testArduino/mission/DeviceHandler/ArduinoComIF.cpp

196 lines
7.8 KiB
C++

/*
* ArduinoComIF.cpp
*
* Created on: 02/06/2021
* Author: Marco Modè
*
*/
#include <mission/DeviceHandler/ArduinoComIF.h>
#include <mission/DeviceHandler/ArduinoCookie.h>
#include <fsfw/serialize/SerializeAdapter.h>
#include <fsfw/tmtcservices/CommandingServiceBase.h>
#include <fsfw/tmtcpacket/pus/TmPacketStored.h>
#include <stdio.h>
#include <string.h>
#include <vector>
#include <algorithm>
#include <cstdint>
// Linux headers
#include <fcntl.h> // Contains file controls like O_RDWR
#include <errno.h> // Error integer and strerror() function
#include <termios.h> // Contains POSIX terminal control definitions
#include <unistd.h> // write(), read(), close()
ArduinoComIF::ArduinoComIF(object_id_t objectId) :
SystemObject(objectId) {
}
ArduinoComIF::~ArduinoComIF() {
}
ReturnValue_t ArduinoComIF::initializeInterface(CookieIF *cookie) {
ArduinoCookie *Cookie = dynamic_cast<ArduinoCookie*>(cookie);
// The Arduino device which manage the sensors of temperature,
// environmental data and acceleration, sends through serial
// output these data employing a USB port.
// Here it is then set-up the interface to manage this communication.
//
// In typical UNIX style, serial ports are represented by files
// within the operating system.
// These files usually pop-up in /dev/, and begin with the name tty*.
//
// To write/read to a serial port, you write/read to the file.
// Here the serial port parameters are defined exploiting a
// special tty configuration struct.
// Open the serial port. Change device path as needed (see README in InterfaceCode/testArduino/testArduino/ ).
int serial_port = open("/dev/ttyACM0", O_RDWR);
// Create new termios struc, we call it 'tty' for convention.
struct termios tty;
// Read in existing settings, and handle any error.
if (tcgetattr(serial_port, &tty) != 0) {
printf("Error %i from tcgetattr: %s\n", errno, strerror(errno));
return 1;
}
// Set-up of the configuration serial port.
tty.c_cflag &= ~PARENB; // Clear parity bit, disabling parity (most common)
tty.c_cflag &= ~CSTOPB; // Clear stop field, only one stop bit used in communication (most common)
tty.c_cflag &= ~CSIZE; // Clear all bits that set the data size
tty.c_cflag |= CS8; // 8 bits per byte (most common)
tty.c_cflag &= ~CRTSCTS; // Disable RTS/CTS hardware flow control (most common)
tty.c_cflag |= CREAD | CLOCAL; // Turn on READ & ignore ctrl lines (CLOCAL = 1)
tty.c_lflag &= ~ICANON;
tty.c_lflag &= ~ECHO; // Disable echo
tty.c_lflag &= ~ECHOE; // Disable erasure
tty.c_lflag &= ~ECHONL; // Disable new-line echo
tty.c_lflag &= ~ISIG; // Disable interpretation of INTR, QUIT and SUSP
tty.c_iflag &= ~(IXON | IXOFF | IXANY); // Turn off s/w flow ctrl
tty.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | ICRNL); // Disable any special handling of received bytes
tty.c_oflag &= ~OPOST; // Prevent special interpretation of output bytes (e.g. newline chars)
tty.c_oflag &= ~ONLCR; // Prevent conversion of newline to carriage return/line feed
tty.c_cc[VTIME] = 16; // Wait for up to 16 ds (Arduino measurement cycle time), returning as soon as any data is received.
tty.c_cc[VMIN] = 255; // limit number of bytes which can be read in one time by Linux serial port
// Set in/out baud rate to be 115200 bps (same of Arduino)
cfsetispeed(&tty, B115200);
cfsetospeed(&tty, B115200);
// Save tty settings, also checking for error.
if (tcsetattr(serial_port, TCSANOW, &tty) != 0) {
printf("Error %i from tcsetattr: %s\n", errno, strerror(errno));
return 1;
}
printf("\nSerial port set. \n");
// End of Linux serial port set-up.
Cookie->Serial_port_number = serial_port;
return RETURN_OK;
}
ReturnValue_t ArduinoComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
return RETURN_OK;
}
ReturnValue_t ArduinoComIF::getSendSuccess(CookieIF *cookie) {
return RETURN_OK;
}
ReturnValue_t ArduinoComIF::requestReceiveMessage(CookieIF *cookie,
size_t requestLen) {
return RETURN_OK;
}
ReturnValue_t ArduinoComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t *size) {
ArduinoCookie *Cookie = dynamic_cast<ArduinoCookie*>(cookie);
// The buffer array to store the data read are initialized.
// The whole data packet to be read is 2580 bytes, but the limit for one reading (VMAX) is 255 bytes.
// Therefore the reading is divided in 11 separate stages which employ 11 different buffer array.
// At the end these 11 arrays are concatenated in the main buffer array read_buf.
uint8_t read_buf[2580]; // 2580 bytes from SPC serial output
uint8_t read_buf1[255]; // 255 bytes
uint8_t read_buf2[255]; // 255 bytes
uint8_t read_buf3[255]; // 255 bytes
uint8_t read_buf4[255]; // 255 bytes
uint8_t read_buf5[255]; // 255 bytes
uint8_t read_buf6[255]; // 255 bytes
uint8_t read_buf7[255]; // 255 bytes
uint8_t read_buf8[255]; // 255 bytes
uint8_t read_buf9[255]; // 255 bytes
uint8_t read_buf10[255]; // 255 bytes
uint8_t read_buf11[30]; // 30 bytes
// The buffer elements are initially set to 0.
memset(&read_buf, '\0', sizeof(read_buf));
memset(&read_buf1, '\0', sizeof(read_buf1));
memset(&read_buf2, '\0', sizeof(read_buf2));
memset(&read_buf3, '\0', sizeof(read_buf3));
memset(&read_buf4, '\0', sizeof(read_buf4));
memset(&read_buf5, '\0', sizeof(read_buf5));
memset(&read_buf6, '\0', sizeof(read_buf6));
memset(&read_buf7, '\0', sizeof(read_buf7));
memset(&read_buf8, '\0', sizeof(read_buf8));
memset(&read_buf9, '\0', sizeof(read_buf9));
memset(&read_buf10, '\0', sizeof(read_buf10));
memset(&read_buf11, '\0', sizeof(read_buf11));
// Read bytes. The behaviour of read() (e.g. does it block?, how long does it block for?)
// depends on the configuration settings above, specifically VMIN and VTIME.
int num_bytes1 = read(Cookie->Serial_port_number, &read_buf1, sizeof(read_buf1));
int num_bytes2 = read(Cookie->Serial_port_number, &read_buf2, sizeof(read_buf2));
int num_bytes3 = read(Cookie->Serial_port_number, &read_buf3, sizeof(read_buf3));
int num_bytes4 = read(Cookie->Serial_port_number, &read_buf4, sizeof(read_buf4));
int num_bytes5 = read(Cookie->Serial_port_number, &read_buf5, sizeof(read_buf5));
int num_bytes6 = read(Cookie->Serial_port_number, &read_buf6, sizeof(read_buf6));
int num_bytes7 = read(Cookie->Serial_port_number, &read_buf7, sizeof(read_buf7));
int num_bytes8 = read(Cookie->Serial_port_number, &read_buf8, sizeof(read_buf8));
int num_bytes9 = read(Cookie->Serial_port_number, &read_buf9, sizeof(read_buf9));
int num_bytes10 = read(Cookie->Serial_port_number, &read_buf10, sizeof(read_buf10));
int num_bytes11 = read(Cookie->Serial_port_number, &read_buf11, sizeof(read_buf11));
int num_bytes = num_bytes1 + num_bytes2 + num_bytes3 + num_bytes4
+ num_bytes5 + num_bytes6 + num_bytes7 + num_bytes8
+ num_bytes9 + num_bytes10 + num_bytes11;
// The 11 buffer arrays are here concatenated in one single vector.
std::copy(read_buf1, read_buf1 + 255, read_buf);
std::copy(read_buf2, read_buf2 + 255, read_buf + 255);
std::copy(read_buf3, read_buf3 + 255, read_buf + 2 * 255);
std::copy(read_buf4, read_buf4 + 255, read_buf + 3 * 255);
std::copy(read_buf5, read_buf5 + 255, read_buf + 4 * 255);
std::copy(read_buf6, read_buf6 + 255, read_buf + 5 * 255);
std::copy(read_buf7, read_buf7 + 255, read_buf + 6 * 255);
std::copy(read_buf8, read_buf8 + 255, read_buf + 7 * 255);
std::copy(read_buf9, read_buf9 + 255, read_buf + 8 * 255);
std::copy(read_buf10, read_buf10 + 255, read_buf + 9 * 255);
std::copy(read_buf11, read_buf11 + 30, read_buf + 10 * 255);
// num_bytes is the number of bytes read (n=0: no bytes received, n=-1: error).
if (num_bytes < 0) {
printf("Error reading: %s", strerror(errno));
return 1;
}
printf("Read %i bytes.\n", num_bytes);
// Definition of buffer array and buffer size to return after reading.
*size = 2580;
*buffer = read_buf;
return RETURN_OK;
}