]*", list(filter(re.compile("Data area is ").match, head))[0])] re.findall("[0-9]+,*[0-9]*", list(filter(re.compile("Data area is ").match, head))[0])]
unit = re.findall(".+(?=\\.$)", re.sub("Data area is [0-9]+,*[0-9]* by [0-9]+,*[0-9]* ", "", unit = re.findall(".+(?=\\.$)", re.sub("Data area is [0-9]+,*[0-9]* by [0-9]+,*[0-9]* ", "",
list(filter(re.compile("Data area is ").match, head))[0]))[0] list(filter(re.compile("Data area is ").match, head))[0]))[0]
# noinspection PyArgumentList
self.__grid_delta = np.array(grid_delta) / np.array(shape) << u.Unit(unit) self.__grid_delta = np.array(grid_delta) / np.array(shape) << u.Unit(unit)
# Parse the center point of the PSF in the grid # Parse the center point of the PSF in the grid
self.__center_point = [int(x) for x in self.__center_point = [int(x) for x in
re.findall("[0-9]+", list(filter(re.compile("Center point is: ").match, head))[0])] re.findall("[0-9]+", list(filter(re.compile("Center point is: ").match, head))[0])]
self.__center_point[0] = self.__psf.shape[0] - self.__center_point[0]
self.__center_point[1] -= 1
def calcReducedObservationAngle(self, contained_energy: Union[str, int, float, u.Quantity]) -> u.Quantity: # @u.quantity_input(jitter_sigma=u.arcsec)
def calcReducedObservationAngle(self, contained_energy: Union[str, int, float, u.Quantity],
jitter_sigma: u.Quantity = None) -> u.Quantity:
""" """
Calculate the reduced observation angle in lambda / d_ap for the given contained energy. Calculate the reduced observation angle in lambda / d_ap for the given contained energy.
@ -63,12 +75,15 @@ class Zemax(IPSF):
---------- ----------
contained_energy : Union[str, int, float, u.Quantity] contained_energy : Union[str, int, float, u.Quantity]
The percentage of energy to be contained within a circle with the diameter reduced observation angle. The percentage of energy to be contained within a circle with the diameter reduced observation angle.
jitter_sigma : Quantity
Sigma of the telescope's jitter in arcsec
Returns Returns
------- -------
reduced_observation_angle: Quantity reduced_observation_angle: Quantity
The reduced observation angle in lambda / d_ap The reduced observation angle in lambda / d_ap
""" """
# Parse the contained energy
if type(contained_energy) == str: if type(contained_energy) == str:
try: try:
contained_energy = float(contained_energy) / 100.0 * u.dimensionless_unscaled contained_energy = float(contained_energy) / 100.0 * u.dimensionless_unscaled
@ -76,29 +91,62 @@ class Zemax(IPSF):
error("Could not convert encircled energy to float.") error("Could not convert encircled energy to float.")
elif type(contained_energy) in [int, float]: elif type(contained_energy) in [int, float]:
contained_energy = contained_energy * u.dimensionless_unscaled contained_energy = contained_energy * u.dimensionless_unscaled
# Create an linear interpolation function for the PSF and the corresponding grid coordinates
x_range = np.arange(-(self.__center_point[0] - 1), self.__psf.shape[0] - self.__center_point[0] + 1) # Calculate the osf for the PSF based on the current resolution of the PSF
y_range = np.arange(-(self.__center_point[1] - 1), self.__psf.shape[1] - self.__center_point[1] + 1) psf_osf = np.ceil(max(self.__grid_delta) / (2 * self.__pixel_size / self.__osf)).value * 2
interp = RegularGridInterpolator((y_range, x_range), np.flip(self.__psf, axis=0)) if psf_osf == 1.0:
# Calculate the maximum possible radius as the smallest distance from the center of the PSF to the borders of # No oversampling is necessary
# the grid. psf = self.__psf
r_max = min(self.__center_point[0] - 1, self.__center_point[1] - 1, center_point = self.__center_point
self.__psf.shape[0] - self.__center_point[0], self.__psf.shape[1] - self.__center_point[1]) else:
# Calculate the overall integral of the PSF # Oversampling is necessary, oversample the PSF and calculate the new center point.
total = np.sum(self.__psf) psf = zoom(self.__psf, zoom=psf_osf, order=1)
# Find the radius of the circle containing the given percentage of energy. Therefore, the interpolation center_point = [(x + 0.5) * psf_osf - 0.5 for x in self.__center_point]
# function is numerically integrated within the radius. The Integration radius is optimized using bisection. if jitter_sigma is not None:
try: # Convert angular jitter to jitter on focal plane
r = bisect(lambda r_c: contained_energy.value - jitter_sigma_um = (jitter_sigma.to(u.rad) * self.__f_number * self.__d_aperture / u.rad).to(u.um)
nquad(lambda x, y: interp(np.array([y, x])), # Jitter is enabled. Calculate the corresponding gaussian bell and convolve it with the PSF
[lambda y: [-1 * np.sqrt(r_c ** 2 - y ** 2), np.sqrt(r_c ** 2 - y ** 2)], if min(self.__grid_delta) / psf_osf < 6 * jitter_sigma_um:
[-r_c, r_c]], opts={"epsrel": 1e-1})[0] / total, 0, r_max, xtol=0.1) # 3-sigma interval of the gaussian bell is larger than the grid width
except ValueError: # Calculate the necessary grid length for the 3-sigma interval of the gaussian bell
r = r_max jitter_grid_length = np.ceil(6 * jitter_sigma_um / (min(self.__grid_delta) / psf_osf)).value
# Calculate the reduced observation angle for the radius of the circle. Therefore, first convert the radius in # Make sure, the grid size is odd in order to have a defined kernel center
# grid elements to plate size, then calculate the corresponding observation angle and reduce it. jitter_grid_length = int(jitter_grid_length if jitter_grid_length % 2 == 1 else jitter_grid_length + 1)
reduced_observation_angle = r * self.__grid_delta[0] / (self.__f_number * self.__d_aperture) * \
self.__d_aperture / self.__wl # Create a meshgrid containing the x and y coordinates of each point within the first quadrant of the
# gaussian kernel
xv, yv = np.meshgrid(range(-int((jitter_grid_length - 1) / 2), 1),
range(-int((jitter_grid_length - 1) / 2), 1))
# Calculate the gaussian kernel in the first quadrant
kernel = 1 / (2 * np.pi * jitter_sigma_um.value ** 2) * np.exp(
-((xv * min(self.__grid_delta.value) / psf_osf) ** 2 +
(yv * min(self.__grid_delta.value) / psf_osf) ** 2) / (2 * jitter_sigma_um.value ** 2))
# Mirror the kernel from the first quadrant to all other quadrants
kernel = np.concatenate((kernel, np.flip(kernel, axis=1)[:, 1:]), axis=1)
kernel = np.concatenate((kernel, np.flip(kernel, axis=0)[1:, :]), axis=0)
# Normalize kernel
kernel = kernel / np.sum(kernel)
# Convolve PSF with gaussian kernel
psf = fftconvolve(np.pad(psf, int((jitter_grid_length - 1) / 2), mode="constant", constant_values=0),
kernel, mode="same")
# Calculate new center point
center_point = [x + int((jitter_grid_length - 1) / 2) for x in center_point]
# Calculate the maximum possible radius for the circle containing the photometric aperture
# r_max = min(center_point[0] - 1, center_point[1] - 1, psf.shape[0] - center_point[0],
# psf.shape[1] - center_point[1])
r_max = min(np.sqrt(center_point[0]**2 + center_point[1]**2),
np.sqrt((psf.shape[0] - center_point[0])**2 + center_point[1]**2),
np.sqrt(center_point[0]**2 + (psf.shape[1] - center_point[1])**2),
np.sqrt((psf.shape[0] - center_point[0])**2 + (psf.shape[1] - center_point[1])**2))
# Calculate the total contained energy of the PSF
total = np.sum(psf)
# Iterate the optimal radius for the contained energy
r = bisect(lambda r_c: contained_energy.value - np.sum(
psf * rasterizeCircle(psf.shape[0], r_c, center_point[0], center_point[1])) / total, 0, r_max, xtol=1e-1)
# Calculate the reduced observation angle in d_ap / lambda
# noinspection PyTypeChecker
reduced_observation_angle = r / psf_osf * self.__grid_delta[0] / (
self.__f_number * self.__d_aperture) * self.__d_aperture / self.__wl
return reduced_observation_angle * u.dimensionless_unscaled return reduced_observation_angle * u.dimensionless_unscaled
def mapToGrid(self, grid: np.ndarray) -> np.ndarray: def mapToGrid(self, grid: np.ndarray) -> np.ndarray: