thermal update

This commit is contained in:
Robin Müller 2020-12-03 18:32:32 +01:00
parent f0f7388c0d
commit 64cf0d0a70
16 changed files with 796 additions and 169 deletions

View File

@ -44,19 +44,19 @@ ReturnValue_t AbstractTemperatureSensor::performHealthOp() {
} }
void AbstractTemperatureSensor::handleCommandQueue() { void AbstractTemperatureSensor::handleCommandQueue() {
CommandMessage message; CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&message); ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) { if (result == HasReturnvaluesIF::RETURN_OK) {
result = healthHelper.handleHealthCommand(&message); result = healthHelper.handleHealthCommand(&command);
if (result == HasReturnvaluesIF::RETURN_OK) { if (result == HasReturnvaluesIF::RETURN_OK) {
return; return;
} }
result = parameterHelper.handleParameterMessage(&message); result = parameterHelper.handleParameterMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) { if (result == HasReturnvaluesIF::RETURN_OK) {
return; return;
} }
message.setToUnknownCommand(); command.setToUnknownCommand();
commandQueue->reply(&message); commandQueue->reply(&command);
} }
} }

View File

@ -10,6 +10,16 @@
#include "ThermalModuleIF.h" #include "ThermalModuleIF.h"
#include "tcsDefinitions.h" #include "tcsDefinitions.h"
/**
* @defgroup thermal Thermal Components
* @brief Contains all components related to thermal tasks (sensors, heaters)
*/
/**
* @brief Base class for Temperature Sensor, implements all important interfaces.
* Please use the TemperatureSensor class to implement the actual sensors.
* @ingroup thermal
*/
class AbstractTemperatureSensor: public HasHealthIF, class AbstractTemperatureSensor: public HasHealthIF,
public SystemObject, public SystemObject,
public ExecutableObjectIF, public ExecutableObjectIF,

View File

@ -0,0 +1,22 @@
/**
* \file AcceptsThermalMessagesIF.h
*
* \date 16.02.2020
*/
#ifndef FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_
#define FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_
#include "../ipc/MessageQueueSenderIF.h"
class AcceptsThermalMessagesIF {
public:
/**
* @brief This is the empty virtual destructor as required for C++ interfaces.
*/
virtual ~AcceptsThermalMessagesIF() { }
virtual MessageQueueId_t getReceptionQueue() const = 0;
};
#endif /* FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_ */

View File

@ -279,14 +279,14 @@ ReturnValue_t Heater::initialize() {
} }
void Heater::handleQueue() { void Heater::handleQueue() {
CommandMessage message; CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&message); ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) { if (result == HasReturnvaluesIF::RETURN_OK) {
result = healthHelper.handleHealthCommand(&message); result = healthHelper.handleHealthCommand(&command);
if (result == HasReturnvaluesIF::RETURN_OK) { if (result == HasReturnvaluesIF::RETURN_OK) {
return; return;
} }
parameterHelper.handleParameterMessage(&message); parameterHelper.handleParameterMessage(&command);
} }
} }
@ -301,7 +301,7 @@ ReturnValue_t Heater::getParameter(uint8_t domainId, uint16_t parameterId,
parameterWrapper->set(heaterOnCountdown.timeout); parameterWrapper->set(heaterOnCountdown.timeout);
break; break;
default: default:
return INVALID_MATRIX_ID; return INVALID_IDENTIFIER_ID;
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }

View File

@ -1,7 +1,7 @@
#ifndef REDUNDANTHEATER_H_ #ifndef REDUNDANTHEATER_H_
#define REDUNDANTHEATER_H_ #define REDUNDANTHEATER_H_
#include "Heater.h" #include "../thermal/Heater.h"
class RedundantHeater { class RedundantHeater {
public: public:
@ -10,15 +10,14 @@ public:
Parameters(uint32_t objectIdHeater0, uint32_t objectIdHeater1, Parameters(uint32_t objectIdHeater0, uint32_t objectIdHeater1,
uint8_t switch0Heater0, uint8_t switch1Heater0, uint8_t switch0Heater0, uint8_t switch1Heater0,
uint8_t switch0Heater1, uint8_t switch1Heater1) : uint8_t switch0Heater1, uint8_t switch1Heater1) :
objectIdHeater0(objectIdHeater0), objectIdHeater1( objectIdHeater0(objectIdHeater0), objectIdHeater1(objectIdHeater1),
objectIdHeater1), switch0Heater0(switch0Heater0), switch1Heater0( switch0Heater0(switch0Heater0),switch1Heater0(switch1Heater0),
switch1Heater0), switch0Heater1(switch0Heater1), switch1Heater1( switch0Heater1(switch0Heater1), switch1Heater1(switch1Heater1) {
switch1Heater1) {
} }
Parameters() : Parameters() :
objectIdHeater0(0), objectIdHeater1(0), switch0Heater0(0), switch1Heater0( objectIdHeater0(0), objectIdHeater1(0), switch0Heater0(0),
0), switch0Heater1(0), switch1Heater1(0) { switch1Heater0(0), switch0Heater1(0), switch1Heater1(0) {
} }
uint32_t objectIdHeater0; uint32_t objectIdHeater0;

View File

@ -1,40 +1,101 @@
#ifndef TEMPERATURESENSOR_H_ #ifndef TEMPERATURESENSOR_H_
#define TEMPERATURESENSOR_H_ #define TEMPERATURESENSOR_H_
#include "../datapool/DataSet.h" #include "../thermal/AbstractTemperatureSensor.h"
#include "AbstractTemperatureSensor.h" #include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/GlobalPoolVariable.h"
#include "../monitoring/LimitMonitor.h" #include "../monitoring/LimitMonitor.h"
template<typename T> /**
* @brief This building block handles non-linear value conversion and
* range checks for analog temperature sensors.
* @details This class can be used to perform all necessary tasks for temperature sensors.
* A sensor can be instantiated by calling the constructor.
* The temperature is calculated from an input value with
* the calculateOutputTemperature() function. Range checking and
* limit monitoring is performed automatically.
* The inputType specifies the type of the raw input while the
* limitType specifies the type of the upper and lower limit to check against.
* @ingroup thermal
*/
template<typename inputType, typename limitType = inputType>
class TemperatureSensor: public AbstractTemperatureSensor { class TemperatureSensor: public AbstractTemperatureSensor {
public: public:
/**
* This structure contains parameters required for range checking
* and the conversion from the input value to the output temperature.
* a, b and c can be any parameters required to calculate the output
* temperature from the input value, depending on the formula used.
*
* The parameters a,b and c are used in the calculateOutputTemperature() call.
*
* The lower and upper limits can be specified in any type, for example float for C values
* or any other type for raw values.
*/
struct Parameters { struct Parameters {
float a; float a;
float b; float b;
float c; float c;
T lowerLimit; limitType lowerLimit;
T upperLimit; limitType upperLimit;
float gradient; float maxGradient;
}; };
/**
* Forward declaration for explicit instantiation of used parameters.
*/
struct UsedParameters { struct UsedParameters {
UsedParameters(Parameters parameters) : UsedParameters(Parameters parameters) :
a(parameters.a), b(parameters.b), c(parameters.c), gradient( a(parameters.a), b(parameters.b), c(parameters.c),
parameters.gradient) { gradient(parameters.maxGradient) {}
}
float a; float a;
float b; float b;
float c; float c;
float gradient; float gradient;
}; };
static const uint16_t ADDRESS_A = 0; /**
static const uint16_t ADDRESS_B = 1; * Instantiate Temperature Sensor Object.
static const uint16_t ADDRESS_C = 2; * @param setObjectid objectId of the sensor object
static const uint16_t ADDRESS_GRADIENT = 3; * @param inputValue Input value which is converted to a temperature
* @param poolVariable Pool Variable to store the temperature value
* @param vectorIndex Vector Index for the sensor monitor
* @param parameters Calculation parameters, temperature limits, gradient limit
* @param datapoolId Datapool ID of the output temperature
* @param outputSet Output dataset for the output temperature to fetch it with read()
* @param thermalModule respective thermal module, if it has one
*/
TemperatureSensor(object_id_t setObjectid,
inputType *inputValue, PoolVariableIF *poolVariable,
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0, 0, 0},
GlobDataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
inputValue(inputValue), poolVariable(poolVariable),
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
sensorMonitor(setObjectid, DOMAIN_ID_SENSOR,
GlobalDataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
DEFAULT_CONFIRMATION_COUNT, parameters.lowerLimit, parameters.upperLimit,
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH),
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 }) {
}
protected:
/**
* This formula is used to calculate the temperature from an input value
* with an arbitrary type.
* A default implementation is provided but can be replaced depending
* on the required calculation.
* @param inputTemperature
* @return
*/
virtual float calculateOutputTemperature(inputType inputValue) {
return parameters.a * inputValue * inputValue
+ parameters.b * inputValue + parameters.c;
}
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
static const uint8_t DOMAIN_ID_SENSOR = 1;
private: private:
void setInvalid() { void setInvalid() {
outputTemperature = INVALID_TEMPERATURE; outputTemperature = INVALID_TEMPERATURE;
@ -47,22 +108,17 @@ protected:
UsedParameters parameters; UsedParameters parameters;
T *inputTemperature; inputType * inputValue;
PoolVariableIF *poolVariable; PoolVariableIF *poolVariable;
PoolVariable<float> outputTemperature; gp_float_t outputTemperature;
LimitMonitor<T> sensorMonitor; LimitMonitor<limitType> sensorMonitor;
float oldTemperature; float oldTemperature;
timeval uptimeOfOldTemperature; timeval uptimeOfOldTemperature;
virtual float calculateOutputTemperature(T inputTemperature) {
return parameters.a * inputTemperature * inputTemperature
+ parameters.b * inputTemperature + parameters.c;
}
void doChildOperation() { void doChildOperation() {
if (!poolVariable->isValid() if (!poolVariable->isValid()
|| !healthHelper.healthTable->isHealthy(getObjectId())) { || !healthHelper.healthTable->isHealthy(getObjectId())) {
@ -70,7 +126,7 @@ protected:
return; return;
} }
outputTemperature = calculateOutputTemperature(*inputTemperature); outputTemperature = calculateOutputTemperature(*inputValue);
outputTemperature.setValid(PoolVariableIF::VALID); outputTemperature.setValid(PoolVariableIF::VALID);
timeval uptime; timeval uptime;
@ -78,7 +134,7 @@ protected:
if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) { if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) {
//In theory, we could use an AbsValueMonitor to monitor the gradient. //In theory, we could use an AbsValueMonitor to monitor the gradient.
//But this would require storing the gradient in DP and quite some overhead. //But this would require storing the maxGradient in DP and quite some overhead.
//The concept of delta limits is a bit strange anyway. //The concept of delta limits is a bit strange anyway.
float deltaTime; float deltaTime;
float deltaTemp; float deltaTemp;
@ -96,8 +152,8 @@ protected:
} }
} }
//Check is done against raw limits. SHOULDDO: Why? Using °C would be more easy to handle. //Check is done against raw limits. SHOULDDO: Why? Using <EFBFBD>C would be more easy to handle.
sensorMonitor.doCheck(*inputTemperature); sensorMonitor.doCheck(outputTemperature.value);
if (sensorMonitor.isOutOfLimits()) { if (sensorMonitor.isOutOfLimits()) {
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME; uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
@ -110,23 +166,6 @@ protected:
} }
public: public:
TemperatureSensor(object_id_t setObjectid,
T *inputTemperature, PoolVariableIF *poolVariable,
uint8_t vectorIndex, Parameters parameters, uint32_t datapoolId,
DataSet *outputSet, ThermalModuleIF *thermalModule) :
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(
parameters), inputTemperature(inputTemperature), poolVariable(
poolVariable), outputTemperature(datapoolId, outputSet,
PoolVariableIF::VAR_WRITE), sensorMonitor(setObjectid,
DOMAIN_ID_SENSOR,
DataPool::poolIdAndPositionToPid(
poolVariable->getDataPoolId(), vectorIndex),
DEFAULT_CONFIRMATION_COUNT, parameters.lowerLimit,
parameters.upperLimit, TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH), oldTemperature(
20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 }) {
}
float getTemperature() { float getTemperature() {
return outputTemperature; return outputTemperature;
} }
@ -135,6 +174,15 @@ public:
return outputTemperature.isValid(); return outputTemperature.isValid();
} }
static const uint16_t ADDRESS_A = 0;
static const uint16_t ADDRESS_B = 1;
static const uint16_t ADDRESS_C = 2;
static const uint16_t ADDRESS_GRADIENT = 3;
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
static const uint8_t DOMAIN_ID_SENSOR = 1;
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId, virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper, ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex) { const ParameterWrapper *newValues, uint16_t startAtIndex) {
@ -160,7 +208,7 @@ public:
parameterWrapper->set(parameters.gradient); parameterWrapper->set(parameters.gradient);
break; break;
default: default:
return INVALID_MATRIX_ID; return INVALID_IDENTIFIER_ID;
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }

View File

@ -1,48 +1,46 @@
#include "ThermalComponent.h" #include "ThermalComponent.h"
ThermalComponent::ThermalComponent(object_id_t reportingObjectId, ThermalComponent::ThermalComponent(object_id_t reportingObjectId,
uint8_t domainId, uint32_t temperaturePoolId, uint8_t domainId, gp_id_t temperaturePoolId,
uint32_t targetStatePoolId, uint32_t currentStatePoolId, gp_id_t targetStatePoolId, gp_id_t currentStatePoolId,
uint32_t requestPoolId, DataSet* dataSet, gp_id_t requestPoolId, LocalPoolDataSetBase* dataSet,
AbstractTemperatureSensor* sensor, AbstractTemperatureSensor* sensor,
AbstractTemperatureSensor* firstRedundantSensor, AbstractTemperatureSensor* firstRedundantSensor,
AbstractTemperatureSensor* secondRedundantSensor, AbstractTemperatureSensor* secondRedundantSensor,
ThermalModuleIF* thermalModule, Parameters parameters, ThermalModuleIF* thermalModule, Parameters parameters,
Priority priority) : Priority priority) :
CoreComponent(reportingObjectId, domainId, temperaturePoolId, ThermalComponentCore(reportingObjectId, domainId, temperaturePoolId,
targetStatePoolId, currentStatePoolId, requestPoolId, dataSet, targetStatePoolId, currentStatePoolId, requestPoolId, dataSet,
sensor, firstRedundantSensor, secondRedundantSensor,
thermalModule,
{ parameters.lowerOpLimit, parameters.upperOpLimit, { parameters.lowerOpLimit, parameters.upperOpLimit,
parameters.heaterOn, parameters.hysteresis, parameters.heaterOn, parameters.hysteresis,
parameters.heaterSwitchoff }, priority, parameters.heaterSwitchoff },
ThermalComponentIF::STATE_REQUEST_NON_OPERATIONAL), nopParameters( ThermalComponentIF::STATE_REQUEST_NON_OPERATIONAL),
{ parameters.lowerNopLimit, parameters.upperNopLimit }) { nopParameters({ parameters.lowerNopLimit, parameters.upperNopLimit }) {
} }
ThermalComponent::~ThermalComponent() { ThermalComponent::~ThermalComponent() {
} }
ReturnValue_t ThermalComponent::setTargetState(int8_t newState) { ReturnValue_t ThermalComponent::setTargetState(int8_t newState) {
DataSet mySet; targetState.setReadWriteMode(pool_rwm_t::VAR_READ_WRITE);
PoolVariable<int8_t> writableTargetState(targetState.getDataPoolId(), targetState.read();
&mySet, PoolVariableIF::VAR_READ_WRITE); if ((targetState == STATE_REQUEST_OPERATIONAL)
mySet.read(); and (newState != STATE_REQUEST_IGNORE)) {
if ((writableTargetState == STATE_REQUEST_OPERATIONAL)
&& (newState != STATE_REQUEST_IGNORE)) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
switch (newState) { switch (newState) {
case STATE_REQUEST_NON_OPERATIONAL: case STATE_REQUEST_NON_OPERATIONAL:
writableTargetState = newState; targetState = newState;
mySet.commit(PoolVariableIF::VALID); targetState.setValid(true);
targetState.commit(PoolVariableIF::VALID);
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
default: default:
return CoreComponent::setTargetState(newState); return ThermalComponentCore::setTargetState(newState);
} }
return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t ThermalComponent::setLimits(const uint8_t* data, uint32_t size) { ReturnValue_t ThermalComponent::setLimits(const uint8_t* data, size_t size) {
if (size != 4 * sizeof(parameters.lowerOpLimit)) { if (size != 4 * sizeof(parameters.lowerOpLimit)) {
return MonitoringIF::INVALID_SIZE; return MonitoringIF::INVALID_SIZE;
} }
@ -59,11 +57,11 @@ ReturnValue_t ThermalComponent::setLimits(const uint8_t* data, uint32_t size) {
} }
ThermalComponentIF::State ThermalComponent::getState(float temperature, ThermalComponentIF::State ThermalComponent::getState(float temperature,
CoreComponent::Parameters parameters, int8_t targetState) { ThermalComponentCore::Parameters parameters, int8_t targetState) {
if (temperature < nopParameters.lowerNopLimit) { if (temperature < nopParameters.lowerNopLimit) {
return OUT_OF_RANGE_LOW; return OUT_OF_RANGE_LOW;
} else { } else {
State state = CoreComponent::getState(temperature, parameters, State state = ThermalComponentCore::getState(temperature, parameters,
targetState); targetState);
if (state != NON_OPERATIONAL_HIGH if (state != NON_OPERATIONAL_HIGH
&& state != NON_OPERATIONAL_HIGH_IGNORED) { && state != NON_OPERATIONAL_HIGH_IGNORED) {
@ -80,18 +78,19 @@ ThermalComponentIF::State ThermalComponent::getState(float temperature,
} }
void ThermalComponent::checkLimits(ThermalComponentIF::State state) { void ThermalComponent::checkLimits(ThermalComponentIF::State state) {
if (targetState == STATE_REQUEST_OPERATIONAL || targetState == STATE_REQUEST_IGNORE) { if ((targetState == STATE_REQUEST_OPERATIONAL) or
CoreComponent::checkLimits(state); (targetState == STATE_REQUEST_IGNORE)) {
ThermalComponentCore::checkLimits(state);
return; return;
} }
//If component is not operational, it checks the NOP limits. // If component is not operational, it checks the NOP limits.
temperatureMonitor.translateState(state, temperature.value, temperatureMonitor.translateState(state, temperature.value,
nopParameters.lowerNopLimit, nopParameters.upperNopLimit, false); nopParameters.lowerNopLimit, nopParameters.upperNopLimit, false);
} }
ThermalComponentIF::HeaterRequest ThermalComponent::getHeaterRequest( ThermalComponentIF::HeaterRequest ThermalComponent::getHeaterRequest(
int8_t targetState, float temperature, int8_t targetState, float temperature,
CoreComponent::Parameters parameters) { ThermalComponentCore::Parameters parameters) {
if (targetState == STATE_REQUEST_IGNORE) { if (targetState == STATE_REQUEST_IGNORE) {
isHeating = false; isHeating = false;
return HEATER_DONT_CARE; return HEATER_DONT_CARE;
@ -144,16 +143,16 @@ ThermalComponentIF::State ThermalComponent::getIgnoredState(int8_t state) {
case OUT_OF_RANGE_HIGH_IGNORED: case OUT_OF_RANGE_HIGH_IGNORED:
return OUT_OF_RANGE_HIGH_IGNORED; return OUT_OF_RANGE_HIGH_IGNORED;
default: default:
return CoreComponent::getIgnoredState(state); return ThermalComponentCore::getIgnoredState(state);
} }
} }
ReturnValue_t ThermalComponent::getParameter(uint8_t domainId, ReturnValue_t ThermalComponent::getParameter(uint8_t domainId,
uint16_t parameterId, ParameterWrapper* parameterWrapper, uint16_t parameterId, ParameterWrapper* parameterWrapper,
const ParameterWrapper* newValues, uint16_t startAtIndex) { const ParameterWrapper* newValues, uint16_t startAtIndex) {
ReturnValue_t result = CoreComponent::getParameter(domainId, parameterId, ReturnValue_t result = ThermalComponentCore::getParameter(domainId, parameterId,
parameterWrapper, newValues, startAtIndex); parameterWrapper, newValues, startAtIndex);
if (result != INVALID_MATRIX_ID) { if (result != INVALID_IDENTIFIER_ID) {
return result; return result;
} }
switch (parameterId) { switch (parameterId) {
@ -164,7 +163,7 @@ ReturnValue_t ThermalComponent::getParameter(uint8_t domainId,
parameterWrapper->set(nopParameters.upperNopLimit); parameterWrapper->set(nopParameters.upperNopLimit);
break; break;
default: default:
return INVALID_MATRIX_ID; return INVALID_IDENTIFIER_ID;
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }

View File

@ -1,9 +1,14 @@
#ifndef THERMALCOMPONENT_H_ #ifndef FSFW_THERMAL_THERMALCOMPONENT_H_
#define THERMALCOMPONENT_H_ #define FSFW_THERMAL_THERMALCOMPONENT_H_
#include "CoreComponent.h" #include "ThermalComponentCore.h"
class ThermalComponent: public CoreComponent { /**
* @brief
* @details
* Some more documentation.
*/
class ThermalComponent: public ThermalComponentCore {
public: public:
struct Parameters { struct Parameters {
float lowerNopLimit; float lowerNopLimit;
@ -14,13 +19,35 @@ public:
float hysteresis; float hysteresis;
float heaterSwitchoff; float heaterSwitchoff;
}; };
/**
* Non-Operational Temperatures
*/
struct NopParameters { struct NopParameters {
float lowerNopLimit; float lowerNopLimit;
float upperNopLimit; float upperNopLimit;
}; };
ThermalComponent(object_id_t reportingObjectId, uint8_t domainId, uint32_t temperaturePoolId,
uint32_t targetStatePoolId, uint32_t currentStatePoolId, uint32_t requestPoolId, /**
DataSet *dataSet, AbstractTemperatureSensor *sensor, * How to use.
* @param reportingObjectId
* @param domainId
* @param temperaturePoolId
* @param targetStatePoolId
* @param currentStatePoolId
* @param requestPoolId
* @param dataSet
* @param sensor
* @param firstRedundantSensor
* @param secondRedundantSensor
* @param thermalModule
* @param parameters
* @param priority
*/
ThermalComponent(object_id_t reportingObjectId, uint8_t domainId,
gp_id_t temperaturePoolId, gp_id_t targetStatePoolId,
gp_id_t currentStatePoolId, gp_id_t requestPoolId,
LocalPoolDataSetBase *dataSet, AbstractTemperatureSensor *sensor,
AbstractTemperatureSensor *firstRedundantSensor, AbstractTemperatureSensor *firstRedundantSensor,
AbstractTemperatureSensor *secondRedundantSensor, AbstractTemperatureSensor *secondRedundantSensor,
ThermalModuleIF *thermalModule, Parameters parameters, ThermalModuleIF *thermalModule, Parameters parameters,
@ -29,7 +56,7 @@ public:
ReturnValue_t setTargetState(int8_t newState); ReturnValue_t setTargetState(int8_t newState);
virtual ReturnValue_t setLimits( const uint8_t* data, uint32_t size); virtual ReturnValue_t setLimits( const uint8_t* data, size_t size);
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId, virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper, ParameterWrapper *parameterWrapper,
@ -39,15 +66,15 @@ protected:
NopParameters nopParameters; NopParameters nopParameters;
State getState(float temperature, CoreComponent::Parameters parameters, State getState(float temperature, ThermalComponentCore::Parameters parameters,
int8_t targetState); int8_t targetState);
virtual void checkLimits(State state); virtual void checkLimits(State state);
virtual HeaterRequest getHeaterRequest(int8_t targetState, float temperature, virtual HeaterRequest getHeaterRequest(int8_t targetState, float temperature,
CoreComponent::Parameters parameters); ThermalComponentCore::Parameters parameters);
State getIgnoredState(int8_t state); State getIgnoredState(int8_t state);
}; };
#endif /* THERMALCOMPONENT_H_ */ #endif /* FSFW_THERMAL_THERMALCOMPONENT_H_ */

View File

@ -0,0 +1,285 @@
#include "ThermalComponentCore.h"
ThermalComponentCore::ThermalComponentCore(object_id_t reportingObjectId,
uint8_t domainId, gp_id_t temperaturePoolId,
gp_id_t targetStatePoolId, gp_id_t currentStatePoolId,
gp_id_t requestPoolId, LocalPoolDataSetBase* dataSet,
Parameters parameters, StateRequest initialTargetState) :
temperature(temperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE),
targetState(targetStatePoolId, dataSet, PoolVariableIF::VAR_READ),
currentState(currentStatePoolId, dataSet, PoolVariableIF::VAR_WRITE),
heaterRequest(requestPoolId, dataSet, PoolVariableIF::VAR_WRITE),
parameters(parameters), domainId(domainId),
temperatureMonitor(reportingObjectId, domainId + 1,temperaturePoolId,
COMPONENT_TEMP_CONFIRMATION) {
//Set thermal state once, then leave to operator.
targetState.setReadWriteMode(PoolVariableIF::VAR_WRITE);
ReturnValue_t result = targetState.read();
if(result == HasReturnvaluesIF::RETURN_OK) {
targetState = initialTargetState;
targetState.setValid(true);
targetState.commit();
}
targetState.setReadWriteMode(PoolVariableIF::VAR_READ);
}
void ThermalComponentCore::addSensor(AbstractTemperatureSensor* sensor) {
this->sensor = sensor;
}
void ThermalComponentCore::addFirstRedundantSensor(
AbstractTemperatureSensor *firstRedundantSensor) {
this->firstRedundantSensor = firstRedundantSensor;
}
void ThermalComponentCore::addSecondRedundantSensor(
AbstractTemperatureSensor *secondRedundantSensor) {
this->secondRedundantSensor = secondRedundantSensor;
}
void ThermalComponentCore::addThermalModule(ThermalModule *thermalModule,
Priority priority) {
this->thermalModule = thermalModule;
if(thermalModule != nullptr) {
thermalModule->registerComponent(this, priority);
}
}
void ThermalComponentCore::setPriority(Priority priority) {
if(priority == SAFE) {
this->isSafeComponent = true;
}
}
ThermalComponentCore::~ThermalComponentCore() {
}
ThermalComponentIF::HeaterRequest ThermalComponentCore::performOperation(
uint8_t opCode) {
HeaterRequest request = HEATER_DONT_CARE;
//SHOULDDO: Better pass db_float_t* to getTemperature and set it invalid if invalid.
temperature = getTemperature();
updateMinMaxTemp();
if (temperature != INVALID_TEMPERATURE) {
temperature.setValid(PoolVariableIF::VALID);
State state = getState(temperature.value, getParameters(),
targetState.value);
currentState = state;
checkLimits(state);
request = getHeaterRequest(targetState.value, temperature.value,
getParameters());
} else {
temperatureMonitor.setToInvalid();
temperature.setValid(PoolVariableIF::INVALID);
currentState = UNKNOWN;
request = HEATER_DONT_CARE;
}
currentState.setValid(PoolVariableIF::VALID);
heaterRequest = request;
heaterRequest.setValid(PoolVariableIF::VALID);
return request;
}
void ThermalComponentCore::markStateIgnored() {
currentState = getIgnoredState(currentState.value);
}
object_id_t ThermalComponentCore::getObjectId() {
return temperatureMonitor.getReporterId();
return 0;
}
float ThermalComponentCore::getLowerOpLimit() {
return parameters.lowerOpLimit;
}
ReturnValue_t ThermalComponentCore::setTargetState(int8_t newState) {
targetState.setReadWriteMode(pool_rwm_t::VAR_READ_WRITE);
targetState.read();
if((targetState == STATE_REQUEST_OPERATIONAL) and
(newState != STATE_REQUEST_IGNORE)) {
return HasReturnvaluesIF::RETURN_FAILED;
}
switch (newState) {
case STATE_REQUEST_HEATING:
case STATE_REQUEST_IGNORE:
case STATE_REQUEST_OPERATIONAL:
targetState = newState;
break;
case STATE_REQUEST_NON_OPERATIONAL:
default:
return INVALID_TARGET_STATE;
}
targetState.setValid(true);
targetState.commit();
return HasReturnvaluesIF::RETURN_OK;
}
void ThermalComponentCore::setOutputInvalid() {
temperature = INVALID_TEMPERATURE;
temperature.setValid(PoolVariableIF::INVALID);
currentState.setValid(PoolVariableIF::INVALID);
heaterRequest = HEATER_DONT_CARE;
heaterRequest.setValid(PoolVariableIF::INVALID);
temperatureMonitor.setToUnchecked();
}
float ThermalComponentCore::getTemperature() {
if ((sensor != nullptr) && (sensor->isValid())) {
return sensor->getTemperature();
}
if ((firstRedundantSensor != nullptr) &&
(firstRedundantSensor->isValid())) {
return firstRedundantSensor->getTemperature();
}
if ((secondRedundantSensor != nullptr) &&
(secondRedundantSensor->isValid())) {
return secondRedundantSensor->getTemperature();
}
if (thermalModule != nullptr) {
float temperature = thermalModule->getTemperature();
if (temperature != ThermalModuleIF::INVALID_TEMPERATURE) {
return temperature;
} else {
return INVALID_TEMPERATURE;
}
} else {
return INVALID_TEMPERATURE;
}
}
ThermalComponentIF::State ThermalComponentCore::getState(float temperature,
Parameters parameters, int8_t targetState) {
ThermalComponentIF::State state;
if (temperature < parameters.lowerOpLimit) {
state = NON_OPERATIONAL_LOW;
} else if (temperature < parameters.upperOpLimit) {
state = OPERATIONAL;
} else {
state = NON_OPERATIONAL_HIGH;
}
if (targetState == STATE_REQUEST_IGNORE) {
state = getIgnoredState(state);
}
return state;
}
void ThermalComponentCore::checkLimits(ThermalComponentIF::State state) {
//Checks operational limits only.
temperatureMonitor.translateState(state, temperature.value,
getParameters().lowerOpLimit, getParameters().upperOpLimit);
}
ThermalComponentIF::HeaterRequest ThermalComponentCore::getHeaterRequest(
int8_t targetState, float temperature, Parameters parameters) {
if (targetState == STATE_REQUEST_IGNORE) {
isHeating = false;
return HEATER_DONT_CARE;
}
if (temperature > parameters.upperOpLimit - parameters.heaterSwitchoff) {
isHeating = false;
return HEATER_REQUEST_EMERGENCY_OFF;
}
float opHeaterLimit = parameters.lowerOpLimit + parameters.heaterOn;
if (isHeating) {
opHeaterLimit += parameters.hysteresis;
}
if (temperature < opHeaterLimit) {
isHeating = true;
return HEATER_REQUEST_EMERGENCY_ON;
}
isHeating = false;
return HEATER_DONT_CARE;
}
ThermalComponentIF::State ThermalComponentCore::getIgnoredState(int8_t state) {
switch (state) {
case NON_OPERATIONAL_LOW:
return NON_OPERATIONAL_LOW_IGNORED;
case OPERATIONAL:
return OPERATIONAL_IGNORED;
case NON_OPERATIONAL_HIGH:
return NON_OPERATIONAL_HIGH_IGNORED;
case NON_OPERATIONAL_LOW_IGNORED:
return NON_OPERATIONAL_LOW_IGNORED;
case OPERATIONAL_IGNORED:
return OPERATIONAL_IGNORED;
case NON_OPERATIONAL_HIGH_IGNORED:
return NON_OPERATIONAL_HIGH_IGNORED;
default:
case UNKNOWN:
return UNKNOWN;
}
}
void ThermalComponentCore::updateMinMaxTemp() {
if (temperature == INVALID_TEMPERATURE) {
return;
}
if (temperature < minTemp) {
minTemp = static_cast<float>(temperature);
}
if (temperature > maxTemp) {
maxTemp = static_cast<float>(temperature);
}
}
uint8_t ThermalComponentCore::getDomainId() const {
return domainId;
}
ThermalComponentCore::Parameters ThermalComponentCore::getParameters() {
return parameters;
}
ReturnValue_t ThermalComponentCore::getParameter(uint8_t domainId,
uint16_t parameterId, ParameterWrapper* parameterWrapper,
const ParameterWrapper* newValues, uint16_t startAtIndex) {
ReturnValue_t result = temperatureMonitor.getParameter(domainId,
parameterId, parameterWrapper, newValues, startAtIndex);
if (result != INVALID_DOMAIN_ID) {
return result;
}
if (domainId != this->domainId) {
return INVALID_DOMAIN_ID;
}
switch (parameterId) {
case 0:
parameterWrapper->set(parameters.heaterOn);
break;
case 1:
parameterWrapper->set(parameters.hysteresis);
break;
case 2:
parameterWrapper->set(parameters.heaterSwitchoff);
break;
case 3:
parameterWrapper->set(minTemp);
break;
case 4:
parameterWrapper->set(maxTemp);
break;
case 10:
parameterWrapper->set(parameters.lowerOpLimit);
break;
case 11:
parameterWrapper->set(parameters.upperOpLimit);
break;
default:
return INVALID_IDENTIFIER_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,117 @@
#ifndef FSFW_THERMAL_THERMALCOMPONENTCORE_H_
#define FSFW_THERMAL_THERMALCOMPONENTCORE_H_
#include "ThermalMonitorReporter.h"
#include "ThermalComponentIF.h"
#include "AbstractTemperatureSensor.h"
#include "ThermalModule.h"
#include "../datapoollocal/LocalPoolVariable.h"
/**
* @brief
* @details
*/
class ThermalComponentCore: public ThermalComponentIF {
public:
struct Parameters {
float lowerOpLimit;
float upperOpLimit;
float heaterOn;
float hysteresis;
float heaterSwitchoff;
};
static const uint16_t COMPONENT_TEMP_CONFIRMATION = 5;
/**
* Some documentation
* @param reportingObjectId
* @param domainId
* @param temperaturePoolId
* @param targetStatePoolId
* @param currentStatePoolId
* @param requestPoolId
* @param dataSet
* @param parameters
* @param initialTargetState
*/
ThermalComponentCore(object_id_t reportingObjectId, uint8_t domainId,
gp_id_t temperaturePoolId, gp_id_t targetStatePoolId,
gp_id_t currentStatePoolId, gp_id_t requestPoolId,
LocalPoolDataSetBase* dataSet, Parameters parameters,
StateRequest initialTargetState =
ThermalComponentIF::STATE_REQUEST_OPERATIONAL);
void addSensor(AbstractTemperatureSensor* firstRedundantSensor);
void addFirstRedundantSensor(
AbstractTemperatureSensor* firstRedundantSensor);
void addSecondRedundantSensor(
AbstractTemperatureSensor* secondRedundantSensor);
void addThermalModule(ThermalModule* thermalModule, Priority priority);
void setPriority(Priority priority);
virtual ~ThermalComponentCore();
virtual HeaterRequest performOperation(uint8_t opCode);
void markStateIgnored();
object_id_t getObjectId();
uint8_t getDomainId() const;
virtual float getLowerOpLimit();
ReturnValue_t setTargetState(int8_t newState);
virtual void setOutputInvalid();
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex);
protected:
AbstractTemperatureSensor *sensor = nullptr;
AbstractTemperatureSensor *firstRedundantSensor = nullptr;
AbstractTemperatureSensor *secondRedundantSensor = nullptr;
ThermalModuleIF *thermalModule = nullptr;
lp_var_t<float> temperature;
lp_var_t<int8_t> targetState;
lp_var_t<int8_t> currentState;
lp_var_t<uint8_t> heaterRequest;
bool isHeating = false;
bool isSafeComponent = false;
float minTemp = 999;
float maxTemp = AbstractTemperatureSensor::ZERO_KELVIN_C;
Parameters parameters;
const uint8_t domainId;
ThermalMonitorReporter temperatureMonitor;
virtual float getTemperature();
virtual State getState(float temperature, Parameters parameters,
int8_t targetState);
virtual void checkLimits(State state);
virtual HeaterRequest getHeaterRequest(int8_t targetState,
float temperature, Parameters parameters);
virtual State getIgnoredState(int8_t state);
void updateMinMaxTemp();
virtual Parameters getParameters();
};
#endif /* FSFW_THERMAL_THERMALCOMPONENT_CORE_H_ */

View File

@ -49,18 +49,18 @@ public:
SAFE = 0, //!< SAFE SAFE = 0, //!< SAFE
IDLE, //!< IDLE IDLE, //!< IDLE
PAYLOAD, //!< PAYLOAD PAYLOAD, //!< PAYLOAD
NUMBER_OF_PRIORITIES //!< MAX_PRIORITY NUMBER_OF_PRIORITIES //!< MAX_PRIORITY
}; };
/** /**
* The elements are ordered by priority, lowest have highest priority * The elements are ordered by priority, lowest have highest priority
*/ */
enum HeaterRequest { enum HeaterRequest {
HEATER_REQUEST_EMERGENCY_OFF = 0, //!< REQUEST_EMERGENCY_OFF HEATER_REQUEST_EMERGENCY_OFF = 0, //!< REQUEST_EMERGENCY_OFF
HEATER_REQUEST_EMERGENCY_ON, //!< REQUEST_EMERGENCY_ON HEATER_REQUEST_EMERGENCY_ON, //!< REQUEST_EMERGENCY_ON
HEATER_REQUEST_OFF, //!< REQUEST_OFF HEATER_REQUEST_OFF, //!< REQUEST_OFF
HEATER_REQUEST_ON, //!< REQUEST_ON HEATER_REQUEST_ON, //!< REQUEST_ON
HEATER_DONT_CARE //!< DONT_CARE HEATER_DONT_CARE //!< DONT_CARE
}; };
virtual ~ThermalComponentIF() { virtual ~ThermalComponentIF() {

View File

@ -1,28 +1,31 @@
#include "../monitoring/LimitViolationReporter.h"
#include "../monitoring/MonitoringMessageContent.h"
#include "ThermalModule.h" #include "ThermalModule.h"
#include "AbstractTemperatureSensor.h" #include "AbstractTemperatureSensor.h"
ThermalModule::ThermalModule(uint32_t moduleTemperaturePoolId, #include "../monitoring/LimitViolationReporter.h"
uint32_t currentStatePoolId, uint32_t targetStatePoolId, #include "../monitoring/MonitoringMessageContent.h"
DataSet *dataSet, Parameters parameters,
ThermalModule::ThermalModule(gp_id_t moduleTemperaturePoolId,
gp_id_t currentStatePoolId, gp_id_t targetStatePoolId,
LocalPoolDataSetBase *dataSet, Parameters parameters,
RedundantHeater::Parameters heaterParameters) : RedundantHeater::Parameters heaterParameters) :
oldStrategy(ACTIVE_SINGLE), survivalTargetTemp(0), targetTemp(0), heating( oldStrategy(ACTIVE_SINGLE), parameters(parameters),
false), parameters(parameters), moduleTemperature( moduleTemperature(moduleTemperaturePoolId, dataSet,
moduleTemperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE), currentState( PoolVariableIF::VAR_WRITE),
currentStatePoolId, dataSet, PoolVariableIF::VAR_WRITE), targetState( currentState(currentStatePoolId, dataSet, PoolVariableIF::VAR_WRITE),
targetStatePoolId, dataSet, PoolVariableIF::VAR_READ) { targetState(targetStatePoolId, dataSet, PoolVariableIF::VAR_READ) {
heater = new RedundantHeater(heaterParameters); heater = new RedundantHeater(heaterParameters);
} }
ThermalModule::ThermalModule(uint32_t moduleTemperaturePoolId, DataSet* dataSet) : ThermalModule::ThermalModule(gp_id_t moduleTemperaturePoolId,
oldStrategy(ACTIVE_SINGLE), survivalTargetTemp(0), targetTemp(0), heating( LocalPoolDataSetBase* dataSet) :
false), parameters( { 0, 0 }), moduleTemperature( oldStrategy(ACTIVE_SINGLE), parameters( { 0, 0 }),
moduleTemperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE), heater( moduleTemperature(moduleTemperaturePoolId, dataSet,
NULL), currentState(PoolVariableIF::INVALID, dataSet, PoolVariableIF::VAR_WRITE),
PoolVariableIF::VAR_WRITE), targetState(PoolVariableIF::INVALID, currentState(gp_id_t(), dataSet,
dataSet, PoolVariableIF::VAR_READ) { PoolVariableIF::VAR_WRITE),
targetState(gp_id_t(), dataSet,
PoolVariableIF::VAR_READ) {
} }
ThermalModule::~ThermalModule() { ThermalModule::~ThermalModule() {
@ -30,7 +33,7 @@ ThermalModule::~ThermalModule() {
} }
void ThermalModule::performOperation(uint8_t opCode) { void ThermalModule::performOperation(uint8_t opCode) {
if (heater != NULL) { if (heater != nullptr) {
heater->performOperation(0); heater->performOperation(0);
} }
} }
@ -42,7 +45,7 @@ void ThermalModule::performMode(Strategy strategy) {
ThermalComponentIF::HeaterRequest componentHeaterRequest = ThermalComponentIF::HeaterRequest componentHeaterRequest =
letComponentsPerformAndDeciceIfWeNeedToHeat(safeOnly); letComponentsPerformAndDeciceIfWeNeedToHeat(safeOnly);
if (heater == NULL) { if (heater == nullptr) {
informComponentsAboutHeaterState(false, NONE); informComponentsAboutHeaterState(false, NONE);
return; return;
} }
@ -53,8 +56,8 @@ void ThermalModule::performMode(Strategy strategy) {
//Components overwrite the module request. //Components overwrite the module request.
heating = ((componentHeaterRequest heating = ((componentHeaterRequest
== ThermalComponentIF::HEATER_REQUEST_ON) == ThermalComponentIF::HEATER_REQUEST_ON)
|| (componentHeaterRequest or (componentHeaterRequest
== ThermalComponentIF::HEATER_REQUEST_EMERGENCY_ON)); == ThermalComponentIF::HEATER_REQUEST_EMERGENCY_ON));
} }
bool dual = (strategy == ACTIVE_DUAL); bool dual = (strategy == ACTIVE_DUAL);
@ -76,7 +79,7 @@ void ThermalModule::performMode(Strategy strategy) {
} }
float ThermalModule::getTemperature() { float ThermalModule::getTemperature() {
return moduleTemperature; return moduleTemperature.value;
} }
void ThermalModule::registerSensor(AbstractTemperatureSensor * sensor) { void ThermalModule::registerSensor(AbstractTemperatureSensor * sensor) {
@ -85,7 +88,8 @@ void ThermalModule::registerSensor(AbstractTemperatureSensor * sensor) {
void ThermalModule::registerComponent(ThermalComponentIF* component, void ThermalModule::registerComponent(ThermalComponentIF* component,
ThermalComponentIF::Priority priority) { ThermalComponentIF::Priority priority) {
components.push_back(ComponentData( { component, priority, ThermalComponentIF::HEATER_DONT_CARE })); components.push_back(ComponentData( { component, priority,
ThermalComponentIF::HEATER_DONT_CARE }));
} }
void ThermalModule::calculateTemperature() { void ThermalModule::calculateTemperature() {
@ -94,12 +98,13 @@ void ThermalModule::calculateTemperature() {
std::list<AbstractTemperatureSensor *>::iterator iter = sensors.begin(); std::list<AbstractTemperatureSensor *>::iterator iter = sensors.begin();
for (; iter != sensors.end(); iter++) { for (; iter != sensors.end(); iter++) {
if ((*iter)->isValid()) { if ((*iter)->isValid()) {
moduleTemperature = moduleTemperature + (*iter)->getTemperature(); moduleTemperature = moduleTemperature.value +
(*iter)->getTemperature();
numberOfValidSensors++; numberOfValidSensors++;
} }
} }
if (numberOfValidSensors != 0) { if (numberOfValidSensors != 0) {
moduleTemperature = moduleTemperature / numberOfValidSensors; moduleTemperature = moduleTemperature.value / numberOfValidSensors;
moduleTemperature.setValid(PoolVariableIF::VALID); moduleTemperature.setValid(PoolVariableIF::VALID);
} else { } else {
moduleTemperature = INVALID_TEMPERATURE; moduleTemperature = INVALID_TEMPERATURE;
@ -117,9 +122,10 @@ ThermalComponentIF* ThermalModule::findComponent(object_id_t objectId) {
return NULL; return NULL;
} }
ThermalComponentIF::HeaterRequest ThermalModule::letComponentsPerformAndDeciceIfWeNeedToHeat( ThermalComponentIF::HeaterRequest
bool safeOnly) { ThermalModule::letComponentsPerformAndDeciceIfWeNeedToHeat(bool safeOnly) {
ThermalComponentIF::HeaterRequest heaterRequests[ThermalComponentIF::NUMBER_OF_PRIORITIES]; ThermalComponentIF::HeaterRequest
heaterRequests[ThermalComponentIF::NUMBER_OF_PRIORITIES];
survivalTargetTemp = -999; survivalTargetTemp = -999;
targetTemp = -999; targetTemp = -999;
@ -224,7 +230,7 @@ bool ThermalModule::calculateModuleHeaterRequestAndSetModuleStatus(
limit = survivalTargetTemp; limit = survivalTargetTemp;
} }
if (moduleTemperature >= limit) { if (moduleTemperature.value >= limit) {
currentState = OPERATIONAL; currentState = OPERATIONAL;
} else { } else {
currentState = NON_OPERATIONAL; currentState = NON_OPERATIONAL;
@ -250,15 +256,15 @@ bool ThermalModule::calculateModuleHeaterRequestAndSetModuleStatus(
} }
void ThermalModule::setHeating(bool on) { void ThermalModule::setHeating(bool on) {
DataSet mySet; // GlobDataSet mySet;
PoolVariable<int8_t> writableTargetState(targetState.getDataPoolId(), // gp_int8_t writableTargetState(targetState.getDataPoolId(),
&mySet, PoolVariableIF::VAR_WRITE); // &mySet, PoolVariableIF::VAR_WRITE);
if (on) { // if (on) {
writableTargetState = STATE_REQUEST_HEATING; // writableTargetState = STATE_REQUEST_HEATING;
} else { // } else {
writableTargetState = STATE_REQUEST_PASSIVE; // writableTargetState = STATE_REQUEST_PASSIVE;
} // }
mySet.commit(PoolVariableIF::VALID); // mySet.commit(PoolVariableIF::VALID);
} }
void ThermalModule::updateTargetTemperatures(ThermalComponentIF* component, void ThermalModule::updateTargetTemperatures(ThermalComponentIF* component,

View File

@ -1,16 +1,25 @@
#ifndef THERMALMODULE_H_ #ifndef FSFW_THERMAL_THERMALMODULE_H_
#define THERMALMODULE_H_ #define FSFW_THERMAL_THERMALMODULE_H_
#include "../datapool/DataSet.h"
#include "../datapool/PoolVariable.h"
#include "../devicehandlers/HealthDevice.h"
#include "../events/EventReportingProxyIF.h"
#include "ThermalModuleIF.h" #include "ThermalModuleIF.h"
#include <list>
#include "tcsDefinitions.h" #include "tcsDefinitions.h"
#include "RedundantHeater.h" #include "RedundantHeater.h"
//#include "../datapoolglob/GlobalDataSet.h"
//#include "../datapoolglob/GlobalPoolVariable.h"
#include "../datapoollocal/LocalPoolDataSetBase.h"
#include "../datapoollocal/LocalPoolVariable.h"
#include "../devicehandlers/HealthDevice.h"
#include "../events/EventReportingProxyIF.h"
#include <list>
class PowerSwitchIF; class PowerSwitchIF;
/**
* @brief Allows creation of different thermal control domains within a system.
*/
class ThermalModule: public ThermalModuleIF { class ThermalModule: public ThermalModuleIF {
friend class ThermalController; friend class ThermalController;
public: public:
@ -19,11 +28,12 @@ public:
float hysteresis; float hysteresis;
}; };
ThermalModule(uint32_t moduleTemperaturePoolId, uint32_t currentStatePoolId, ThermalModule(gp_id_t moduleTemperaturePoolId, gp_id_t currentStatePoolId,
uint32_t targetStatePoolId, DataSet *dataSet, Parameters parameters, gp_id_t targetStatePoolId, LocalPoolDataSetBase *dataSet,
RedundantHeater::Parameters heaterParameters); Parameters parameters, RedundantHeater::Parameters heaterParameters);
ThermalModule(uint32_t moduleTemperaturePoolId, DataSet *dataSet); ThermalModule(gp_id_t moduleTemperaturePoolId,
LocalPoolDataSetBase *dataSet);
virtual ~ThermalModule(); virtual ~ThermalModule();
@ -59,20 +69,21 @@ protected:
Strategy oldStrategy; Strategy oldStrategy;
float survivalTargetTemp; float survivalTargetTemp = 0.0;
float targetTemp; float targetTemp = 0.0;
bool heating; bool heating = false;
Parameters parameters; Parameters parameters;
db_float_t moduleTemperature; lp_var_t<float> moduleTemperature;
//gp_float_t moduleTemperature;
RedundantHeater *heater; RedundantHeater *heater = nullptr;
db_int8_t currentState; lp_var_t<int8_t> currentState;
db_int8_t targetState; lp_var_t<int8_t> targetState;
std::list<AbstractTemperatureSensor *> sensors; std::list<AbstractTemperatureSensor *> sensors;
std::list<ComponentData> components; std::list<ComponentData> components;
@ -89,4 +100,4 @@ protected:
void updateTargetTemperatures(ThermalComponentIF *component, bool isSafe); void updateTargetTemperatures(ThermalComponentIF *component, bool isSafe);
}; };
#endif /* THERMALMODULE_H_ */ #endif /* FSFW_THERMAL_THERMALMODULE_H_ */

View File

@ -0,0 +1,75 @@
#include "ThermalMonitorReporter.h"
#include "ThermalComponentIF.h"
#include "../monitoring/MonitoringIF.h"
ThermalMonitorReporter::~ThermalMonitorReporter() {
}
void ThermalMonitorReporter::sendTransitionEvent(float currentValue,
ReturnValue_t state) {
switch (state) {
case MonitoringIF::BELOW_LOW_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_OOL_LOW, state);
break;
case MonitoringIF::ABOVE_HIGH_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH, state);
break;
case ThermalComponentIF::BELOW_OPERATIONAL_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_LOW, state);
break;
case ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_HIGH, state);
break;
default:
break;
}
}
bool ThermalMonitorReporter::isAboveHighLimit() {
if (oldState == ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT) {
return true;
} else {
return false;
}
}
ReturnValue_t ThermalMonitorReporter::translateState(
ThermalComponentIF::State state, float sample, float lowerLimit,
float upperLimit, bool componentIsOperational) {
if (ThermalComponentIF::isIgnoredState(state)) {
setToUnchecked();
return MonitoringIF::UNCHECKED;
}
switch (state) {
case ThermalComponentIF::OUT_OF_RANGE_LOW:
return monitorStateIs(MonitoringIF::BELOW_LOW_LIMIT, sample,
lowerLimit);
case ThermalComponentIF::NON_OPERATIONAL_LOW:
if (componentIsOperational) {
return monitorStateIs(ThermalComponentIF::BELOW_OPERATIONAL_LIMIT,
sample, lowerLimit);
} else {
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
}
case ThermalComponentIF::OPERATIONAL:
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
case ThermalComponentIF::NON_OPERATIONAL_HIGH:
if (componentIsOperational) {
return monitorStateIs(ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT,
sample, upperLimit);
} else {
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
}
case ThermalComponentIF::OUT_OF_RANGE_HIGH:
return monitorStateIs(MonitoringIF::ABOVE_HIGH_LIMIT, sample,
upperLimit);
default:
//Never reached, all states covered.
return HasReturnvaluesIF::RETURN_FAILED;
}
}

View File

@ -0,0 +1,28 @@
#ifndef FSFW_THERMAL_THERMALMONITORREPORTER_H_
#define FSFW_THERMAL_THERMALMONITORREPORTER_H_
#include "ThermalComponentIF.h"
#include "../monitoring/MonitorReporter.h"
/**
* @brief Monitor Reporter implementation for thermal components.
*/
class ThermalMonitorReporter: public MonitorReporter<float> {
public:
template<typename ... Args>
ThermalMonitorReporter(Args ... args) :
MonitorReporter<float>(std::forward<Args>(args)...) {
}
~ThermalMonitorReporter();
ReturnValue_t translateState(ThermalComponentIF::State state, float sample,
float lowerLimit, float upperLimit,
bool componentIsOperational = true);
bool isAboveHighLimit();
protected:
virtual void sendTransitionEvent(float currentValue, ReturnValue_t state);
};
#endif /* FSFW_THERMAL_THERMALMONITORREPORTERREPORTER_H_ */

View File

@ -2,7 +2,7 @@
#define TCSDEFINITIONS_H_ #define TCSDEFINITIONS_H_
static const uint32_t INVALID_TEMPERATURE = 999; static const float INVALID_TEMPERATURE = 999;
#endif /* TCSDEFINITIONS_H_ */ #endif /* TCSDEFINITIONS_H_ */