Merge branch 'development' into mueller/increase-absolute-packet-stored-limit

This commit is contained in:
Robin Müller 2021-09-27 15:32:54 +02:00
commit f3caa122ae
13 changed files with 1364 additions and 72 deletions

View File

@ -26,7 +26,8 @@ enum GpioOperation {
enum GpioTypes {
NONE,
GPIO_REGULAR,
GPIO_REGULAR_BY_CHIP,
GPIO_REGULAR_BY_LABEL,
CALLBACK
};
@ -68,28 +69,57 @@ public:
int initValue = 0;
};
class GpiodRegular: public GpioBase {
class GpiodRegularBase: public GpioBase {
public:
GpiodRegular() :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, std::string(), gpio::Direction::IN, 0) {
GpiodRegularBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction,
int initValue, int lineNum): GpioBase(gpioType, consumer, direction, initValue),
lineNum(lineNum) {
}
;
GpiodRegular(std::string chipname_, int lineNum_, std::string consumer_,
gpio::Direction direction_, int initValue_) :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, consumer_, direction_, initValue_),
chipname(chipname_), lineNum(lineNum_) {
}
GpiodRegular(std::string chipname_, int lineNum_, std::string consumer_) :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, consumer_, gpio::Direction::IN, 0),
chipname(chipname_), lineNum(lineNum_) {
}
std::string chipname;
int lineNum = 0;
struct gpiod_line* lineHandle = nullptr;
};
class GpiodRegularByChip: public GpiodRegularBase {
public:
GpiodRegularByChip() :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP,
std::string(), gpio::Direction::IN, gpio::LOW, 0) {
}
GpiodRegularByChip(std::string chipname_, int lineNum_, std::string consumer_,
gpio::Direction direction_, int initValue_) :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP,
consumer_, direction_, initValue_, lineNum_),
chipname(chipname_){
}
GpiodRegularByChip(std::string chipname_, int lineNum_, std::string consumer_) :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP, consumer_,
gpio::Direction::IN, gpio::LOW, lineNum_),
chipname(chipname_) {
}
std::string chipname;
};
class GpiodRegularByLabel: public GpiodRegularBase {
public:
GpiodRegularByLabel(std::string label_, int lineNum_, std::string consumer_,
gpio::Direction direction_, int initValue_) :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL, consumer_,
direction_, initValue_, lineNum_),
label(label_) {
}
GpiodRegularByLabel(std::string label_, int lineNum_, std::string consumer_) :
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL, consumer_,
gpio::Direction::IN, gpio::LOW, lineNum_),
label(label_) {
}
std::string label;
};
class GpioCallback: public GpioBase {
public:
GpioCallback(std::string consumer, gpio::Direction direction_, int initValue_,

View File

@ -1,7 +1,9 @@
#include "fsfw_hal/devicehandlers/GyroL3GD20Handler.h"
#include "GyroL3GD20Handler.h"
#include "fsfw/datapool/PoolReadGuard.h"
#include <cmath>
GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF *comCookie, uint32_t transitionDelayMs):
DeviceHandlerBase(objectId, deviceCommunication, comCookie),

View File

@ -0,0 +1,520 @@
#include "MgmLIS3MDLHandler.h"
#include "fsfw/datapool/PoolReadGuard.h"
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
#include "fsfw/globalfunctions/PeriodicOperationDivider.h"
#endif
#include <cmath>
MgmLIS3MDLHandler::MgmLIS3MDLHandler(object_id_t objectId, object_id_t deviceCommunication,
CookieIF* comCookie, uint32_t transitionDelay):
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
dataset(this), transitionDelay(transitionDelay) {
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
debugDivider = new PeriodicOperationDivider(3);
#endif
// Set to default values right away
registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT;
registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT;
registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT;
registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT;
registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT;
}
MgmLIS3MDLHandler::~MgmLIS3MDLHandler() {
}
void MgmLIS3MDLHandler::doStartUp() {
switch (internalState) {
case(InternalState::STATE_NONE): {
internalState = InternalState::STATE_FIRST_CONTACT;
break;
}
case(InternalState::STATE_FIRST_CONTACT): {
/* Will be set by checking device ID (WHO AM I register) */
if(commandExecuted) {
commandExecuted = false;
internalState = InternalState::STATE_SETUP;
}
break;
}
case(InternalState::STATE_SETUP): {
internalState = InternalState::STATE_CHECK_REGISTERS;
break;
}
case(InternalState::STATE_CHECK_REGISTERS): {
/* Set up cached registers which will be used to configure the MGM. */
if(commandExecuted) {
commandExecuted = false;
if(goToNormalMode) {
setMode(MODE_NORMAL);
}
else {
setMode(_MODE_TO_ON);
}
}
break;
}
default:
break;
}
}
void MgmLIS3MDLHandler::doShutDown() {
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t MgmLIS3MDLHandler::buildTransitionDeviceCommand(
DeviceCommandId_t *id) {
switch (internalState) {
case(InternalState::STATE_NONE):
case(InternalState::STATE_NORMAL): {
return HasReturnvaluesIF::RETURN_OK;
}
case(InternalState::STATE_FIRST_CONTACT): {
*id = MGMLIS3MDL::IDENTIFY_DEVICE;
break;
}
case(InternalState::STATE_SETUP): {
*id = MGMLIS3MDL::SETUP_MGM;
break;
}
case(InternalState::STATE_CHECK_REGISTERS): {
*id = MGMLIS3MDL::READ_CONFIG_AND_DATA;
break;
}
default: {
/* might be a configuration error. */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" <<
std::endl;
#else
sif::printWarning("GyroHandler::buildTransitionDeviceCommand: Unknown internal state!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
return HasReturnvaluesIF::RETURN_OK;
}
}
return buildCommandFromCommand(*id, NULL, 0);
}
uint8_t MgmLIS3MDLHandler::readCommand(uint8_t command, bool continuousCom) {
command |= (1 << MGMLIS3MDL::RW_BIT);
if (continuousCom == true) {
command |= (1 << MGMLIS3MDL::MS_BIT);
}
return command;
}
uint8_t MgmLIS3MDLHandler::writeCommand(uint8_t command, bool continuousCom) {
command &= ~(1 << MGMLIS3MDL::RW_BIT);
if (continuousCom == true) {
command |= (1 << MGMLIS3MDL::MS_BIT);
}
return command;
}
void MgmLIS3MDLHandler::setupMgm() {
registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT;
registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT;
registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT;
registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT;
registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT;
prepareCtrlRegisterWrite();
}
ReturnValue_t MgmLIS3MDLHandler::buildNormalDeviceCommand(
DeviceCommandId_t *id) {
// Data/config register will be read in an alternating manner.
if(communicationStep == CommunicationStep::DATA) {
*id = MGMLIS3MDL::READ_CONFIG_AND_DATA;
communicationStep = CommunicationStep::TEMPERATURE;
return buildCommandFromCommand(*id, NULL, 0);
}
else {
*id = MGMLIS3MDL::READ_TEMPERATURE;
communicationStep = CommunicationStep::DATA;
return buildCommandFromCommand(*id, NULL, 0);
}
}
ReturnValue_t MgmLIS3MDLHandler::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(MGMLIS3MDL::READ_CONFIG_AND_DATA): {
std::memset(commandBuffer, 0, sizeof(commandBuffer));
commandBuffer[0] = readCommand(MGMLIS3MDL::CTRL_REG1, true);
rawPacket = commandBuffer;
rawPacketLen = MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1;
return RETURN_OK;
}
case(MGMLIS3MDL::READ_TEMPERATURE): {
std::memset(commandBuffer, 0, 3);
commandBuffer[0] = readCommand(MGMLIS3MDL::TEMP_LOWBYTE, true);
rawPacket = commandBuffer;
rawPacketLen = 3;
return RETURN_OK;
}
case(MGMLIS3MDL::IDENTIFY_DEVICE): {
return identifyDevice();
}
case(MGMLIS3MDL::TEMP_SENSOR_ENABLE): {
return enableTemperatureSensor(commandData, commandDataLen);
}
case(MGMLIS3MDL::SETUP_MGM): {
setupMgm();
return HasReturnvaluesIF::RETURN_OK;
}
case(MGMLIS3MDL::ACCURACY_OP_MODE_SET): {
return setOperatingMode(commandData, commandDataLen);
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t MgmLIS3MDLHandler::identifyDevice() {
uint32_t size = 2;
commandBuffer[0] = readCommand(MGMLIS3MDL::IDENTIFY_DEVICE_REG_ADDR);
commandBuffer[1] = 0x00;
rawPacket = commandBuffer;
rawPacketLen = size;
return RETURN_OK;
}
ReturnValue_t MgmLIS3MDLHandler::scanForReply(const uint8_t *start,
size_t len, DeviceCommandId_t *foundId, size_t *foundLen) {
*foundLen = len;
if (len == MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1) {
*foundLen = len;
*foundId = MGMLIS3MDL::READ_CONFIG_AND_DATA;
// Check validity by checking config registers
if (start[1] != registers[0] or start[2] != registers[1] or
start[3] != registers[2] or start[4] != registers[3] or
start[5] != registers[4]) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "MGMHandlerLIS3MDL::scanForReply: Invalid registers!" << std::endl;
#else
sif::printWarning("MGMHandlerLIS3MDL::scanForReply: Invalid registers!\n");
#endif
#endif
return DeviceHandlerIF::INVALID_DATA;
}
if(mode == _MODE_START_UP) {
commandExecuted = true;
}
}
else if(len == MGMLIS3MDL::TEMPERATURE_REPLY_LEN) {
*foundLen = len;
*foundId = MGMLIS3MDL::READ_TEMPERATURE;
}
else if (len == MGMLIS3MDL::SETUP_REPLY_LEN) {
*foundLen = len;
*foundId = MGMLIS3MDL::SETUP_MGM;
}
else if (len == SINGLE_COMMAND_ANSWER_LEN) {
*foundLen = len;
*foundId = getPendingCommand();
if(*foundId == MGMLIS3MDL::IDENTIFY_DEVICE) {
if(start[1] != MGMLIS3MDL::DEVICE_ID) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "MGMHandlerLIS3MDL::scanForReply: "
"Device identification failed!" << std::endl;
#else
sif::printWarning("MGMHandlerLIS3MDL::scanForReply: "
"Device identification failed!\n");
#endif
#endif
return DeviceHandlerIF::INVALID_DATA;
}
if(mode == _MODE_START_UP) {
commandExecuted = true;
}
}
}
else {
return DeviceHandlerIF::INVALID_DATA;
}
/* Data with SPI Interface always has this answer */
if (start[0] == 0b11111111) {
return RETURN_OK;
}
else {
return DeviceHandlerIF::INVALID_DATA;
}
}
ReturnValue_t MgmLIS3MDLHandler::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
switch (id) {
case MGMLIS3MDL::IDENTIFY_DEVICE: {
break;
}
case MGMLIS3MDL::SETUP_MGM: {
break;
}
case MGMLIS3MDL::READ_CONFIG_AND_DATA: {
// TODO: Store configuration in new local datasets.
float sensitivityFactor = getSensitivityFactor(getSensitivity(registers[2]));
int16_t mgmMeasurementRawX = packet[MGMLIS3MDL::X_HIGHBYTE_IDX] << 8
| packet[MGMLIS3MDL::X_LOWBYTE_IDX] ;
int16_t mgmMeasurementRawY = packet[MGMLIS3MDL::Y_HIGHBYTE_IDX] << 8
| packet[MGMLIS3MDL::Y_LOWBYTE_IDX] ;
int16_t mgmMeasurementRawZ = packet[MGMLIS3MDL::Z_HIGHBYTE_IDX] << 8
| packet[MGMLIS3MDL::Z_LOWBYTE_IDX] ;
/* Target value in microtesla */
float mgmX = static_cast<float>(mgmMeasurementRawX) * sensitivityFactor
* MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR;
float mgmY = static_cast<float>(mgmMeasurementRawY) * sensitivityFactor
* MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR;
float mgmZ = static_cast<float>(mgmMeasurementRawZ) * sensitivityFactor
* MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR;
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
if(debugDivider->checkAndIncrement()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MGMHandlerLIS3: Magnetic field strength in"
" microtesla:" << std::endl;
sif::info << "X: " << mgmX << " uT" << std::endl;
sif::info << "Y: " << mgmY << " uT" << std::endl;
sif::info << "Z: " << mgmZ << " uT" << std::endl;
#else
sif::printInfo("MGMHandlerLIS3: Magnetic field strength in microtesla:\n");
sif::printInfo("X: %f uT\n", mgmX);
sif::printInfo("Y: %f uT\n", mgmY);
sif::printInfo("Z: %f uT\n", mgmZ);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 0 */
}
#endif /* OBSW_VERBOSE_LEVEL >= 1 */
PoolReadGuard readHelper(&dataset);
if(readHelper.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
if(std::abs(mgmX) < absLimitX) {
dataset.fieldStrengthX = mgmX;
dataset.fieldStrengthX.setValid(true);
}
else {
dataset.fieldStrengthX.setValid(false);
}
if(std::abs(mgmY) < absLimitY) {
dataset.fieldStrengthY = mgmY;
dataset.fieldStrengthY.setValid(true);
}
else {
dataset.fieldStrengthY.setValid(false);
}
if(std::abs(mgmZ) < absLimitZ) {
dataset.fieldStrengthZ = mgmZ;
dataset.fieldStrengthZ.setValid(true);
}
else {
dataset.fieldStrengthZ.setValid(false);
}
}
break;
}
case MGMLIS3MDL::READ_TEMPERATURE: {
int16_t tempValueRaw = packet[2] << 8 | packet[1];
float tempValue = 25.0 + ((static_cast<float>(tempValueRaw)) / 8.0);
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
if(debugDivider->check()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MGMHandlerLIS3: Temperature: " << tempValue << " C" <<
std::endl;
#else
sif::printInfo("MGMHandlerLIS3: Temperature: %f C\n");
#endif
}
#endif
ReturnValue_t result = dataset.read();
if(result == HasReturnvaluesIF::RETURN_OK) {
dataset.temperature = tempValue;
dataset.commit();
}
break;
}
default: {
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
}
}
return RETURN_OK;
}
MGMLIS3MDL::Sensitivies MgmLIS3MDLHandler::getSensitivity(uint8_t ctrlRegister2) {
bool fs0Set = ctrlRegister2 & (1 << MGMLIS3MDL::FSO); // Checks if FS0 bit is set
bool fs1Set = ctrlRegister2 & (1 << MGMLIS3MDL::FS1); // Checks if FS1 bit is set
if (fs0Set && fs1Set)
return MGMLIS3MDL::Sensitivies::GAUSS_16;
else if (!fs0Set && fs1Set)
return MGMLIS3MDL::Sensitivies::GAUSS_12;
else if (fs0Set && !fs1Set)
return MGMLIS3MDL::Sensitivies::GAUSS_8;
else
return MGMLIS3MDL::Sensitivies::GAUSS_4;
}
float MgmLIS3MDLHandler::getSensitivityFactor(MGMLIS3MDL::Sensitivies sens) {
switch(sens) {
case(MGMLIS3MDL::GAUSS_4): {
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_4_SENS;
}
case(MGMLIS3MDL::GAUSS_8): {
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_8_SENS;
}
case(MGMLIS3MDL::GAUSS_12): {
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_12_SENS;
}
case(MGMLIS3MDL::GAUSS_16): {
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_16_SENS;
}
default: {
// Should never happen
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_4_SENS;
}
}
}
ReturnValue_t MgmLIS3MDLHandler::enableTemperatureSensor(
const uint8_t *commandData, size_t commandDataLen) {
triggerEvent(CHANGE_OF_SETUP_PARAMETER);
uint32_t size = 2;
commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1);
if (commandDataLen > 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
switch (*commandData) {
case (MGMLIS3MDL::ON): {
commandBuffer[1] = registers[0] | (1 << 7);
break;
}
case (MGMLIS3MDL::OFF): {
commandBuffer[1] = registers[0] & ~(1 << 7);
break;
}
default:
return INVALID_COMMAND_PARAMETER;
}
registers[0] = commandBuffer[1];
rawPacket = commandBuffer;
rawPacketLen = size;
return RETURN_OK;
}
ReturnValue_t MgmLIS3MDLHandler::setOperatingMode(const uint8_t *commandData,
size_t commandDataLen) {
triggerEvent(CHANGE_OF_SETUP_PARAMETER);
if (commandDataLen != 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
switch (commandData[0]) {
case MGMLIS3MDL::LOW:
registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) & (~(1 << MGMLIS3MDL::OM0));
registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) & (~(1 << MGMLIS3MDL::OMZ0));
break;
case MGMLIS3MDL::MEDIUM:
registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) | (1 << MGMLIS3MDL::OM0);
registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) | (1 << MGMLIS3MDL::OMZ0);
break;
case MGMLIS3MDL::HIGH:
registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) & (~(1 << MGMLIS3MDL::OM0));
registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) & (~(1 << MGMLIS3MDL::OMZ0));
break;
case MGMLIS3MDL::ULTRA:
registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) | (1 << MGMLIS3MDL::OM0);
registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) | (1 << MGMLIS3MDL::OMZ0);
break;
default:
break;
}
return prepareCtrlRegisterWrite();
}
void MgmLIS3MDLHandler::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(MGMLIS3MDL::READ_CONFIG_AND_DATA, 1, &dataset);
insertInCommandAndReplyMap(MGMLIS3MDL::READ_TEMPERATURE, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::SETUP_MGM, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::IDENTIFY_DEVICE, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::TEMP_SENSOR_ENABLE, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::ACCURACY_OP_MODE_SET, 1);
}
void MgmLIS3MDLHandler::setToGoToNormalMode(bool enable) {
this->goToNormalMode = enable;
}
ReturnValue_t MgmLIS3MDLHandler::prepareCtrlRegisterWrite() {
commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1, true);
for (size_t i = 0; i < MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) {
commandBuffer[i + 1] = registers[i];
}
rawPacket = commandBuffer;
rawPacketLen = MGMLIS3MDL::NR_OF_CTRL_REGISTERS + 1;
// We dont have to check if this is working because we just did i
return RETURN_OK;
}
void MgmLIS3MDLHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
}
uint32_t MgmLIS3MDLHandler::getTransitionDelayMs(Mode_t from, Mode_t to) {
return transitionDelay;
}
void MgmLIS3MDLHandler::modeChanged(void) {
internalState = InternalState::STATE_NONE;
}
ReturnValue_t MgmLIS3MDLHandler::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_Z,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(MGMLIS3MDL::TEMPERATURE_CELCIUS,
new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
}
void MgmLIS3MDLHandler::setAbsoluteLimits(float xLimit, float yLimit, float zLimit) {
this->absLimitX = xLimit;
this->absLimitY = yLimit;
this->absLimitZ = zLimit;
}

View File

@ -0,0 +1,186 @@
#ifndef MISSION_DEVICES_MGMLIS3MDLHANDLER_H_
#define MISSION_DEVICES_MGMLIS3MDLHANDLER_H_
#include "fsfw/FSFW.h"
#include "events/subsystemIdRanges.h"
#include "devicedefinitions/MgmLIS3HandlerDefs.h"
#include "fsfw/devicehandlers/DeviceHandlerBase.h"
class PeriodicOperationDivider;
/**
* @brief Device handler object for the LIS3MDL 3-axis magnetometer
* by STMicroeletronics
* @details
* Datasheet can be found online by googling LIS3MDL.
* Flight manual:
* https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/LIS3MDL_MGM
* @author L. Loidold, R. Mueller
*/
class MgmLIS3MDLHandler: public DeviceHandlerBase {
public:
enum class CommunicationStep {
DATA,
TEMPERATURE
};
static const uint8_t INTERFACE_ID = CLASS_ID::MGM_LIS3MDL;
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::MGM_LIS3MDL;
//Notifies a command to change the setup parameters
static const Event CHANGE_OF_SETUP_PARAMETER = MAKE_EVENT(0, severity::LOW);
MgmLIS3MDLHandler(uint32_t objectId, object_id_t deviceCommunication, CookieIF* comCookie,
uint32_t transitionDelay);
virtual ~MgmLIS3MDLHandler();
/**
* Set the absolute limit for the values on the axis in microtesla. The dataset values will
* be marked as invalid if that limit is exceeded
* @param xLimit
* @param yLimit
* @param zLimit
*/
void setAbsoluteLimits(float xLimit, float yLimit, float zLimit);
void setToGoToNormalMode(bool enable);
protected:
/** DeviceHandlerBase overrides */
void doShutDown() override;
void doStartUp() override;
void doTransition(Mode_t modeFrom, Submode_t subModeFrom) override;
virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
/**
* This implementation is tailored towards space applications and will flag values larger
* than 100 microtesla on X,Y and 150 microtesla on Z as invalid
* @param id
* @param packet
* @return
*/
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
void fillCommandAndReplyMap() override;
void modeChanged(void) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
private:
MGMLIS3MDL::MgmPrimaryDataset dataset;
//Length a single command SPI answer
static const uint8_t SINGLE_COMMAND_ANSWER_LEN = 2;
uint32_t transitionDelay;
// Single SPI command has 2 bytes, first for adress, second for content
size_t singleComandSize = 2;
// Has the size for all adresses of the lis3mdl + the continous write bit
uint8_t commandBuffer[MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1];
float absLimitX = 100;
float absLimitY = 100;
float absLimitZ = 150;
/**
* We want to save the registers we set, so we dont have to read the
* registers when we want to change something.
* --> everytime we change set a register we have to save it
*/
uint8_t registers[MGMLIS3MDL::NR_OF_CTRL_REGISTERS];
uint8_t statusRegister = 0;
bool goToNormalMode = false;
enum class InternalState {
STATE_NONE,
STATE_FIRST_CONTACT,
STATE_SETUP,
STATE_CHECK_REGISTERS,
STATE_NORMAL
};
InternalState internalState = InternalState::STATE_NONE;
CommunicationStep communicationStep = CommunicationStep::DATA;
bool commandExecuted = false;
/*------------------------------------------------------------------------*/
/* Device specific commands and variables */
/*------------------------------------------------------------------------*/
/**
* Sets the read bit for the command
* @param single command to set the read-bit at
* @param boolean to select a continuous read bit, default = false
*/
uint8_t readCommand(uint8_t command, bool continuousCom = false);
/**
* Sets the write bit for the command
* @param single command to set the write-bit at
* @param boolean to select a continuous write bit, default = false
*/
uint8_t writeCommand(uint8_t command, bool continuousCom = false);
/**
* This Method gets the full scale for the measurement range
* e.g.: +- 4 gauss. See p.25 datasheet.
* @return The ReturnValue does not contain the sign of the value
*/
MGMLIS3MDL::Sensitivies getSensitivity(uint8_t ctrlReg2);
/**
* The 16 bit value needs to be multiplied with a sensitivity factor
* which depends on the sensitivity configuration
*
* @param sens Configured sensitivity of the LIS3 device
* @return Multiplication factor to get the sensor value from raw data.
*/
float getSensitivityFactor(MGMLIS3MDL::Sensitivies sens);
/**
* This Command detects the device ID
*/
ReturnValue_t identifyDevice();
virtual void setupMgm();
/*------------------------------------------------------------------------*/
/* Non normal commands */
/*------------------------------------------------------------------------*/
/**
* Enables/Disables the integrated Temperaturesensor
* @param commandData On or Off
* @param length of the commandData: has to be 1
*/
virtual ReturnValue_t enableTemperatureSensor(const uint8_t *commandData,
size_t commandDataLen);
/**
* Sets the accuracy of the measurement of the axis. The noise is changing.
* @param commandData LOW, MEDIUM, HIGH, ULTRA
* @param length of the command, has to be 1
*/
virtual ReturnValue_t setOperatingMode(const uint8_t *commandData,
size_t commandDataLen);
/**
* We always update all registers together, so this method updates
* the rawpacket and rawpacketLen, so we just manipulate the local
* saved register
*
*/
ReturnValue_t prepareCtrlRegisterWrite();
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
PeriodicOperationDivider* debugDivider;
#endif
};
#endif /* MISSION_DEVICES_MGMLIS3MDLHANDLER_H_ */

View File

@ -0,0 +1,376 @@
#include "MgmRM3100Handler.h"
#include "fsfw/datapool/PoolReadGuard.h"
#include "fsfw/globalfunctions/bitutility.h"
#include "fsfw/devicehandlers/DeviceHandlerMessage.h"
#include "fsfw/objectmanager/SystemObjectIF.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
MgmRM3100Handler::MgmRM3100Handler(object_id_t objectId,
object_id_t deviceCommunication, CookieIF* comCookie, uint32_t transitionDelay):
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
primaryDataset(this), transitionDelay(transitionDelay) {
#if FSFW_HAL_RM3100_MGM_DEBUG == 1
debugDivider = new PeriodicOperationDivider(3);
#endif
}
MgmRM3100Handler::~MgmRM3100Handler() {}
void MgmRM3100Handler::doStartUp() {
switch(internalState) {
case(InternalState::NONE): {
internalState = InternalState::CONFIGURE_CMM;
break;
}
case(InternalState::CONFIGURE_CMM): {
internalState = InternalState::READ_CMM;
break;
}
case(InternalState::READ_CMM): {
if(commandExecuted) {
internalState = InternalState::STATE_CONFIGURE_TMRC;
}
break;
}
case(InternalState::STATE_CONFIGURE_TMRC): {
if(commandExecuted) {
internalState = InternalState::STATE_READ_TMRC;
}
break;
}
case(InternalState::STATE_READ_TMRC): {
if(commandExecuted) {
internalState = InternalState::NORMAL;
if(goToNormalModeAtStartup) {
setMode(MODE_NORMAL);
}
else {
setMode(_MODE_TO_ON);
}
}
break;
}
default: {
break;
}
}
}
void MgmRM3100Handler::doShutDown() {
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t MgmRM3100Handler::buildTransitionDeviceCommand(
DeviceCommandId_t *id) {
size_t commandLen = 0;
switch(internalState) {
case(InternalState::NONE):
case(InternalState::NORMAL): {
return NOTHING_TO_SEND;
}
case(InternalState::CONFIGURE_CMM): {
*id = RM3100::CONFIGURE_CMM;
break;
}
case(InternalState::READ_CMM): {
*id = RM3100::READ_CMM;
break;
}
case(InternalState::STATE_CONFIGURE_TMRC): {
commandBuffer[0] = RM3100::TMRC_DEFAULT_VALUE;
commandLen = 1;
*id = RM3100::CONFIGURE_TMRC;
break;
}
case(InternalState::STATE_READ_TMRC): {
*id = RM3100::READ_TMRC;
break;
}
default:
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
// Might be a configuration error
sif::warning << "MgmRM3100Handler::buildTransitionDeviceCommand: "
"Unknown internal state" << std::endl;
#else
sif::printWarning("MgmRM3100Handler::buildTransitionDeviceCommand: "
"Unknown internal state\n");
#endif
#endif
return HasReturnvaluesIF::RETURN_OK;
}
return buildCommandFromCommand(*id, commandBuffer, commandLen);
}
ReturnValue_t MgmRM3100Handler::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) {
switch(deviceCommand) {
case(RM3100::CONFIGURE_CMM): {
commandBuffer[0] = RM3100::CMM_REGISTER;
commandBuffer[1] = RM3100::CMM_VALUE;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::READ_CMM): {
commandBuffer[0] = RM3100::CMM_REGISTER | RM3100::READ_MASK;
commandBuffer[1] = 0;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::CONFIGURE_TMRC): {
return handleTmrcConfigCommand(deviceCommand, commandData, commandDataLen);
}
case(RM3100::READ_TMRC): {
commandBuffer[0] = RM3100::TMRC_REGISTER | RM3100::READ_MASK;
commandBuffer[1] = 0;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::CONFIGURE_CYCLE_COUNT): {
return handleCycleCountConfigCommand(deviceCommand, commandData, commandDataLen);
}
case(RM3100::READ_CYCLE_COUNT): {
commandBuffer[0] = RM3100::CYCLE_COUNT_START_REGISTER | RM3100::READ_MASK;
std::memset(commandBuffer + 1, 0, 6);
rawPacket = commandBuffer;
rawPacketLen = 7;
break;
}
case(RM3100::READ_DATA): {
commandBuffer[0] = RM3100::MEASUREMENT_REG_START | RM3100::READ_MASK;
std::memset(commandBuffer + 1, 0, 9);
rawPacketLen = 10;
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return RETURN_OK;
}
ReturnValue_t MgmRM3100Handler::buildNormalDeviceCommand(
DeviceCommandId_t *id) {
*id = RM3100::READ_DATA;
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t MgmRM3100Handler::scanForReply(const uint8_t *start,
size_t len, DeviceCommandId_t *foundId,
size_t *foundLen) {
// For SPI, ID will always be the one of the last sent command
*foundId = this->getPendingCommand();
*foundLen = len;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t MgmRM3100Handler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
case(RM3100::CONFIGURE_CMM):
case(RM3100::CONFIGURE_CYCLE_COUNT):
case(RM3100::CONFIGURE_TMRC): {
// We can only check whether write was successful with read operation
if(mode == _MODE_START_UP) {
commandExecuted = true;
}
break;
}
case(RM3100::READ_CMM): {
uint8_t cmmValue = packet[1];
// We clear the seventh bit in any case
// because this one is zero sometimes for some reason
bitutil::bitClear(&cmmValue, 6);
if(cmmValue == cmmRegValue and internalState == InternalState::READ_CMM) {
commandExecuted = true;
}
else {
// Attempt reconfiguration
internalState = InternalState::CONFIGURE_CMM;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(RM3100::READ_TMRC): {
if(packet[1] == tmrcRegValue) {
commandExecuted = true;
// Reading TMRC was commanded. Trigger event to inform ground
if(mode != _MODE_START_UP) {
triggerEvent(tmrcSet, tmrcRegValue, 0);
}
}
else {
// Attempt reconfiguration
internalState = InternalState::STATE_CONFIGURE_TMRC;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(RM3100::READ_CYCLE_COUNT): {
uint16_t cycleCountX = packet[1] << 8 | packet[2];
uint16_t cycleCountY = packet[3] << 8 | packet[4];
uint16_t cycleCountZ = packet[5] << 8 | packet[6];
if(cycleCountX != cycleCountRegValueX or cycleCountY != cycleCountRegValueY or
cycleCountZ != cycleCountRegValueZ) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
// Reading TMRC was commanded. Trigger event to inform ground
if(mode != _MODE_START_UP) {
uint32_t eventParam1 = (cycleCountX << 16) | cycleCountY;
triggerEvent(cycleCountersSet, eventParam1, cycleCountZ);
}
break;
}
case(RM3100::READ_DATA): {
result = handleDataReadout(packet);
break;
}
default:
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
}
return result;
}
ReturnValue_t MgmRM3100Handler::handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) {
if(commandData == nullptr) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
// Set cycle count
if(commandDataLen == 2) {
handleCycleCommand(true, commandData, commandDataLen);
}
else if(commandDataLen == 6) {
handleCycleCommand(false, commandData, commandDataLen);
}
else {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
commandBuffer[0] = RM3100::CYCLE_COUNT_VALUE;
std::memcpy(commandBuffer + 1, &cycleCountRegValueX, 2);
std::memcpy(commandBuffer + 3, &cycleCountRegValueY, 2);
std::memcpy(commandBuffer + 5, &cycleCountRegValueZ, 2);
rawPacketLen = 7;
rawPacket = commandBuffer;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t MgmRM3100Handler::handleCycleCommand(bool oneCycleValue,
const uint8_t *commandData, size_t commandDataLen) {
RM3100::CycleCountCommand command(oneCycleValue);
ReturnValue_t result = command.deSerialize(&commandData, &commandDataLen,
SerializeIF::Endianness::BIG);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
// Data sheet p.30 "while noise limits the useful upper range to ~400 cycle counts."
if(command.cycleCountX > 450 ) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
if(not oneCycleValue and (command.cycleCountY > 450 or command.cycleCountZ > 450)) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
cycleCountRegValueX = command.cycleCountX;
cycleCountRegValueY = command.cycleCountY;
cycleCountRegValueZ = command.cycleCountZ;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t MgmRM3100Handler::handleTmrcConfigCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) {
if(commandData == nullptr or commandDataLen != 1) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
commandBuffer[0] = RM3100::TMRC_REGISTER;
commandBuffer[1] = commandData[0];
tmrcRegValue = commandData[0];
rawPacketLen = 2;
rawPacket = commandBuffer;
return HasReturnvaluesIF::RETURN_OK;
}
void MgmRM3100Handler::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(RM3100::CONFIGURE_CMM, 3);
insertInCommandAndReplyMap(RM3100::READ_CMM, 3);
insertInCommandAndReplyMap(RM3100::CONFIGURE_TMRC, 3);
insertInCommandAndReplyMap(RM3100::READ_TMRC, 3);
insertInCommandAndReplyMap(RM3100::CONFIGURE_CYCLE_COUNT, 3);
insertInCommandAndReplyMap(RM3100::READ_CYCLE_COUNT, 3);
insertInCommandAndReplyMap(RM3100::READ_DATA, 3, &primaryDataset);
}
void MgmRM3100Handler::modeChanged(void) {
internalState = InternalState::NONE;
}
ReturnValue_t MgmRM3100Handler::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_X, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Y, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Z, new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
}
uint32_t MgmRM3100Handler::getTransitionDelayMs(Mode_t from, Mode_t to) {
return this->transitionDelay;
}
void MgmRM3100Handler::setToGoToNormalMode(bool enable) {
goToNormalModeAtStartup = enable;
}
ReturnValue_t MgmRM3100Handler::handleDataReadout(const uint8_t *packet) {
// Analyze data here. The sensor generates 24 bit signed values so we need to do some bitshift
// trickery here to calculate the raw values first
int32_t fieldStrengthRawX = ((packet[1] << 24) | (packet[2] << 16) | (packet[3] << 8)) >> 8;
int32_t fieldStrengthRawY = ((packet[4] << 24) | (packet[5] << 16) | (packet[6] << 8)) >> 8;
int32_t fieldStrengthRawZ = ((packet[7] << 24) | (packet[8] << 16) | (packet[3] << 8)) >> 8;
// Now scale to physical value in microtesla
float fieldStrengthX = fieldStrengthRawX * scaleFactorX;
float fieldStrengthY = fieldStrengthRawY * scaleFactorX;
float fieldStrengthZ = fieldStrengthRawZ * scaleFactorX;
#if FSFW_HAL_RM3100_MGM_DEBUG == 1
if(debugDivider->checkAndIncrement()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MgmRM3100Handler: Magnetic field strength in"
" microtesla:" << std::endl;
sif::info << "X: " << fieldStrengthX << " uT" << std::endl;
sif::info << "Y: " << fieldStrengthY << " uT" << std::endl;
sif::info << "Z: " << fieldStrengthZ << " uT" << std::endl;
#else
sif::printInfo("MgmRM3100Handler: Magnetic field strength in microtesla:\n");
sif::printInfo("X: %f uT\n", fieldStrengthX);
sif::printInfo("Y: %f uT\n", fieldStrengthY);
sif::printInfo("Z: %f uT\n", fieldStrengthZ);
#endif
}
#endif
// TODO: Sanity check on values?
PoolReadGuard readGuard(&primaryDataset);
if(readGuard.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
primaryDataset.fieldStrengthX = fieldStrengthX;
primaryDataset.fieldStrengthY = fieldStrengthY;
primaryDataset.fieldStrengthZ = fieldStrengthZ;
primaryDataset.setValidity(true, true);
}
return RETURN_OK;
}

View File

@ -0,0 +1,111 @@
#ifndef MISSION_DEVICES_MGMRM3100HANDLER_H_
#define MISSION_DEVICES_MGMRM3100HANDLER_H_
#include "fsfw/FSFW.h"
#include "devices/powerSwitcherList.h"
#include "devicedefinitions/MgmRM3100HandlerDefs.h"
#include "fsfw/devicehandlers/DeviceHandlerBase.h"
#if FSFW_HAL_RM3100_MGM_DEBUG == 1
#include "fsfw/globalfunctions/PeriodicOperationDivider.h"
#endif
/**
* @brief Device Handler for the RM3100 geomagnetic magnetometer sensor
* (https://www.pnicorp.com/rm3100/)
* @details
* Flight manual:
* https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/RM3100_MGM
*/
class MgmRM3100Handler: public DeviceHandlerBase {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::MGM_RM3100;
//! [EXPORT] : [COMMENT] P1: TMRC value which was set, P2: 0
static constexpr Event tmrcSet = event::makeEvent(SUBSYSTEM_ID::MGM_RM3100,
0x00, severity::INFO);
//! [EXPORT] : [COMMENT] Cycle counter set. P1: First two bytes new Cycle Count X
//! P1: Second two bytes new Cycle Count Y
//! P2: New cycle count Z
static constexpr Event cycleCountersSet = event::makeEvent(
SUBSYSTEM_ID::MGM_RM3100, 0x01, severity::INFO);
MgmRM3100Handler(object_id_t objectId, object_id_t deviceCommunication,
CookieIF* comCookie, uint32_t transitionDelay);
virtual ~MgmRM3100Handler();
/**
* Configure device handler to go to normal mode after startup immediately
* @param enable
*/
void setToGoToNormalMode(bool enable);
protected:
/* DeviceHandlerBase overrides */
ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t *id) override;
void doStartUp() override;
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) override;
void fillCommandAndReplyMap() override;
void modeChanged(void) override;
virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
private:
enum class InternalState {
NONE,
CONFIGURE_CMM,
READ_CMM,
// The cycle count states are propably not going to be used because
// the default cycle count will be used.
STATE_CONFIGURE_CYCLE_COUNT,
STATE_READ_CYCLE_COUNT,
STATE_CONFIGURE_TMRC,
STATE_READ_TMRC,
NORMAL
};
InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
RM3100::Rm3100PrimaryDataset primaryDataset;
uint8_t commandBuffer[10];
uint8_t commandBufferLen = 0;
uint8_t cmmRegValue = RM3100::CMM_VALUE;
uint8_t tmrcRegValue = RM3100::TMRC_DEFAULT_VALUE;
uint16_t cycleCountRegValueX = RM3100::CYCLE_COUNT_VALUE;
uint16_t cycleCountRegValueY = RM3100::CYCLE_COUNT_VALUE;
uint16_t cycleCountRegValueZ = RM3100::CYCLE_COUNT_VALUE;
float scaleFactorX = 1.0 / RM3100::DEFAULT_GAIN;
float scaleFactorY = 1.0 / RM3100::DEFAULT_GAIN;
float scaleFactorZ = 1.0 / RM3100::DEFAULT_GAIN;
bool goToNormalModeAtStartup = false;
uint32_t transitionDelay;
ReturnValue_t handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData,size_t commandDataLen);
ReturnValue_t handleCycleCommand(bool oneCycleValue,
const uint8_t *commandData, size_t commandDataLen);
ReturnValue_t handleTmrcConfigCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData,size_t commandDataLen);
ReturnValue_t handleDataReadout(const uint8_t* packet);
#if FSFW_HAL_RM3100_MGM_DEBUG == 1
PeriodicOperationDivider* debugDivider;
#endif
};
#endif /* MISSION_DEVICEHANDLING_MGMRM3100HANDLER_H_ */

View File

@ -20,7 +20,7 @@ LinuxLibgpioIF::~LinuxLibgpioIF() {
ReturnValue_t LinuxLibgpioIF::addGpios(GpioCookie* gpioCookie) {
ReturnValue_t result;
if(gpioCookie == nullptr) {
sif::error << "LinuxLibgpioIF::initialize: Invalid cookie" << std::endl;
sif::error << "LinuxLibgpioIF::addGpios: Invalid cookie" << std::endl;
return RETURN_FAILED;
}
@ -45,16 +45,25 @@ ReturnValue_t LinuxLibgpioIF::addGpios(GpioCookie* gpioCookie) {
ReturnValue_t LinuxLibgpioIF::configureGpios(GpioMap& mapToAdd) {
for(auto& gpioConfig: mapToAdd) {
switch(gpioConfig.second->gpioType) {
auto& gpioType = gpioConfig.second->gpioType;
switch(gpioType) {
case(gpio::GpioTypes::NONE): {
return GPIO_INVALID_INSTANCE;
}
case(gpio::GpioTypes::GPIO_REGULAR): {
GpiodRegular* regularGpio = dynamic_cast<GpiodRegular*>(gpioConfig.second);
case(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP): {
auto regularGpio = dynamic_cast<GpiodRegularByChip*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_INVALID_INSTANCE;
}
configureRegularGpio(gpioConfig.first, regularGpio);
configureGpioByChip(gpioConfig.first, *regularGpio);
break;
}
case(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL):{
auto regularGpio = dynamic_cast<GpiodRegularByLabel*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_INVALID_INSTANCE;
}
configureGpioByLabel(gpioConfig.first, *regularGpio);
break;
}
case(gpio::GpioTypes::CALLBACK): {
@ -70,41 +79,59 @@ ReturnValue_t LinuxLibgpioIF::configureGpios(GpioMap& mapToAdd) {
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, GpiodRegular *regularGpio) {
std::string chipname;
ReturnValue_t LinuxLibgpioIF::configureGpioByLabel(gpioId_t gpioId,
GpiodRegularByLabel &gpioByLabel) {
std::string& label = gpioByLabel.label;
struct gpiod_chip* chip = gpiod_chip_open_by_label(label.c_str());
if (chip == nullptr) {
sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open gpio from gpio "
<< "group with label " << label << ". Gpio ID: " << gpioId << std::endl;
return RETURN_FAILED;
}
std::string failOutput = "label: " + label;
return configureRegularGpio(gpioId, gpioByLabel.gpioType, chip, gpioByLabel, failOutput);
}
ReturnValue_t LinuxLibgpioIF::configureGpioByChip(gpioId_t gpioId,
GpiodRegularByChip &gpioByChip) {
std::string& chipname = gpioByChip.chipname;
struct gpiod_chip* chip = gpiod_chip_open_by_name(chipname.c_str());
if (chip == nullptr) {
sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open chip "
<< chipname << ". Gpio ID: " << gpioId << std::endl;
return RETURN_FAILED;
}
std::string failOutput = "chipname: " + chipname;
return configureRegularGpio(gpioId, gpioByChip.gpioType, chip, gpioByChip, failOutput);
}
ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, gpio::GpioTypes gpioType,
struct gpiod_chip* chip, GpiodRegularBase& regularGpio, std::string failOutput) {
unsigned int lineNum;
struct gpiod_chip *chip;
gpio::Direction direction;
std::string consumer;
struct gpiod_line *lineHandle;
int result = 0;
chipname = regularGpio->chipname;
chip = gpiod_chip_open_by_name(chipname.c_str());
if (!chip) {
sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open chip "
<< chipname << ". Gpio ID: " << gpioId << std::endl;
return RETURN_FAILED;
}
lineNum = regularGpio->lineNum;
lineNum = regularGpio.lineNum;
lineHandle = gpiod_chip_get_line(chip, lineNum);
if (!lineHandle) {
sif::debug << "LinuxLibgpioIF::configureRegularGpio: Failed to open line " << std::endl;
sif::debug << "GPIO ID: " << gpioId << ", line number: " << lineNum <<
", chipname: " << chipname << std::endl;
sif::debug << "Check if linux GPIO configuration has changed. " << std::endl;
sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open line " << std::endl;
sif::warning << "GPIO ID: " << gpioId << ", line number: " << lineNum <<
", " << failOutput << std::endl;
sif::warning << "Check if Linux GPIO configuration has changed. " << std::endl;
gpiod_chip_close(chip);
return RETURN_FAILED;
}
direction = regularGpio->direction;
consumer = regularGpio->consumer;
direction = regularGpio.direction;
consumer = regularGpio.consumer;
/* Configure direction and add a description to the GPIO */
switch (direction) {
case(gpio::OUT): {
result = gpiod_line_request_output(lineHandle, consumer.c_str(),
regularGpio->initValue);
regularGpio.initValue);
if (result < 0) {
sif::error << "LinuxLibgpioIF::configureRegularGpio: Failed to request line " << lineNum <<
" from GPIO instance with ID: " << gpioId << std::endl;
@ -134,7 +161,7 @@ ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, GpiodRegular
* Write line handle to GPIO configuration instance so it can later be used to set or
* read states of GPIOs.
*/
regularGpio->lineHandle = lineHandle;
regularGpio.lineHandle = lineHandle;
return RETURN_OK;
}
@ -145,8 +172,14 @@ ReturnValue_t LinuxLibgpioIF::pullHigh(gpioId_t gpioId) {
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
return driveGpio(gpioId, dynamic_cast<GpiodRegular*>(gpioMapIter->second), 1);
auto gpioType = gpioMapIter->second->gpioType;
if(gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_CHIP or
gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LABEL) {
auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioMapIter->second);
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
return driveGpio(gpioId, *regularGpio, gpio::HIGH);
}
else {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
@ -167,8 +200,14 @@ ReturnValue_t LinuxLibgpioIF::pullLow(gpioId_t gpioId) {
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
return driveGpio(gpioId, dynamic_cast<GpiodRegular*>(gpioMapIter->second), 0);
auto& gpioType = gpioMapIter->second->gpioType;
if(gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_CHIP or
gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LABEL) {
auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioMapIter->second);