Added more unittest coverage
All checks were successful
fsfw/fsfw/pipeline/pr-development This commit looks good

Added Mutex for gmtime functions
Moved Statics used in ClockCommon to ClockCommon
This commit is contained in:
Steffen Gaisser 2022-03-25 18:47:31 +01:00
parent d0fec93dc3
commit 10398855a9
11 changed files with 266 additions and 13 deletions

View File

@ -11,9 +11,6 @@
// TODO sanitize input?
// TODO much of this code can be reused for tick-only systems
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = nullptr;
uint32_t Clock::getTicksPerSecond(void) { return 1000; }
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {

View File

@ -4,6 +4,7 @@
#include "fsfw/platform.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "fsfw/ipc/MutexGuard.h"
#if defined(PLATFORM_WIN)
#include <sysinfoapi.h>
@ -11,9 +12,6 @@
#include <fstream>
#endif
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = NULL;
using SystemClock = std::chrono::system_clock;
uint32_t Clock::getTicksPerSecond(void) {
@ -127,6 +125,13 @@ ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
auto seconds = std::chrono::time_point_cast<std::chrono::seconds>(now);
auto fraction = now - seconds;
time_t tt = SystemClock::to_time_t(now);
ReturnValue_t result = checkOrCreateClockMutex();
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
MutexGuard helper(timeMutex);
// gmtime writes its output in a global buffer which is not Thread Safe
// Therefore we have to use a Mutex here
struct tm* timeInfo;
timeInfo = gmtime(&tt);
time->year = timeInfo->tm_year + 1900;

View File

@ -9,9 +9,7 @@
#include <fstream>
#include "fsfw/serviceinterface/ServiceInterface.h"
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = NULL;
#include "fsfw/ipc/MutexGuard.h"
uint32_t Clock::getTicksPerSecond(void) {
uint32_t ticks = sysconf(_SC_CLK_TCK);
@ -117,7 +115,13 @@ ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
// TODO errno
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t result = checkOrCreateClockMutex();
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
MutexGuard helper(timeMutex);
// gmtime writes its output in a global buffer which is not Thread Safe
// Therefore we have to use a Mutex here
struct tm* timeInfo;
timeInfo = gmtime(&timeUnix.tv_sec);
time->year = timeInfo->tm_year + 1900;

View File

@ -6,8 +6,6 @@
#include "fsfw/ipc/MutexGuard.h"
#include "fsfw/osal/rtems/RtemsBasic.h"
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = nullptr;
uint32_t Clock::getTicksPerSecond(void) {
rtems_interval ticks_per_second = rtems_clock_get_ticks_per_second();

View File

@ -173,6 +173,7 @@ class Clock {
static MutexIF *timeMutex;
static uint16_t leapSeconds;
static bool leapSecondsSet;
};
#endif /* FSFW_TIMEMANAGER_CLOCK_H_ */

View File

@ -3,6 +3,10 @@
#include "fsfw/ipc/MutexGuard.h"
#include "fsfw/timemanager/Clock.h"
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = nullptr;
bool Clock::leapSecondsSet = false;
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
uint16_t leapSeconds;
ReturnValue_t result = getLeapSeconds(&leapSeconds);
@ -29,12 +33,16 @@ ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
MutexGuard helper(timeMutex);
leapSeconds = leapSeconds_;
leapSecondsSet = true;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
if (timeMutex == nullptr) {
if(not leapSecondsSet){
return HasReturnvaluesIF::RETURN_FAILED;
}
if (checkOrCreateClockMutex() != HasReturnvaluesIF::RETURN_OK) {
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexGuard helper(timeMutex);
@ -49,6 +57,13 @@ ReturnValue_t Clock::convertTimevalToTimeOfDay(const timeval* from, TimeOfDay_t*
// According to https://en.cppreference.com/w/c/chrono/gmtime, the implementation of gmtime_s
// in the Windows CRT is incompatible with the C standard but this should not be an issue for
// this implementation
ReturnValue_t result = checkOrCreateClockMutex();
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
MutexGuard helper(timeMutex);
// gmtime writes its output in a global buffer which is not Thread Safe
// Therefore we have to use a Mutex here
timeInfo = gmtime(&from->tv_sec);
to->year = timeInfo->tm_year + 1900;
to->month = timeInfo->tm_mon + 1;

View File

@ -3,4 +3,5 @@ target_sources(${FSFW_TEST_TGT} PRIVATE
testOpDivider.cpp
testBitutil.cpp
testCRC.cpp
testTimevalOperations.cpp
)

View File

@ -0,0 +1,125 @@
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <fsfw/globalfunctions/timevalOperations.h>
#include "fsfw_tests/unit/CatchDefinitions.h"
TEST_CASE("TimevalTest", "[timevalOperations]"){
SECTION("Comparison"){
timeval t1;
t1.tv_sec = 1648227422;
t1.tv_usec = 123456;
timeval t2;
t2.tv_sec = 1648227422;
t2.tv_usec = 123456;
REQUIRE(t1 == t2);
REQUIRE(t2 == t1);
REQUIRE_FALSE(t1 != t2);
REQUIRE_FALSE(t2 != t1);
REQUIRE(t1 <= t2);
REQUIRE(t2 <= t1);
REQUIRE(t1 >= t2);
REQUIRE(t2 >= t1);
REQUIRE_FALSE(t1 < t2);
REQUIRE_FALSE(t2 < t1);
REQUIRE_FALSE(t1 > t2);
REQUIRE_FALSE(t2 > t1);
timeval t3;
t3.tv_sec = 1648227422;
t3.tv_usec = 123457;
REQUIRE_FALSE(t1 == t3);
REQUIRE(t1 != t3);
REQUIRE(t1 <= t3);
REQUIRE_FALSE(t3 <= t1);
REQUIRE_FALSE(t1 >= t3);
REQUIRE(t3 >= t1);
REQUIRE(t1 < t3);
REQUIRE_FALSE(t3 < t1);
REQUIRE_FALSE(t1 > t3);
REQUIRE(t3 > t1);
timeval t4;
t4.tv_sec = 1648227423;
t4.tv_usec = 123456;
REQUIRE_FALSE(t1 == t4);
REQUIRE(t1 != t4);
REQUIRE(t1 <= t4);
REQUIRE_FALSE(t4 <= t1);
REQUIRE_FALSE(t1 >= t4);
REQUIRE(t4 >= t1);
REQUIRE(t1 < t4);
REQUIRE_FALSE(t4 < t1);
REQUIRE_FALSE(t1 > t4);
REQUIRE(t4 > t1);
}
SECTION("Operators"){
timeval t1;
t1.tv_sec = 1648227422;
t1.tv_usec = 123456;
timeval t2;
t2.tv_sec = 1648227422;
t2.tv_usec = 123456;
timeval t3 = t1 - t2;
REQUIRE(t3.tv_sec == 0);
REQUIRE(t3.tv_usec == 0);
timeval t4 = t1 - t3;
REQUIRE(t4.tv_sec == 1648227422);
REQUIRE(t4.tv_usec == 123456);
timeval t5 = t3 - t1;
REQUIRE(t5.tv_sec == -1648227422);
REQUIRE(t5.tv_usec == -123456);
timeval t6;
t6.tv_sec = 1648227400;
t6.tv_usec = 999999;
timeval t7 = t6 + t1;
REQUIRE(t7.tv_sec == (1648227422ull + 1648227400ull + 1ull));
REQUIRE(t7.tv_usec == 123455);
timeval t8 = t1 - t6;
REQUIRE(t8.tv_sec == 1648227422 - 1648227400 - 1);
REQUIRE(t8.tv_usec == 123457);
double scalar = 2;
timeval t9 = t1 * scalar;
REQUIRE(t9.tv_sec == 3296454844);
REQUIRE(t9.tv_usec == 246912);
timeval t10 = scalar * t1;
REQUIRE(t10.tv_sec == 3296454844);
REQUIRE(t10.tv_usec == 246912);
timeval t11 = t6 * scalar;
REQUIRE(t11.tv_sec == (3296454800 + 1));
REQUIRE(t11.tv_usec == 999998);
timeval t12 = t1 / scalar;
REQUIRE(t12.tv_sec == 824113711);
REQUIRE(t12.tv_usec == 61728);
timeval t13 = t6 / scalar;
REQUIRE(t13.tv_sec == 824113700);
// Rounding issue
REQUIRE(t13.tv_usec == 499999);
double scalar2 = t9 / t1;
REQUIRE(scalar2 == Catch::Approx(2.0));
double scalar3 = t1 / t6;
REQUIRE(scalar3 == Catch::Approx(1.000000013));
double scalar4 = t3 / t1;
REQUIRE(scalar4 == Catch::Approx(0));
double scalar5 = t12 / t1;
REQUIRE(scalar5 == Catch::Approx(0.5));
}
SECTION("timevalOperations::toTimeval"){
double seconds = 1648227422.123456;
timeval t1 = timevalOperations::toTimeval(seconds);
REQUIRE(t1.tv_sec == 1648227422);
// Allow 1 usec rounding tolerance
REQUIRE(t1.tv_usec >= 123455);
REQUIRE(t1.tv_usec <= 123457);
}
}

View File

@ -1,4 +1,5 @@
target_sources(${FSFW_TEST_TGT} PRIVATE
TestMessageQueue.cpp
TestSemaphore.cpp
TestClock.cpp
)

View File

@ -0,0 +1,92 @@
#include <fsfw/timemanager/Clock.h>
#include <fsfw/globalfunctions/timevalOperations.h>
#include <array>
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include "fsfw_tests/unit/CatchDefinitions.h"
TEST_CASE("OSAL::Clock Test", "[OSAL::Clock Test]"){
SECTION("Test getClock"){
timeval time;
ReturnValue_t result = Clock::getClock_timeval(&time);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
Clock::TimeOfDay_t timeOfDay;
result = Clock::getDateAndTime(&timeOfDay);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
timeval timeOfDayAsTimeval;
result = Clock::convertTimeOfDayToTimeval(&timeOfDay, &timeOfDayAsTimeval);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
// We require timeOfDayAsTimeval to be larger than time as it
// was request a few ns later
double difference = timevalOperations::toDouble(timeOfDayAsTimeval-time);
CHECK(difference>=0.0);
CHECK(difference<=0.005);
// Conversion in the other direction
Clock::TimeOfDay_t timevalAsTimeOfDay;
result = Clock::convertTimevalToTimeOfDay(&time, &timevalAsTimeOfDay);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
CHECK(timevalAsTimeOfDay.year <= timeOfDay.year);
// TODO We should write TimeOfDay operators!
}
SECTION("Leap seconds"){
uint16_t leapSeconds = 0;
ReturnValue_t result = Clock::getLeapSeconds(&leapSeconds);
REQUIRE(result == HasReturnvaluesIF::RETURN_FAILED);
REQUIRE(leapSeconds == 0);
result = Clock::setLeapSeconds(18);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
result = Clock::getLeapSeconds(&leapSeconds);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
REQUIRE(leapSeconds == 18);
}
SECTION("usec Test"){
timeval timeAsTimeval;
ReturnValue_t result = Clock::getClock_timeval(&timeAsTimeval);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
uint64_t timeAsUsec = 0;
result = Clock::getClock_usecs(&timeAsUsec);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
double timeAsUsecDouble = static_cast<double>(timeAsUsec)/1000000.0;
timeval timeAsUsecTimeval = timevalOperations::toTimeval(timeAsUsecDouble);
double difference = timevalOperations::toDouble(timeAsTimeval - timeAsUsecTimeval);
// We accept 5 ms difference
CHECK(abs(difference) <= 0.005);
uint64_t timevalAsUint64 = static_cast<uint64_t>(timeAsTimeval.tv_sec)*1000000ull + static_cast<uint64_t>(timeAsTimeval.tv_usec);
if(timeAsUsec > timevalAsUint64){
// This should not be the case but we can see some rounding issue sometimes
// This is the case if used in valgrind. This might indicate an other issue
CHECK((timeAsUsec - timevalAsUint64)>=0);
CHECK((timeAsUsec - timevalAsUint64)<=(5*1000));
}else{
CHECK((timevalAsUint64 - timeAsUsec)>=0);
CHECK((timevalAsUint64 - timeAsUsec)<=(5*1000));
}
}
SECTION("Test j2000"){
double j2000;
timeval time;
time.tv_sec = 1648208539;
time.tv_usec = 0;
ReturnValue_t result = Clock::convertTimevalToJD2000(time, &j2000);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
double correctJ2000 = 2459663.98772 - 2451545.0;
CHECK(j2000 == Catch::Approx(correctJ2000).margin(1.2*1e-8));
}
SECTION("Convert to TT"){
timeval utcTime;
utcTime.tv_sec = 1648208539;
utcTime.tv_usec = 999000;
timeval tt;
ReturnValue_t result = Clock::setLeapSeconds(27);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
result = Clock::convertUTCToTT(utcTime, &tt);
REQUIRE(result == HasReturnvaluesIF::RETURN_OK);
CHECK(tt.tv_usec == 183000);
// The plus 1 is a own forced overflow of usecs
CHECK(tt.tv_sec == (1648208539 + 27 + 10 + 32 + 1));
}
}

View File

@ -120,6 +120,8 @@ TEST_CASE("CCSDSTime Tests", "[TestCCSDSTime]") {
CHECK(cdsTime.msDay_l == 0xC5);
CHECK(cdsTime.msDay_ll == 0xC3);
// Conversion back to timeval
timeval timeReturnAsTimeval;
result = CCSDSTime::convertFromCDS(&timeReturnAsTimeval, &cdsTime);
@ -128,5 +130,17 @@ TEST_CASE("CCSDSTime Tests", "[TestCCSDSTime]") {
timeval difference = timeAsTimeval - timeReturnAsTimeval;
CHECK(difference.tv_usec == 456);
CHECK(difference.tv_sec == 0);
Clock::TimeOfDay_t timeReturnAsTimeOfDay;
result = CCSDSTime::convertFromCDS(&timeReturnAsTimeOfDay, &cdsTime);
CHECK(result == HasReturnvaluesIF::RETURN_OK);
CHECK(timeReturnAsTimeOfDay.year == 2020);
CHECK(timeReturnAsTimeOfDay.month == 2);
CHECK(timeReturnAsTimeOfDay.day == 29);
CHECK(timeReturnAsTimeOfDay.hour == 13);
CHECK(timeReturnAsTimeOfDay.minute == 24);
CHECK(timeReturnAsTimeOfDay.second == 45);
// micro seconds precision is lost
CHECK(timeReturnAsTimeOfDay.usecond == 123000);
}
}