Examples from example_common moved to FSFW #507

Closed
muellerr wants to merge 5 commits from mueller/examples-moved-to-fsfw into development
45 changed files with 3208 additions and 1 deletions

View File

@ -18,6 +18,7 @@ endif()
option(FSFW_WARNING_SHADOW_LOCAL_GCC "Enable -Wshadow=local warning in GCC" ON)
# Options to exclude parts of the FSFW from compilation.
option(FSFW_ADD_EXAMPLES "Add example modules which can also be used as test code" OFF)
option(FSFW_ADD_INTERNAL_TESTS "Add internal unit tests" ON)
option(FSFW_ADD_UNITTESTS "Add regular unittests. Requires Catch2" OFF)
option(FSFW_ADD_HAL "Add Hardware Abstraction Layer" ON)
@ -83,6 +84,10 @@ endif()
set(FSFW_CORE_INC_PATH "inc")
if(FSFW_ADD_EXAMPLES)
configure_file(examples/fsfw_examples/config/ExampleConfig.h.in ExampleConfig.h)
endif()
set_property(CACHE FSFW_OSAL PROPERTY STRINGS host linux rtems freertos)
# Configure Files
@ -162,6 +167,9 @@ add_subdirectory(tests)
if(FSFW_ADD_HAL)
add_subdirectory(hal)
endif()
if(FSFW_ADD_EXAMPLES)
add_subdirectory(examples)
endif()
add_subdirectory(contrib)
if(FSFW_BUILD_UNITTESTS)

9
examples/CMakeLists.txt Normal file
View File

@ -0,0 +1,9 @@
add_subdirectory(fsfw_examples)
target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}
)
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
)

View File

@ -0,0 +1,7 @@
add_subdirectory(devices)
add_subdirectory(controller)
add_subdirectory(config)
add_subdirectory(assemblies)
add_subdirectory(utility)
add_subdirectory(test)
add_subdirectory(core)

View File

@ -0,0 +1,3 @@
target_sources(${TARGET_NAME} PRIVATE
TestAssembly.cpp
)

View File

@ -0,0 +1,200 @@
#include "exampleObjectIds.h"
#include <fsfw_examples/assemblies/TestAssembly.h>
#include <fsfw/objectmanager/ObjectManager.h>
TestAssembly::TestAssembly(object_id_t objectId, object_id_t parentId):
AssemblyBase(objectId, parentId) {
ModeListEntry newModeListEntry;
newModeListEntry.setObject(objects::TEST_DEVICE_HANDLER_0);
newModeListEntry.setMode(MODE_OFF);
newModeListEntry.setSubmode(SUBMODE_NONE);
commandTable.insert(newModeListEntry);
newModeListEntry.setObject(objects::TEST_DEVICE_HANDLER_1);
newModeListEntry.setMode(MODE_OFF);
newModeListEntry.setSubmode(SUBMODE_NONE);
commandTable.insert(newModeListEntry);
}
TestAssembly::~TestAssembly() {
}
ReturnValue_t TestAssembly::commandChildren(Mode_t mode,
Submode_t submode) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestAssembly: Received command to go to mode " << mode <<
" submode " << (int) submode << std::endl;
#else
sif::printInfo("TestAssembly: Received command to go to mode %d submode %d\n", mode, submode);
#endif
ReturnValue_t result = RETURN_OK;
if(mode == MODE_OFF){
commandTable[0].setMode(MODE_OFF);
commandTable[0].setSubmode(SUBMODE_NONE);
commandTable[1].setMode(MODE_OFF);
commandTable[1].setSubmode(SUBMODE_NONE);
}
else if(mode == DeviceHandlerIF::MODE_NORMAL) {
if(submode == submodes::SINGLE){
commandTable[0].setMode(MODE_OFF);
commandTable[0].setSubmode(SUBMODE_NONE);
commandTable[1].setMode(MODE_OFF);
commandTable[1].setSubmode(SUBMODE_NONE);
// We try to prefer 0 here but we try to switch to 1 even if it might fail
if(isDeviceAvailable(objects::TEST_DEVICE_HANDLER_0)) {
if (childrenMap[objects::TEST_DEVICE_HANDLER_0].mode == MODE_ON) {
commandTable[0].setMode(mode);
commandTable[0].setSubmode(SUBMODE_NONE);
}
else {
commandTable[0].setMode(MODE_ON);
commandTable[0].setSubmode(SUBMODE_NONE);
result = NEED_SECOND_STEP;
}
}
else {
if (childrenMap[objects::TEST_DEVICE_HANDLER_1].mode == MODE_ON) {
commandTable[1].setMode(mode);
commandTable[1].setSubmode(SUBMODE_NONE);
}
else{
commandTable[1].setMode(MODE_ON);
commandTable[1].setSubmode(SUBMODE_NONE);
result = NEED_SECOND_STEP;
}
}
}
else{
// Dual Mode Normal
if (childrenMap[objects::TEST_DEVICE_HANDLER_0].mode == MODE_ON) {
commandTable[0].setMode(mode);
commandTable[0].setSubmode(SUBMODE_NONE);
}
else{
commandTable[0].setMode(MODE_ON);
commandTable[0].setSubmode(SUBMODE_NONE);
result = NEED_SECOND_STEP;
}
if (childrenMap[objects::TEST_DEVICE_HANDLER_1].mode == MODE_ON) {
commandTable[1].setMode(mode);
commandTable[1].setSubmode(SUBMODE_NONE);
}
else{
commandTable[1].setMode(MODE_ON);
commandTable[1].setSubmode(SUBMODE_NONE);
result = NEED_SECOND_STEP;
}
}
}
else{
//Mode ON
if(submode == submodes::SINGLE){
commandTable[0].setMode(MODE_OFF);
commandTable[0].setSubmode(SUBMODE_NONE);
commandTable[1].setMode(MODE_OFF);
commandTable[1].setSubmode(SUBMODE_NONE);
// We try to prefer 0 here but we try to switch to 1 even if it might fail
if(isDeviceAvailable(objects::TEST_DEVICE_HANDLER_0)){
commandTable[0].setMode(MODE_ON);
commandTable[0].setSubmode(SUBMODE_NONE);
}
else{
commandTable[1].setMode(MODE_ON);
commandTable[1].setSubmode(SUBMODE_NONE);
}
}
else{
commandTable[0].setMode(MODE_ON);
commandTable[0].setSubmode(SUBMODE_NONE);
commandTable[1].setMode(MODE_ON);
commandTable[1].setSubmode(SUBMODE_NONE);
}
}
HybridIterator<ModeListEntry> iter(commandTable.begin(),
commandTable.end());
executeTable(iter);
return result;
}
ReturnValue_t TestAssembly::isModeCombinationValid(Mode_t mode,
Submode_t submode) {
switch (mode) {
case MODE_OFF:
if (submode == SUBMODE_NONE) {
return RETURN_OK;
} else {
return INVALID_SUBMODE;
}
case DeviceHandlerIF::MODE_NORMAL:
case MODE_ON:
if (submode < 3) {
return RETURN_OK;
} else {
return INVALID_SUBMODE;
}
}
return INVALID_MODE;
}
ReturnValue_t TestAssembly::initialize() {
ReturnValue_t result = AssemblyBase::initialize();
if(result != RETURN_OK){
return result;
}
handler0 = ObjectManager::instance()->get<TestDevice>(objects::TEST_DEVICE_HANDLER_0);
handler1 = ObjectManager::instance()->get<TestDevice>(objects::TEST_DEVICE_HANDLER_1);
if((handler0 == nullptr) or (handler1 == nullptr)){
return HasReturnvaluesIF::RETURN_FAILED;
}
handler0->setParentQueue(this->getCommandQueue());
handler1->setParentQueue(this->getCommandQueue());
result = registerChild(objects::TEST_DEVICE_HANDLER_0);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = registerChild(objects::TEST_DEVICE_HANDLER_1);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
return result;
}
ReturnValue_t TestAssembly::checkChildrenStateOn(
Mode_t wantedMode, Submode_t wantedSubmode) {
if(submode == submodes::DUAL){
for(const auto& info:childrenMap) {
if(info.second.mode != wantedMode or info.second.mode != wantedSubmode){
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
}
return RETURN_OK;
}
else if(submode == submodes::SINGLE) {
for(const auto& info:childrenMap) {
if(info.second.mode == wantedMode and info.second.mode != wantedSubmode){
return RETURN_OK;
}
}
}
return INVALID_SUBMODE;
}
bool TestAssembly::isDeviceAvailable(object_id_t object) {
if(healthHelper.healthTable->getHealth(object) == HasHealthIF::HEALTHY){
return true;
}
else{
return false;
}
}

View File

@ -0,0 +1,53 @@
#ifndef MISSION_ASSEMBLIES_TESTASSEMBLY_H_
#define MISSION_ASSEMBLIES_TESTASSEMBLY_H_
#include <fsfw/devicehandlers/AssemblyBase.h>
#include "fsfw_examples/devices/TestDeviceHandler.h"
class TestAssembly: public AssemblyBase {
public:
TestAssembly(object_id_t objectId, object_id_t parentId);
virtual ~TestAssembly();
ReturnValue_t initialize() override;
enum submodes: Submode_t{
SINGLE = 0,
DUAL = 1
};
protected:
/**
* Command children to reach [mode,submode] combination
* Can be done by setting #commandsOutstanding correctly,
* or using executeTable()
* @param mode
* @param submode
* @return
* - @c RETURN_OK if ok
* - @c NEED_SECOND_STEP if children need to be commanded again
*/
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
/**
* Check whether desired assembly mode was achieved by checking the modes
* or/and health states of child device handlers.
* The assembly template class will also call this function if a health
* or mode change of a child device handler was detected.
* @param wantedMode
* @param wantedSubmode
* @return
*/
ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode)
override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode,
Submode_t wantedSubmode) override;
private:
FixedArrayList<ModeListEntry, 2> commandTable;
TestDevice* handler0 = nullptr;
TestDevice* handler1 = nullptr;
bool isDeviceAvailable(object_id_t object);
};
#endif /* MISSION_ASSEMBLIES_TESTASSEMBLY_H_ */

View File

@ -0,0 +1,11 @@
target_sources(${LIB_FSFW_NAME} PRIVATE
examplePollingSequenceFactory.cpp
)
target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}
)
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
)

View File

@ -0,0 +1,67 @@
/**
* @brief This file will contain configuration constants which are used across all BSPs
*/
#ifndef COMMON_COMMONCONFIG_H_
#define COMMON_COMMONCONFIG_H_
#include <stdint.h>
//! Specify the debug output verbose level
#define OBSW_VERBOSE_LEVEL 1
#define OBSW_PRINT_MISSED_DEADLINES 0
//! Perform internal unit testd at application startup
#define OBSW_PERFORM_INTERNAL_UNITTEST 1
//! Add core components for the FSFW and for TMTC communication
#define OBSW_ADD_CORE_COMPONENTS 1
//! Add the PUS service stack
#define OBSW_ADD_PUS_STACK 1
#define OBSW_PUS_PRINTOUT 0
//! Add the task examples
#define OBSW_ADD_TASK_EXAMPLE 1
#define OBSW_TASK_EXAMPLE_PRINTOUT 0
//! Add the demo device handler object
#define OBSW_ADD_DEVICE_HANDLER_DEMO 1
#define OBSW_DEVICE_HANDLER_PRINTOUT 1
//! Add the demo controller object
#define OBSW_ADD_CONTROLLER_DEMO 1
#define OBSW_CONTROLLER_PRINTOUT 1
/**
* The APID is a 14 bit identifier which can be used to distinguish processes and applications
* on a spacecraft. For more details, see the related ECSS/CCSDS standards.
* For this example, we are going to use a constant APID
*/
static const uint16_t COMMON_APID = 0xEF;
#ifdef __cplusplus
#include <fsfw/events/fwSubsystemIdRanges.h>
#include <fsfw/returnvalues/FwClassIds.h>
/**
* Enumerations for used PUS service IDs.
*/
namespace pus {
enum ServiceIds: uint8_t {
PUS_SERVICE_1 = 1,
PUS_SERVICE_2 = 2,
PUS_SERVICE_3 = 3,
PUS_SERVICE_5 = 5,
PUS_SERVICE_8 = 8,
PUS_SERVICE_9 = 9,
PUS_SERVICE_17 = 17,
PUS_SERVICE_20 = 20,
PUS_SERVICE_200 = 200
};
}
#endif /* __cplusplus */
#endif /* COMMON_COMMONCONFIG_H_ */

View File

@ -0,0 +1,14 @@
#ifndef COMMON_CONFIG_COMMONCLASSIDS_H_
#define COMMON_CONFIG_COMMONCLASSIDS_H_
#include "fsfw/returnvalues/FwClassIds.h"
namespace CLASS_ID {
enum commonClassIds: uint8_t {
COMMON_CLASS_ID_START = FW_CLASS_ID_COUNT,
DUMMY_HANDLER, //DDH
COMMON_CLASS_ID_END // [EXPORT] : [END]
};
}
#endif /* COMMON_CONFIG_COMMONCLASSIDS_H_ */

View File

@ -0,0 +1,32 @@
#ifndef COMMON_COMMONSYSTEMOBJECTS_H_
#define COMMON_COMMONSYSTEMOBJECTS_H_
#include <cstdint>
#include <fsfw/objectmanager/frameworkObjects.h>
namespace objects {
enum commonObjects: object_id_t {
EXAMPLE_OBJECTS_START = FSFW_OBJECTS_END,
// 0x54 reserved for example objects
TEST_ASSEMBLY = 0x5400CAFE,
TEST_CONTROLLER = 0x5401CAFE,
TEST_DEVICE_HANDLER_0 = 0x5401AFFE,
TEST_DEVICE_HANDLER_1 = 0x5402AFFE,
TEST_ECHO_COM_IF = 0x5400AFFE,
CCSDS_DISTRIBUTOR = 0x54000000,
PUS_DISTRIBUTOR = 0x54000001,
TM_FUNNEL = 0x54030002,
TEST_TASK = 0x5402CAFE,
TEST_DUMMY_1 = 0x54000101,
TEST_DUMMY_2 = 0x54000102,
TEST_DUMMY_3= 0x54000103,
TEST_DUMMY_4 = 0x54000104,
TEST_DUMMY_5 = 0x54000105,
};
}
#endif /* COMMON_COMMONSYSTEMOBJECTS_H_ */

View File

@ -0,0 +1,82 @@
#include "exampleObjectIds.h"
#include "pollingsequence/pollingSequenceFactory.h"
#include "fsfw_examples/test/FsfwExampleTask.h"
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/tasks/FixedTimeslotTaskIF.h>
ReturnValue_t pst::pollingSequenceExamples(FixedTimeslotTaskIF* thisSequence) {
uint32_t length = thisSequence->getPeriodMs();
thisSequence->addSlot(objects::TEST_DUMMY_1, length * 0,
FsfwExampleTask::OpCodes::SEND_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_2, length * 0,
FsfwExampleTask::OpCodes::SEND_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_3, length * 0,
FsfwExampleTask::OpCodes::SEND_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_1, length * 0.2,
FsfwExampleTask::OpCodes::RECEIVE_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_2, length * 0.2,
FsfwExampleTask::OpCodes::RECEIVE_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_3, length * 0.2,
FsfwExampleTask::OpCodes::RECEIVE_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_1, length * 0.5,
FsfwExampleTask::OpCodes::DELAY_SHORT);
thisSequence->addSlot(objects::TEST_DUMMY_2, length * 0.5,
FsfwExampleTask::OpCodes::DELAY_SHORT);
thisSequence->addSlot(objects::TEST_DUMMY_3, length * 0.5,
FsfwExampleTask::OpCodes::DELAY_SHORT);
if (thisSequence->checkSequence() == HasReturnvaluesIF::RETURN_OK) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "pst::pollingSequenceInitFunction: Initialization errors!" << std::endl;
#else
sif::printError("pst::pollingSequenceInitFunction: Initialization errors!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t pst::pollingSequenceDevices(FixedTimeslotTaskIF *thisSequence) {
uint32_t length = thisSequence->getPeriodMs();
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0, DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0, DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0.3, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0.3, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0.45 * length,
DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0.45 * length,
DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0.6 * length, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0.6 * length, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0.8 * length, DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0.8 * length, DeviceHandlerIF::GET_READ);
if (thisSequence->checkSequence() == HasReturnvaluesIF::RETURN_OK) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "pst::pollingSequenceTestFunction: Initialization errors!" << std::endl;
#else
sif::printError("pst::pollingSequenceTestFunction: Initialization errors!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
}

View File

@ -0,0 +1,15 @@
#ifndef COMMON_CONFIG_COMMONSUBSYSTEMIDS_H_
#define COMMON_CONFIG_COMMONSUBSYSTEMIDS_H_
#include "fsfw/events/fwSubsystemIdRanges.h"
namespace SUBSYSTEM_ID {
enum commonSubsystemId: uint8_t {
EXAMPLE_SUBSYSTEM_ID_START = FW_SUBSYSTEM_ID_RANGE,
TEST_TASK_ID,
EXAMPLE_SUBSYSTEM_ID_END
};
}
#endif /* COMMON_CONFIG_COMMONSUBSYSTEMIDS_H_ */

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_NAME} PRIVATE
TestController.cpp
)

View File

@ -0,0 +1,214 @@
#include "TestController.h"
#include "OBSWConfig.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/objectmanager/ObjectManager.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
TestController::TestController(object_id_t objectId, size_t commandQueueDepth):
ExtendedControllerBase(objectId, objects::NO_OBJECT, commandQueueDepth),
deviceDataset0(objects::TEST_DEVICE_HANDLER_0),
deviceDataset1(objects::TEST_DEVICE_HANDLER_1) {
}
TestController::~TestController() {
}
ReturnValue_t TestController::handleCommandMessage(CommandMessage *message) {
return HasReturnvaluesIF::RETURN_OK;
}
void TestController::performControlOperation() {
/* We will trace vaiables if we received an update notification or snapshots */
#if OBSW_CONTROLLER_PRINTOUT == 1
if(not traceVariable) {
return;
}
switch(currentTraceType) {
case(NONE): {
break;
}
case(TRACE_DEV_0_UINT8): {
if(traceCounter == 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Tracing finished" << std::endl;
#else
sif::printInfo("Tracing finished\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
traceVariable = false;
traceCounter = traceCycles;
currentTraceType = TraceTypes::NONE;
break;
}
PoolReadGuard readHelper(&deviceDataset0.testUint8Var);
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Tracing device 0 variable 0 (UINT8), current value: " <<
static_cast<int>(deviceDataset0.testUint8Var.value) << std::endl;
#else
sif::printInfo("Tracing device 0 variable 0 (UINT8), current value: %d\n",
deviceDataset0.testUint8Var.value);
#endif
traceCounter--;
break;
}
case(TRACE_DEV_0_VECTOR): {
break;
}
}
#endif /* OBSW_CONTROLLER_PRINTOUT == 1 */
}
void TestController::handleChangedDataset(sid_t sid, store_address_t storeId, bool* clearMessage) {
using namespace std;
#if OBSW_CONTROLLER_PRINTOUT == 1
char const* printout = nullptr;
if(storeId == storeId::INVALID_STORE_ADDRESS) {
printout = "Notification";
}
else {
printout = "Snapshot";
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestController::handleChangedDataset: " << printout << " update from object "
"ID " << setw(8) << setfill('0') << hex << sid.objectId <<
" and set ID " << sid.ownerSetId << dec << setfill(' ') << endl;
#else
sif::printInfo("TestController::handleChangedPoolVariable: %s update from object ID 0x%08x and "
"set ID %lu\n", printout, sid.objectId, sid.ownerSetId);
#endif
if (storeId == storeId::INVALID_STORE_ADDRESS) {
if(sid.objectId == objects::TEST_DEVICE_HANDLER_0) {
PoolReadGuard readHelper(&deviceDataset0.testFloat3Vec);
float floatVec[3];
floatVec[0] = deviceDataset0.testFloat3Vec.value[0];
floatVec[1] = deviceDataset0.testFloat3Vec.value[1];
floatVec[2] = deviceDataset0.testFloat3Vec.value[2];
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Current float vector (3) values: [" << floatVec[0] << ", " <<
floatVec[1] << ", " << floatVec[2] << "]" << std::endl;
#else
sif::printInfo("Current float vector (3) values: [%f, %f, %f]\n",
floatVec[0], floatVec[1], floatVec[2]);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
}
#endif /* OBSW_CONTROLLER_PRINTOUT == 1 */
/* We will trace the variables for snapshots and update notifications */
if(not traceVariable) {
traceVariable = true;
traceCounter = traceCycles;
currentTraceType = TraceTypes::TRACE_DEV_0_VECTOR;
}
}
void TestController::handleChangedPoolVariable(gp_id_t globPoolId, store_address_t storeId,
bool* clearMessage) {
using namespace std;
#if OBSW_CONTROLLER_PRINTOUT == 1
char const* printout = nullptr;
if (storeId == storeId::INVALID_STORE_ADDRESS) {
printout = "Notification";
}
else {
printout = "Snapshot";
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestController::handleChangedPoolVariable: " << printout << " update from object "
"ID 0x" << setw(8) << setfill('0') << hex << globPoolId.objectId <<
" and local pool ID " << globPoolId.localPoolId << dec << setfill(' ') << endl;
#else
sif::printInfo("TestController::handleChangedPoolVariable: %s update from object ID 0x%08x and "
"local pool ID %lu\n", printout, globPoolId.objectId, globPoolId.localPoolId);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
if (storeId == storeId::INVALID_STORE_ADDRESS) {
if(globPoolId.objectId == objects::TEST_DEVICE_HANDLER_0) {
PoolReadGuard readHelper(&deviceDataset0.testUint8Var);
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Current test variable 0 (UINT8) value: " << static_cast<int>(
deviceDataset0.testUint8Var.value) << std::endl;
#else
sif::printInfo("Current test variable 0 (UINT8) value %d\n",
deviceDataset0.testUint8Var.value);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
}
#endif /* OBSW_CONTROLLER_PRINTOUT == 1 */
/* We will trace the variables for snapshots and update notifications */
if(not traceVariable) {
traceVariable = true;
traceCounter = traceCycles;
currentTraceType = TraceTypes::TRACE_DEV_0_UINT8;
}
}
LocalPoolDataSetBase* TestController::getDataSetHandle(sid_t sid) {
return nullptr;
}
ReturnValue_t TestController::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestController::initializeAfterTaskCreation() {
namespace td = testdevice;
HasLocalDataPoolIF* device0 = ObjectManager::instance()->get<HasLocalDataPoolIF>(
objects::TEST_DEVICE_HANDLER_0);
if(device0 == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TestController::initializeAfterTaskCreation: Test device handler 0 "
"handle invalid!" << std::endl;
#else
sif::printWarning("TestController::initializeAfterTaskCreation: Test device handler 0 "
"handle invalid!");
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
}
ProvidesDataPoolSubscriptionIF* subscriptionIF = device0->getSubscriptionInterface();
if(subscriptionIF != nullptr) {
/* For DEVICE_0, we only subscribe for notifications */
subscriptionIF->subscribeForSetUpdateMessage(td::TEST_SET_ID, getObjectId(),
getCommandQueue(), false);
subscriptionIF->subscribeForVariableUpdateMessage(td::PoolIds::TEST_UINT8_ID,
getObjectId(), getCommandQueue(), false);
}
HasLocalDataPoolIF* device1 = ObjectManager::instance()->get<HasLocalDataPoolIF>(
objects::TEST_DEVICE_HANDLER_1);
if(device1 == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TestController::initializeAfterTaskCreation: Test device handler 1 "
"handle invalid!" << std::endl;
#else
sif::printWarning("TestController::initializeAfterTaskCreation: Test device handler 1 "
"handle invalid!");
#endif
}
subscriptionIF = device1->getSubscriptionInterface();
if(subscriptionIF != nullptr) {
/* For DEVICE_1, we will subscribe for snapshots */
subscriptionIF->subscribeForSetUpdateMessage(td::TEST_SET_ID, getObjectId(),
getCommandQueue(), true);
subscriptionIF->subscribeForVariableUpdateMessage(td::PoolIds::TEST_UINT8_ID,
getObjectId(), getCommandQueue(), true);
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestController::checkModeCommand(Mode_t mode, Submode_t submode,
uint32_t *msToReachTheMode) {
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,50 @@
#ifndef MISSION_CONTROLLER_TESTCONTROLLER_H_
#define MISSION_CONTROLLER_TESTCONTROLLER_H_
#include "../devices/devicedefinitions/testDeviceDefinitions.h"
#include <fsfw/controller/ExtendedControllerBase.h>
class TestController:
public ExtendedControllerBase {
public:
TestController(object_id_t objectId, size_t commandQueueDepth = 10);
virtual~ TestController();
protected:
testdevice::TestDataSet deviceDataset0;
testdevice::TestDataSet deviceDataset1;
/* Extended Controller Base overrides */
ReturnValue_t handleCommandMessage(CommandMessage *message) override;
void performControlOperation() override;
/* HasLocalDatapoolIF callbacks */
void handleChangedDataset(sid_t sid, store_address_t storeId, bool* clearMessage) override;
void handleChangedPoolVariable(gp_id_t globPoolId, store_address_t storeId,
bool* clearMessage) override;
LocalPoolDataSetBase* getDataSetHandle(sid_t sid) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
ReturnValue_t checkModeCommand(Mode_t mode, Submode_t submode,
uint32_t *msToReachTheMode) override;
ReturnValue_t initializeAfterTaskCreation() override;
private:
bool traceVariable = false;
uint8_t traceCycles = 5;
uint8_t traceCounter = traceCycles;
enum TraceTypes {
NONE,
TRACE_DEV_0_UINT8,
TRACE_DEV_0_VECTOR
};
TraceTypes currentTraceType = TraceTypes::NONE;
};
#endif /* MISSION_CONTROLLER_TESTCONTROLLER_H_ */

View File

@ -0,0 +1,18 @@
#ifndef MISSION_CONTROLLER_CTRLDEFINITIONS_TESTCTRLDEFINITIONS_H_
#define MISSION_CONTROLLER_CTRLDEFINITIONS_TESTCTRLDEFINITIONS_H_
#include <fsfw/objectmanager/SystemObjectIF.h>
#include <OBSWConfig.h>
namespace testcontroller {
enum sourceObjectIds: object_id_t {
DEVICE_0_ID = objects::TEST_DEVICE_HANDLER_0,
DEVICE_1_ID = objects::TEST_DEVICE_HANDLER_1,
};
}
#endif /* MISSION_CONTROLLER_CTRLDEFINITIONS_TESTCTRLDEFINITIONS_H_ */

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_NAME} PRIVATE
GenericFactory.cpp
)

View File

@ -0,0 +1,125 @@
#include "GenericFactory.h"
#include "fsfw/ExampleConfig.h"
#include "tmtc/pusIds.h"
#include "exampleObjectIds.h"
#include "fsfw_tests/internal/InternalUnitTester.h"
#include "fsfw_examples/test/FsfwExampleTask.h"
#include "fsfw_examples/test/FsfwReaderTask.h"
#include "fsfw_examples/assemblies/TestAssembly.h"
#include "fsfw_examples/devices/TestCookie.h"
#include "fsfw_examples/devices/TestDeviceHandler.h"
#include "fsfw_examples/devices/TestEchoComIF.h"
#include "fsfw_examples/utility/TmFunnel.h"
#include "fsfw_examples/controller/TestController.h"
#include "fsfw/devicehandlers/CookieIF.h"
#include "fsfw/events/EventManager.h"
#include "fsfw/health/HealthTable.h"
#include "fsfw/internalerror/InternalErrorReporter.h"
#include "fsfw/pus/CService200ModeCommanding.h"
#include "fsfw/pus/Service17Test.h"
#include "fsfw/pus/Service1TelecommandVerification.h"
#include "fsfw/pus/Service20ParameterManagement.h"
#include "fsfw/pus/Service2DeviceAccess.h"
#include "fsfw/pus/Service3Housekeeping.h"
#include "fsfw/pus/Service5EventReporting.h"
#include "fsfw/pus/Service8FunctionManagement.h"
#include "fsfw/pus/Service9TimeManagement.h"
#include "fsfw/tcdistribution/CCSDSDistributor.h"
#include "fsfw/tcdistribution/PUSDistributor.h"
#include "fsfw/timemanager/TimeStamper.h"
#include "fsfw/tmtcpacket/pus/tm.h"
void ObjectFactory::produceGenericObjects(uint16_t apid) {
#if OBSW_ADD_CORE_COMPONENTS == 1
/* Framework objects */
new EventManager(objects::EVENT_MANAGER);
new HealthTable(objects::HEALTH_TABLE);
new InternalErrorReporter(objects::INTERNAL_ERROR_REPORTER);
new TimeStamper(objects::TIME_STAMPER);
new CCSDSDistributor(apid, objects::CCSDS_DISTRIBUTOR);
new PUSDistributor(apid, objects::PUS_DISTRIBUTOR,
objects::CCSDS_DISTRIBUTOR);
new TmFunnel(objects::TM_FUNNEL);
#endif /* OBSW_ADD_CORE_COMPONENTS == 1 */
/* PUS stack */
#if OBSW_ADD_PUS_STACK == 1
new Service1TelecommandVerification(objects::PUS_SERVICE_1_VERIFICATION,
apid, pus::PUS_SERVICE_1, objects::TM_FUNNEL, 5);
new Service2DeviceAccess(objects::PUS_SERVICE_2_DEVICE_ACCESS,
apid, pus::PUS_SERVICE_2, 3, 10);
new Service3Housekeeping(objects::PUS_SERVICE_3_HOUSEKEEPING, apid, pus::PUS_SERVICE_3);
new Service5EventReporting(objects::PUS_SERVICE_5_EVENT_REPORTING,
apid, pus::PUS_SERVICE_5, 50);
new Service8FunctionManagement(objects::PUS_SERVICE_8_FUNCTION_MGMT,
apid, pus::PUS_SERVICE_8, 3, 10);
new Service9TimeManagement(objects::PUS_SERVICE_9_TIME_MGMT, apid,
pus::PUS_SERVICE_9);
new Service17Test(objects::PUS_SERVICE_17_TEST, apid,
pus::PUS_SERVICE_17);
new Service20ParameterManagement(objects::PUS_SERVICE_20_PARAMETERS, apid,
pus::PUS_SERVICE_20);
new CService200ModeCommanding(objects::PUS_SERVICE_200_MODE_MGMT,
apid, pus::PUS_SERVICE_200);
#endif /* OBSW_ADD_PUS_STACK == 1 */
#if OBSW_ADD_TASK_EXAMPLE == 1
/* Demo objects */
new FsfwExampleTask(objects::TEST_DUMMY_1);
new FsfwExampleTask(objects::TEST_DUMMY_2);
new FsfwExampleTask(objects::TEST_DUMMY_3);
bool enablePrintout = false;
#if OBSW_TASK_EXAMPLE_PRINTOUT == 1
enablePrintout = true;
#endif
new FsfwReaderTask(objects::TEST_DUMMY_4, enablePrintout);
#endif /* OBSW_ADD_TASK_EXAMPLE == 1 */
#if OBSW_ADD_DEVICE_HANDLER_DEMO == 1
#if OBSW_DEVICE_HANDLER_PRINTOUT == 1
bool enableInfoPrintout = true;
#else
bool enableInfoPrintout = false;
#endif /* OBSW_DEVICE_HANDLER_PRINTOUT == 1 */
/* Demo device handler object */
size_t expectedMaxReplyLen = 64;
CookieIF* testCookie = new DummyCookie(
static_cast<address_t>(testdevice::DeviceIndex::DEVICE_0), expectedMaxReplyLen);
new TestEchoComIF(objects::TEST_ECHO_COM_IF);
new TestDevice(objects::TEST_DEVICE_HANDLER_0, objects::TEST_ECHO_COM_IF, testCookie,
testdevice::DeviceIndex::DEVICE_0, enableInfoPrintout);
testCookie = new DummyCookie(static_cast<address_t>(testdevice::DeviceIndex::DEVICE_1),
expectedMaxReplyLen);
new TestDevice(objects::TEST_DEVICE_HANDLER_1, objects::TEST_ECHO_COM_IF, testCookie,
testdevice::DeviceIndex::DEVICE_1, enableInfoPrintout);
new TestAssembly(objects::TEST_ASSEMBLY, objects::NO_OBJECT);
#endif /* OBSW_ADD_DEVICE_HANDLER_DEMO == 1 */
/* Demo controller object */
#if OBSW_ADD_CONTROLLER_DEMO == 1
#if OBSW_CONTROLLER_PRINTOUT == 1
#endif
new TestController(objects::TEST_CONTROLLER);
#endif /* OBSW_ADD_CONTROLLER_DEMO == 1 */
#if OBSW_PERFORM_INTERNAL_UNITTEST == 1
InternalUnitTester::TestConfig testCfg;
testCfg.testArrayPrinter = false;
InternalUnitTester unittester;
unittester.performTests(testCfg);
#endif /* OBSW_PERFORM_INTERNAL_UNITTEST == 1 */
}

View File

@ -0,0 +1,17 @@
#ifndef MISSION_CORE_GENERICFACTORY_H_
#define MISSION_CORE_GENERICFACTORY_H_
#include <fsfw/objectmanager/SystemObjectIF.h>
namespace ObjectFactory {
/**
* @brief Produce hardware independant objects. Called by bsp specific
* object factory.
*/
void produceGenericObjects(uint16_t apid);
}
#endif /* MISSION_CORE_GENERICFACTORY_H_ */

View File

@ -0,0 +1,5 @@
target_sources(${LIB_FSFW_NAME} PRIVATE
TestCookie.cpp
TestDeviceHandler.cpp
TestEchoComIF.cpp
)

View File

@ -0,0 +1,14 @@
#include "TestCookie.h"
DummyCookie::DummyCookie(address_t address, size_t replyMaxLen):
address(address), replyMaxLen(replyMaxLen) {}
DummyCookie::~DummyCookie() {}
address_t DummyCookie::getAddress() const {
return address;
}
size_t DummyCookie::getReplyMaxLen() const {
return replyMaxLen;
}

View File

@ -0,0 +1,22 @@
#ifndef MISSION_DEVICES_TESTCOOKIE_H_
#define MISSION_DEVICES_TESTCOOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <cstddef>
/**
* @brief Really simple cookie which does not do a lot.
*/
class DummyCookie: public CookieIF {
public:
DummyCookie(address_t address, size_t maxReplyLen);
virtual ~DummyCookie();
address_t getAddress() const;
size_t getReplyMaxLen() const;
private:
address_t address = 0;
size_t replyMaxLen = 0;
};
#endif /* MISSION_DEVICES_TESTCOOKIE_H_ */

View File

@ -0,0 +1,804 @@
#include "TestDeviceHandler.h"
#include "fsfw/ExampleConfig.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <cstdlib>
TestDevice::TestDevice(object_id_t objectId, object_id_t comIF,
CookieIF * cookie, testdevice::DeviceIndex deviceIdx, bool fullInfoPrintout,
bool changingDataset):
DeviceHandlerBase(objectId, comIF, cookie), deviceIdx(deviceIdx),
dataset(this), fullInfoPrintout(fullInfoPrintout) {
}
TestDevice::~TestDevice() {}
void TestDevice::performOperationHook() {
if(periodicPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::performOperationHook: Alive!" << std::endl;
#else
sif::printInfo("TestDevice%d::performOperationHook: Alive!", deviceIdx);
#endif
}
if(oneShot) {
oneShot = false;
}
}
void TestDevice::doStartUp() {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::doStartUp: Switching On" << std::endl;
#else
sif::printInfo("TestDevice%d::doStartUp: Switching On\n", static_cast<int>(deviceIdx));
#endif
}
setMode(_MODE_TO_ON);
return;
}
void TestDevice::doShutDown() {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::doShutDown: Switching Off" << std::endl;
#else
sif::printInfo("TestDevice%d::doShutDown: Switching Off\n", static_cast<int>(deviceIdx));
#endif
}
setMode(_MODE_SHUT_DOWN);
return;
}
ReturnValue_t TestDevice::buildNormalDeviceCommand(DeviceCommandId_t* id) {
using namespace testdevice;
*id = TEST_NORMAL_MODE_CMD;
if(DeviceHandlerBase::isAwaitingReply()) {
return NOTHING_TO_SEND;
}
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t TestDevice::buildTransitionDeviceCommand(DeviceCommandId_t* id) {
if(mode == _MODE_TO_ON) {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTransitionDeviceCommand: Was called"
" from _MODE_TO_ON mode" << std::endl;
#else
sif::printInfo("TestDevice%d::buildTransitionDeviceCommand: "
"Was called from _MODE_TO_ON mode\n", deviceIdx);
#endif
}
}
if(mode == _MODE_TO_NORMAL) {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTransitionDeviceCommand: Was called "
"from _MODE_TO_NORMAL mode" << std::endl;
#else
sif::printInfo("TestDevice%d::buildTransitionDeviceCommand: Was called from "
" _MODE_TO_NORMAL mode\n", deviceIdx);
#endif
}
setMode(MODE_NORMAL);
}
if(mode == _MODE_SHUT_DOWN) {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTransitionDeviceCommand: Was called "
"from _MODE_SHUT_DOWN mode" << std::endl;
#else
sif::printInfo("TestDevice%d::buildTransitionDeviceCommand: Was called from "
"_MODE_SHUT_DOWN mode\n", deviceIdx);
#endif
}
setMode(MODE_OFF);
}
return NOTHING_TO_SEND;
}
void TestDevice::doTransition(Mode_t modeFrom, Submode_t submodeFrom) {
if(mode == _MODE_TO_NORMAL) {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::doTransition: Custom transition to "
"normal mode" << std::endl;
#else
sif::printInfo("TestDevice%d::doTransition: Custom transition to normal mode\n",
deviceIdx);
#endif
}
}
else {
DeviceHandlerBase::doTransition(modeFrom, submodeFrom);
}
}
ReturnValue_t TestDevice::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t* commandData,
size_t commandDataLen) {
using namespace testdevice;
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(deviceCommand) {
case(TEST_NORMAL_MODE_CMD): {
commandSent = true;
result = buildNormalModeCommand(deviceCommand, commandData, commandDataLen);
break;
}
case(TEST_COMMAND_0): {
commandSent = true;
result = buildTestCommand0(deviceCommand, commandData, commandDataLen);
break;
}
case(TEST_COMMAND_1): {
commandSent = true;
result = buildTestCommand1(deviceCommand, commandData, commandDataLen);
break;
}
case(TEST_NOTIF_SNAPSHOT_VAR): {
if(changingDatasets) {
changingDatasets = false;
}
PoolReadGuard readHelper(&dataset.testUint8Var);
if(deviceIdx == testdevice::DeviceIndex::DEVICE_0) {
/* This will trigger a variable notification to the demo controller */
dataset.testUint8Var = 220;
dataset.testUint8Var.setValid(true);
}
else if(deviceIdx == testdevice::DeviceIndex::DEVICE_1) {
/* This will trigger a variable snapshot to the demo controller */
dataset.testUint8Var = 30;
dataset.testUint8Var.setValid(true);
}
break;
}
case(TEST_NOTIF_SNAPSHOT_SET): {
if(changingDatasets) {
changingDatasets = false;
}
PoolReadGuard readHelper(&dataset.testFloat3Vec);
if(deviceIdx == testdevice::DeviceIndex::DEVICE_0) {
/* This will trigger a variable notification to the demo controller */
dataset.testFloat3Vec.value[0] = 60;
dataset.testFloat3Vec.value[1] = 70;
dataset.testFloat3Vec.value[2] = 55;
dataset.testFloat3Vec.setValid(true);
}
else if(deviceIdx == testdevice::DeviceIndex::DEVICE_1) {
/* This will trigger a variable notification to the demo controller */
dataset.testFloat3Vec.value[0] = -60;
dataset.testFloat3Vec.value[1] = -70;
dataset.testFloat3Vec.value[2] = -55;
dataset.testFloat3Vec.setValid(true);
}
break;
}
default:
result = DeviceHandlerIF::COMMAND_NOT_SUPPORTED;
}
return result;
}
ReturnValue_t TestDevice::buildNormalModeCommand(DeviceCommandId_t deviceCommand,
const uint8_t* commandData, size_t commandDataLen) {
if(fullInfoPrintout) {
#if OBSW_VERBOSE_LEVEL >= 3
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice::buildTestCommand1: Building normal command" << std::endl;
#else
sif::printInfo("TestDevice::buildTestCommand1: Building command from TEST_COMMAND_1\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* OBSW_VERBOSE_LEVEL >= 3 */
}
if(commandDataLen > MAX_BUFFER_SIZE - sizeof(DeviceCommandId_t)) {
return DeviceHandlerIF::INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
/* The command is passed on in the command buffer as it is */
passOnCommand(deviceCommand, commandData, commandDataLen);
return RETURN_OK;
}
ReturnValue_t TestDevice::buildTestCommand0(DeviceCommandId_t deviceCommand,
const uint8_t* commandData, size_t commandDataLen) {
using namespace testdevice;
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTestCommand0: Executing simple command "
" with completion reply" << std::endl;
#else
sif::printInfo("TestDevice%d::buildTestCommand0: Executing simple command with "
"completion reply\n", deviceIdx);
#endif
}
if(commandDataLen > MAX_BUFFER_SIZE - sizeof(DeviceCommandId_t)) {
return DeviceHandlerIF::INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
/* The command is passed on in the command buffer as it is */
passOnCommand(deviceCommand, commandData, commandDataLen);
return RETURN_OK;
}
ReturnValue_t TestDevice::buildTestCommand1(DeviceCommandId_t deviceCommand,
const uint8_t* commandData,
size_t commandDataLen) {
using namespace testdevice;
if(commandDataLen < 7) {
return DeviceHandlerIF::INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTestCommand1: Executing command with "
"data reply" << std::endl;
#else
sif::printInfo("TestDevice%d:buildTestCommand1: Executing command with data reply\n",
deviceIdx);
#endif
}
deviceCommand = EndianConverter::convertBigEndian(deviceCommand);
memcpy(commandBuffer, &deviceCommand, sizeof(deviceCommand));
/* Assign and check parameters */
uint16_t parameter1 = 0;
size_t size = commandDataLen;
ReturnValue_t result = SerializeAdapter::deSerialize(&parameter1,
&commandData, &size, SerializeIF::Endianness::BIG);
if(result == HasReturnvaluesIF::RETURN_FAILED) {
return result;
}
/* Parameter 1 needs to be correct */
if(parameter1 != testdevice::COMMAND_1_PARAM1) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
uint64_t parameter2 = 0;
result = SerializeAdapter::deSerialize(&parameter2,
&commandData, &size, SerializeIF::Endianness::BIG);
if(parameter2!= testdevice::COMMAND_1_PARAM2){
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
/* Pass on the parameters to the Echo IF */
commandBuffer[4] = (parameter1 & 0xFF00) >> 8;
commandBuffer[5] = (parameter1 & 0xFF);
parameter2 = EndianConverter::convertBigEndian(parameter2);
memcpy(commandBuffer + 6, &parameter2, sizeof(parameter2));
rawPacket = commandBuffer;
rawPacketLen = sizeof(deviceCommand) + sizeof(parameter1) +
sizeof(parameter2);
return RETURN_OK;
}
void TestDevice::passOnCommand(DeviceCommandId_t command, const uint8_t *commandData,
size_t commandDataLen) {
DeviceCommandId_t deviceCommandBe = EndianConverter::convertBigEndian(command);
memcpy(commandBuffer, &deviceCommandBe, sizeof(deviceCommandBe));
memcpy(commandBuffer + 4, commandData, commandDataLen);
rawPacket = commandBuffer;
rawPacketLen = sizeof(deviceCommandBe) + commandDataLen;
}
void TestDevice::fillCommandAndReplyMap() {
namespace td = testdevice;
insertInCommandAndReplyMap(testdevice::TEST_NORMAL_MODE_CMD, 5, &dataset);
insertInCommandAndReplyMap(testdevice::TEST_COMMAND_0, 5);
insertInCommandAndReplyMap(testdevice::TEST_COMMAND_1, 5);
/* No reply expected for these commands */
insertInCommandMap(td::TEST_NOTIF_SNAPSHOT_SET);
insertInCommandMap(td::TEST_NOTIF_SNAPSHOT_VAR);
}
ReturnValue_t TestDevice::scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) {
using namespace testdevice;
/* Unless a command was sent explicitely, we don't expect any replies and ignore this
the packet. On a real device, there might be replies which are sent without a previous
command. */
if(not commandSent) {
return DeviceHandlerBase::IGNORE_FULL_PACKET;
}
else {
commandSent = false;
}
if(len < sizeof(object_id_t)) {
return DeviceHandlerIF::LENGTH_MISSMATCH;
}
size_t size = len;
ReturnValue_t result = SerializeAdapter::deSerialize(foundId, &start, &size,
SerializeIF::Endianness::BIG);
if (result != RETURN_OK) {
return result;
}
DeviceCommandId_t pendingCmd = this->getPendingCommand();
switch(pendingCmd) {
case(TEST_NORMAL_MODE_CMD): {
if(fullInfoPrintout) {
#if OBSW_VERBOSE_LEVEL >= 3
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice::scanForReply: Reply for normal commnand (ID " <<
TEST_NORMAL_MODE_CMD << ") received!" << std::endl;
#else
sif::printInfo("TestDevice%d::scanForReply: Reply for normal command (ID %d) "
"received!\n", deviceIdx, TEST_NORMAL_MODE_CMD);
#endif
#endif
}
*foundLen = len;
*foundId = pendingCmd;
return RETURN_OK;
}
case(TEST_COMMAND_0): {
if(len < TEST_COMMAND_0_SIZE) {
return DeviceHandlerIF::LENGTH_MISSMATCH;
}
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::scanForReply: Reply for simple command "
"(ID " << TEST_COMMAND_0 << ") received!" << std::endl;
#else
sif::printInfo("TestDevice%d::scanForReply: Reply for simple command (ID %d) "
"received!\n", deviceIdx, TEST_COMMAND_0);
#endif
}
*foundLen = TEST_COMMAND_0_SIZE;
*foundId = pendingCmd;
return RETURN_OK;
}
case(TEST_COMMAND_1): {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::scanForReply: Reply for data command "
"(ID " << TEST_COMMAND_1 << ") received!" << std::endl;
#else
sif::printInfo("TestDevice%d::scanForReply: Reply for data command (ID %d) "
"received\n", deviceIdx, TEST_COMMAND_1);
#endif
}
*foundLen = len;
*foundId = pendingCmd;
return RETURN_OK;
}
default:
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
}
ReturnValue_t TestDevice::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t* packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
/* Periodic replies */
case testdevice::TEST_NORMAL_MODE_CMD: {
result = interpretingNormalModeReply();
break;
}
/* Simple reply */
case testdevice::TEST_COMMAND_0: {
result = interpretingTestReply0(id, packet);
break;
}
/* Data reply */
case testdevice::TEST_COMMAND_1: {
result = interpretingTestReply1(id, packet);
break;
}
default:
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
return result;
}
ReturnValue_t TestDevice::interpretingNormalModeReply() {
CommandMessage directReplyMessage;
if(changingDatasets) {
PoolReadGuard readHelper(&dataset);
if(dataset.testUint8Var.value == 0) {
dataset.testUint8Var.value = 10;
dataset.testUint32Var.value = 777;
dataset.testFloat3Vec.value[0] = 2.5;
dataset.testFloat3Vec.value[1] = -2.5;
dataset.testFloat3Vec.value[2] = 2.5;
dataset.setValidity(true, true);
}
else {
dataset.testUint8Var.value = 0;
dataset.testUint32Var.value = 0;
dataset.testFloat3Vec.value[0] = 0.0;
dataset.testFloat3Vec.value[1] = 0.0;
dataset.testFloat3Vec.value[2] = 0.0;
dataset.setValidity(false, true);
}
return RETURN_OK;
}
PoolReadGuard readHelper(&dataset);
if(dataset.testUint8Var.value == 0) {
/* Reset state */
dataset.testUint8Var.value = 128;
}
else if(dataset.testUint8Var.value > 200) {
if(not resetAfterChange) {
/* This will trigger an update notification to the controller */
dataset.testUint8Var.setChanged(true);
resetAfterChange = true;
/* Decrement by 30 automatically. This will prevent any additional notifications. */
dataset.testUint8Var.value -= 30;
}
}
/* If the value is greater than 0, it will be decremented in a linear way */
else if(dataset.testUint8Var.value > 128) {
size_t sizeToDecrement = 0;
if(dataset.testUint8Var.value > 128 + 30) {
sizeToDecrement = 30;
}
else {
sizeToDecrement = dataset.testUint8Var.value - 128;
resetAfterChange = false;
}
dataset.testUint8Var.value -= sizeToDecrement;
}
else if(dataset.testUint8Var.value < 50) {
if(not resetAfterChange) {
/* This will trigger an update snapshot to the controller */
dataset.testUint8Var.setChanged(true);
resetAfterChange = true;
}
else {
/* Increment by 30 automatically. */
dataset.testUint8Var.value += 30;
}
}
/* Increment in linear way */
else if(dataset.testUint8Var.value < 128) {
size_t sizeToIncrement = 0;
if(dataset.testUint8Var.value < 128 - 20) {
sizeToIncrement = 20;
}
else {
sizeToIncrement = 128 - dataset.testUint8Var.value;
resetAfterChange = false;
}
dataset.testUint8Var.value += sizeToIncrement;
}
/* TODO: Same for vector */
float vectorMean = (dataset.testFloat3Vec.value[0] + dataset.testFloat3Vec.value[1] +
dataset.testFloat3Vec.value[2]) / 3.0;
/* Lambda (private local function) */
auto sizeToAdd = [](bool tooHigh, float currentVal) {
if(tooHigh) {
if(currentVal - 20.0 > 10.0) {
return -10.0;
}
else {
return 20.0 - currentVal;
}
}
else {
if(std::abs(currentVal + 20.0) > 10.0) {
return 10.0;
}
else {
return -20.0 - currentVal;
}
}
};
if(vectorMean > 20.0 and std::abs(vectorMean - 20.0) > 1.0) {
if(not resetAfterChange) {
dataset.testFloat3Vec.setChanged(true);
resetAfterChange = true;
}
else {
float sizeToDecrementVal0 = 0;
float sizeToDecrementVal1 = 0;
float sizeToDecrementVal2 = 0;
sizeToDecrementVal0 = sizeToAdd(true, dataset.testFloat3Vec.value[0]);
sizeToDecrementVal1 = sizeToAdd(true, dataset.testFloat3Vec.value[1]);
sizeToDecrementVal2 = sizeToAdd(true, dataset.testFloat3Vec.value[2]);
dataset.testFloat3Vec.value[0] += sizeToDecrementVal0;
dataset.testFloat3Vec.value[1] += sizeToDecrementVal1;
dataset.testFloat3Vec.value[2] += sizeToDecrementVal2;
}
}
else if (vectorMean < -20.0 and std::abs(vectorMean + 20.0) < 1.0) {
if(not resetAfterChange) {
dataset.testFloat3Vec.setChanged(true);
resetAfterChange = true;
}
else {
float sizeToDecrementVal0 = 0;
float sizeToDecrementVal1 = 0;
float sizeToDecrementVal2 = 0;
sizeToDecrementVal0 = sizeToAdd(false, dataset.testFloat3Vec.value[0]);
sizeToDecrementVal1 = sizeToAdd(false, dataset.testFloat3Vec.value[1]);
sizeToDecrementVal2 = sizeToAdd(false, dataset.testFloat3Vec.value[2]);
dataset.testFloat3Vec.value[0] += sizeToDecrementVal0;
dataset.testFloat3Vec.value[1] += sizeToDecrementVal1;
dataset.testFloat3Vec.value[2] += sizeToDecrementVal2;
}
}
else {
if(resetAfterChange) {
resetAfterChange = false;
}
}
return RETURN_OK;
}
ReturnValue_t TestDevice::interpretingTestReply0(DeviceCommandId_t id, const uint8_t* packet) {
CommandMessage commandMessage;
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice::interpretingTestReply0: Generating step and finish reply" <<
std::endl;
#else
sif::printInfo("TestDevice::interpretingTestReply0: Generating step and finish reply\n");
#endif
}
MessageQueueId_t commander = getCommanderQueueId(id);
/* Generate one step reply and the finish reply */
actionHelper.step(1, commander, id);
actionHelper.finish(true, commander, id);
return RETURN_OK;
}
ReturnValue_t TestDevice::interpretingTestReply1(DeviceCommandId_t id,
const uint8_t* packet) {
CommandMessage directReplyMessage;
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::interpretingReply1: Setting data reply" <<
std::endl;
#else
sif::printInfo("TestDevice%d::interpretingReply1: Setting data reply\n", deviceIdx);
#endif
}
MessageQueueId_t commander = getCommanderQueueId(id);
/* Send reply with data */
ReturnValue_t result = actionHelper.reportData(commander, id, packet,
testdevice::TEST_COMMAND_1_SIZE, false);
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "TestDevice" << deviceIdx << "::interpretingReply1: Sending data "
"reply failed!" << std::endl;
#else
sif::printError("TestDevice%d::interpretingReply1: Sending data reply failed!\n",
deviceIdx);
#endif
return result;
}
if(result == HasReturnvaluesIF::RETURN_OK) {
/* Finish reply */
actionHelper.finish(true, commander, id);
}
else {
/* Finish reply */
actionHelper.finish(false, commander, id, result);
}
return RETURN_OK;
}
uint32_t TestDevice::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) {
return 5000;
}
void TestDevice::enableFullDebugOutput(bool enable) {
this->fullInfoPrintout = enable;
}
ReturnValue_t TestDevice::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
namespace td = testdevice;
localDataPoolMap.emplace(td::PoolIds::TEST_UINT8_ID, new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(td::PoolIds::TEST_UINT32_ID, new PoolEntry<uint32_t>({0}));
localDataPoolMap.emplace(td::PoolIds::TEST_FLOAT_VEC_3_ID,
new PoolEntry<float>({0.0, 0.0, 0.0}));
sid_t sid;
if(deviceIdx == td::DeviceIndex::DEVICE_0) {
sid = td::TEST_SET_DEV_0_SID;
}
else {
sid = td::TEST_SET_DEV_1_SID;
}
/* Subscribe for periodic HK packets but do not enable reporting for now.
Non-diangostic with a period of one second */
poolManager.subscribeForPeriodicPacket(sid, false, 1.0, false);
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestDevice::getParameter(uint8_t domainId, uint8_t uniqueId,
ParameterWrapper* parameterWrapper, const ParameterWrapper* newValues,
uint16_t startAtIndex) {
using namespace testdevice;
switch (uniqueId) {
case ParameterUniqueIds::TEST_UINT32_0: {
if(fullInfoPrintout) {
uint32_t newValue = 0;
ReturnValue_t result = newValues->getElement<uint32_t>(&newValue, 0, 0);
if(result == HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Setting parameter 0 to "
"new value " << newValue << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Setting parameter 0 to new value %lu\n",
deviceIdx, static_cast<unsigned long>(newValue));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
}
parameterWrapper->set(testParameter0);
break;
}
case ParameterUniqueIds::TEST_INT32_1: {
if(fullInfoPrintout) {
int32_t newValue = 0;
ReturnValue_t result = newValues->getElement<int32_t>(&newValue, 0, 0);
if(result == HasReturnvaluesIF::RETURN_OK) {
#if OBSW_DEVICE_HANDLER_PRINTOUT == 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Setting parameter 1 to "
"new value " << newValue << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Setting parameter 1 to new value %lu\n",
deviceIdx, static_cast<unsigned long>(newValue));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* OBSW_DEVICE_HANDLER_PRINTOUT == 1 */
}
}
parameterWrapper->set(testParameter1);
break;
}
case ParameterUniqueIds::TEST_FLOAT_VEC3_2: {
if(fullInfoPrintout) {
float newVector[3];
if(newValues->getElement<float>(newVector, 0, 0) != RETURN_OK or
newValues->getElement<float>(newVector + 1, 0, 1) != RETURN_OK or
newValues->getElement<float>(newVector + 2, 0, 2) != RETURN_OK) {
return HasReturnvaluesIF::RETURN_FAILED;
}
#if OBSW_DEVICE_HANDLER_PRINTOUT == 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Setting parameter 3 to "
"(float vector with 3 entries) to new values [" << newVector[0] << ", " <<
newVector[1] << ", " << newVector[2] << "]" << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Setting parameter 3 to new values "
"[%f, %f, %f]\n", deviceIdx, newVector[0], newVector[1], newVector[2]);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* OBSW_DEVICE_HANDLER_PRINTOUT == 1 */
}
parameterWrapper->setVector(vectorFloatParams2);
break;
}
case(ParameterUniqueIds::PERIODIC_PRINT_ENABLED): {
if(fullInfoPrintout) {
uint8_t enabled = 0;
ReturnValue_t result = newValues->getElement<uint8_t>(&enabled, 0, 0);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
char const* printout = nullptr;
if (enabled) {
printout = "enabled";
}
else {
printout = "disabled";
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Periodic printout " <<
printout << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Periodic printout %s", printout);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
parameterWrapper->set(periodicPrintout);
break;
}
case(ParameterUniqueIds::CHANGING_DATASETS): {
uint8_t enabled = 0;
ReturnValue_t result = newValues->getElement<uint8_t>(&enabled, 0, 0);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if(not enabled) {
PoolReadGuard readHelper(&dataset);
dataset.testUint8Var.value = 0;
dataset.testUint32Var.value = 0;
dataset.testFloat3Vec.value[0] = 0.0;
dataset.testFloat3Vec.value[0] = 0.0;
dataset.testFloat3Vec.value[1] = 0.0;
}
if(fullInfoPrintout) {
char const* printout = nullptr;
if (enabled) {
printout = "enabled";
}
else {
printout = "disabled";
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Changing datasets " <<
printout << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Changing datasets %s", printout);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
parameterWrapper->set(changingDatasets);
break;
}
default:
return INVALID_IDENTIFIER_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}
LocalPoolObjectBase* TestDevice::getPoolObjectHandle(lp_id_t localPoolId) {
namespace td = testdevice;
if (localPoolId == td::PoolIds::TEST_UINT8_ID) {
return &dataset.testUint8Var;
}
else if (localPoolId == td::PoolIds::TEST_UINT32_ID) {
return &dataset.testUint32Var;
}
else if(localPoolId == td::PoolIds::TEST_FLOAT_VEC_3_ID) {
return &dataset.testFloat3Vec;
}
else {
return nullptr;
}
}

View File

@ -0,0 +1,142 @@
#ifndef TEST_TESTDEVICES_TESTDEVICEHANDLER_H_
#define TEST_TESTDEVICES_TESTDEVICEHANDLER_H_
#include "devicedefinitions/testDeviceDefinitions.h"
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
#include <fsfw/timemanager/Countdown.h>
/**
* @brief Basic dummy device handler to test device commanding without a physical device.
* @details
* This test device handler provided a basic demo for the device handler object.
* It can also be commanded with the following PUS services, using
* the specified object ID of the test device handler.
*
* 1. PUS Service 8 - Functional commanding
* 2. PUS Service 2 - Device access, raw commanding
* 3. PUS Service 20 - Parameter Management
* 4. PUS Service 3 - Housekeeping
* @author R. Mueller
* @ingroup devices
*/
class TestDevice: public DeviceHandlerBase {
public:
/**
* Build the test device in the factory.
* @param objectId This ID will be assigned to the test device handler.
* @param comIF The ID of the Communication IF used by test device handler.
* @param cookie Cookie object used by the test device handler. This is
* also used and passed to the comIF object.
* @param onImmediately This will start a transition to MODE_ON immediately
* so the device handler jumps into #doStartUp. Should only be used
* in development to reduce need of commanding while debugging.
* @param changingDataset
* Will be used later to change the local datasets containeds in the device.
*/
TestDevice(object_id_t objectId, object_id_t comIF, CookieIF * cookie,
testdevice::DeviceIndex deviceIdx = testdevice::DeviceIndex::DEVICE_0,
bool fullInfoPrintout = false, bool changingDataset = true);
/**
* This can be used to enable and disable a lot of demo print output.
* @param enable
*/
void enableFullDebugOutput(bool enable);
virtual ~ TestDevice();
//! Size of internal buffer used for communication.
static constexpr uint8_t MAX_BUFFER_SIZE = 255;
//! Unique index if the device handler is created multiple times.
testdevice::DeviceIndex deviceIdx = testdevice::DeviceIndex::DEVICE_0;
protected:
testdevice::TestDataSet dataset;
//! This is used to reset the dataset after a commanded change has been made.
bool resetAfterChange = false;
bool commandSent = false;
/** DeviceHandlerBase overrides (see DHB documentation) */
/**
* Hook into the DHB #performOperation call which is executed
* periodically.
*/
void performOperationHook() override;
virtual void doStartUp() override;
virtual void doShutDown() override;
virtual ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t * id) override;
virtual ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t * id) override;
virtual ReturnValue_t buildCommandFromCommand(DeviceCommandId_t
deviceCommand, const uint8_t * commandData,
size_t commandDataLen) override;
virtual void fillCommandAndReplyMap() override;
virtual ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
virtual uint32_t getTransitionDelayMs(Mode_t modeFrom,
Mode_t modeTo) override;
virtual void doTransition(Mode_t modeFrom, Submode_t subModeFrom) override;
virtual ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
virtual LocalPoolObjectBase* getPoolObjectHandle(lp_id_t localPoolId) override;
/* HasParametersIF overrides */
virtual ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex) override;
uint8_t commandBuffer[MAX_BUFFER_SIZE];
bool fullInfoPrintout = false;
bool oneShot = true;
/* Variables for parameter service */
uint32_t testParameter0 = 0;
int32_t testParameter1 = -2;
float vectorFloatParams2[3] = {};
/* Change device handler functionality, changeable via parameter service */
uint8_t periodicPrintout = false;
uint8_t changingDatasets = false;
ReturnValue_t buildNormalModeCommand(DeviceCommandId_t deviceCommand,
const uint8_t* commandData, size_t commandDataLen);
ReturnValue_t buildTestCommand0(DeviceCommandId_t deviceCommand, const uint8_t* commandData,
size_t commandDataLen);
ReturnValue_t buildTestCommand1(DeviceCommandId_t deviceCommand, const uint8_t* commandData,
size_t commandDataLen);
void passOnCommand(DeviceCommandId_t command, const uint8_t* commandData,
size_t commandDataLen);
ReturnValue_t interpretingNormalModeReply();
ReturnValue_t interpretingTestReply0(DeviceCommandId_t id,
const uint8_t* packet);
ReturnValue_t interpretingTestReply1(DeviceCommandId_t id,
const uint8_t* packet);
ReturnValue_t interpretingTestReply2(DeviceCommandId_t id, const uint8_t* packet);
/* Some timer utilities */
static constexpr uint8_t divider1 = 2;
PeriodicOperationDivider opDivider1 = PeriodicOperationDivider(divider1);
static constexpr uint8_t divider2 = 10;
PeriodicOperationDivider opDivider2 = PeriodicOperationDivider(divider2);
static constexpr uint32_t initTimeout = 2000;
Countdown countdown1 = Countdown(initTimeout);
};
#endif /* TEST_TESTDEVICES_TESTDEVICEHANDLER_H_ */

View File

@ -0,0 +1,86 @@
#include "TestEchoComIF.h"
#include "TestCookie.h"
#include <fsfw/serialize/SerializeAdapter.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/tmtcservices/CommandingServiceBase.h>
#include <fsfw/tmtcpacket/pus/tm.h>
TestEchoComIF::TestEchoComIF(object_id_t objectId):
SystemObject(objectId) {
}
TestEchoComIF::~TestEchoComIF() {}
ReturnValue_t TestEchoComIF::initializeInterface(CookieIF * cookie) {
DummyCookie* dummyCookie = dynamic_cast<DummyCookie*>(cookie);
if(dummyCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TestEchoComIF::initializeInterface: Invalid cookie!" << std::endl;
#else
sif::printWarning("TestEchoComIF::initializeInterface: Invalid cookie!\n");
#endif
return NULLPOINTER;
}
auto resultPair = replyMap.emplace(
dummyCookie->getAddress(), ReplyBuffer(dummyCookie->getReplyMaxLen()));
if(not resultPair.second) {
return HasReturnvaluesIF::RETURN_FAILED;
}
return RETURN_OK;
}
ReturnValue_t TestEchoComIF::sendMessage(CookieIF *cookie,
const uint8_t * sendData, size_t sendLen) {
DummyCookie* dummyCookie = dynamic_cast<DummyCookie*>(cookie);
if(dummyCookie == nullptr) {
return NULLPOINTER;
}
ReplyBuffer& replyBuffer = replyMap.find(dummyCookie->getAddress())->second;
if(sendLen > replyBuffer.capacity()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TestEchoComIF::sendMessage: Send length " << sendLen << " larger than "
"current reply buffer length!" << std::endl;
#else
sif::printWarning("TestEchoComIF::sendMessage: Send length %d larger than current "
"reply buffer length!\n", sendLen);
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
replyBuffer.resize(sendLen);
memcpy(replyBuffer.data(), sendData, sendLen);
return RETURN_OK;
}
ReturnValue_t TestEchoComIF::getSendSuccess(CookieIF *cookie) {
return RETURN_OK;
}
ReturnValue_t TestEchoComIF::requestReceiveMessage(CookieIF *cookie,
size_t requestLen) {
return RETURN_OK;
}
ReturnValue_t TestEchoComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t *size) {
DummyCookie* dummyCookie = dynamic_cast<DummyCookie*>(cookie);
if(dummyCookie == nullptr) {
return NULLPOINTER;
}
ReplyBuffer& replyBuffer = replyMap.find(dummyCookie->getAddress())->second;
*buffer = replyBuffer.data();
*size = replyBuffer.size();
dummyReplyCounter ++;
if(dummyReplyCounter == 10) {
// add anything that needs to be read periodically by dummy handler
dummyReplyCounter = 0;
}
return RETURN_OK;
}

View File

@ -0,0 +1,56 @@
#ifndef TEST_TESTDEVICES_TESTECHOCOMIF_H_
#define TEST_TESTDEVICES_TESTECHOCOMIF_H_
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/ipc/MessageQueueIF.h>
#include <fsfw/tmtcservices/AcceptsTelemetryIF.h>
#include <vector>
/**
* @brief Used to simply returned sent data from device handler
* @details Assign this com IF in the factory when creating the device handler
* @ingroup test
*/
class TestEchoComIF: public DeviceCommunicationIF, public SystemObject {
public:
TestEchoComIF(object_id_t objectId);
virtual ~TestEchoComIF();
/**
* DeviceCommunicationIF overrides
* (see DeviceCommunicationIF documentation
*/
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie, const uint8_t * sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
private:
/**
* Send TM packet which contains received data as TM[17,130].
* Wiretapping will do the same.
* @param data
* @param len
*/
void sendTmPacket(const uint8_t *data,uint32_t len);
AcceptsTelemetryIF* funnel = nullptr;
MessageQueueIF* tmQueue = nullptr;
size_t replyMaxLen = 0;
using ReplyBuffer = std::vector<uint8_t>;
std::map<address_t, ReplyBuffer> replyMap;
uint8_t dummyReplyCounter = 0;
uint16_t packetSubCounter = 0;
};
#endif /* TEST_TESTDEVICES_TESTECHOCOMIF_H_ */

View File

@ -0,0 +1,100 @@
#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_TESTDEVICEDEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_TESTDEVICEDEFINITIONS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <exampleObjectIds.h>
namespace testdevice {
enum ParameterUniqueIds: uint8_t {
TEST_UINT32_0,
TEST_INT32_1,
TEST_FLOAT_VEC3_2,
PERIODIC_PRINT_ENABLED,
CHANGING_DATASETS
};
enum DeviceIndex: uint32_t {
DEVICE_0,
DEVICE_1
};
/** Normal mode command. This ID is also used to access the set variable via the housekeeping
service */
static constexpr DeviceCommandId_t TEST_NORMAL_MODE_CMD = 0;
//! Test completion reply
static constexpr DeviceCommandId_t TEST_COMMAND_0 = 1;
//! Test data reply
static constexpr DeviceCommandId_t TEST_COMMAND_1 = 2;
/**
* Can be used to trigger a notification to the demo controller. For DEVICE_0, only notifications
* messages will be generated while for DEVICE_1, snapshot messages will be generated.
*
* DEVICE_0 VAR: Sets the set variable 0 above a treshold (200) to trigger a variable
* notification.
* DEVICE_0 SET: Sets the vector mean values above a treshold (mean larger than 20) to trigger a
* set notification.
*
* DEVICE_1 VAR: Sets the set variable 0 below a treshold (less than 50 but not 0) to trigger a
* variable snapshot.
* DEVICE_1 SET: Sets the set vector mean values below a treshold (mean smaller than -20) to
* trigger a set snapshot message.
*/
static constexpr DeviceCommandId_t TEST_NOTIF_SNAPSHOT_VAR = 3;
static constexpr DeviceCommandId_t TEST_NOTIF_SNAPSHOT_SET = 4;
/**
* Can be used to trigger a snapshot message to the demo controller.
* Depending on the device index, a notification will be triggered for different set variables.
*
* DEVICE_0: Sets the set variable 0 below a treshold (below 50 but not 0) to trigger
* a variable snapshot
* DEVICE_1: Sets the vector mean values below a treshold (mean less than -20) to trigger a
* set snapshot
*/
static constexpr DeviceCommandId_t TEST_SNAPSHOT = 5;
//! Generates a random value for variable 1 of the dataset.
static constexpr DeviceCommandId_t GENERATE_SET_VAR_1_RNG_VALUE = 6;
/**
* These parameters are sent back with the command ID as a data reply
*/
static constexpr uint16_t COMMAND_1_PARAM1 = 0xBAB0; //!< param1, 2 bytes
//! param2, 8 bytes
static constexpr uint64_t COMMAND_1_PARAM2 = 0x000000524F42494E;
static constexpr size_t TEST_COMMAND_0_SIZE = sizeof(TEST_COMMAND_0);
static constexpr size_t TEST_COMMAND_1_SIZE = sizeof(TEST_COMMAND_1) + sizeof(COMMAND_1_PARAM1) +
sizeof(COMMAND_1_PARAM2);
enum PoolIds: lp_id_t {
TEST_UINT8_ID = 0,
TEST_UINT32_ID = 1,
TEST_FLOAT_VEC_3_ID = 2
};
static constexpr uint8_t TEST_SET_ID = TEST_NORMAL_MODE_CMD;
static const sid_t TEST_SET_DEV_0_SID = sid_t(objects::TEST_DEVICE_HANDLER_0, TEST_SET_ID);
static const sid_t TEST_SET_DEV_1_SID = sid_t(objects::TEST_DEVICE_HANDLER_1, TEST_SET_ID);
class TestDataSet: public StaticLocalDataSet<3> {
public:
TestDataSet(HasLocalDataPoolIF* owner): StaticLocalDataSet(owner, TEST_SET_ID) {}
TestDataSet(object_id_t owner): StaticLocalDataSet(sid_t(owner, TEST_SET_ID)) {}
lp_var_t<uint8_t> testUint8Var = lp_var_t<uint8_t>(
gp_id_t(this->getCreatorObjectId(), PoolIds::TEST_UINT8_ID), this);
lp_var_t<uint32_t> testUint32Var = lp_var_t<uint32_t>(
gp_id_t(this->getCreatorObjectId(), PoolIds::TEST_UINT32_ID), this);
lp_vec_t<float ,3> testFloat3Vec = lp_vec_t<float, 3>(
gp_id_t(this->getCreatorObjectId(), PoolIds::TEST_FLOAT_VEC_3_ID), this);
};
}
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_TESTDEVICEDEFINITIONS_H_ */

View File

@ -0,0 +1,7 @@
target_sources(${TARGET_NAME}
PRIVATE
TestTask.cpp
FsfwReaderTask.cpp
FsfwExampleTask.cpp
MutexExample.cpp
)

View File

@ -0,0 +1,264 @@
#include "FsfwExampleTask.h"
#include "fsfw/ExampleConfig.h"
#include "exampleObjectIds.h"
#include "objects/systemObjectList.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/objectmanager/ObjectManager.h>
#include <fsfw/tasks/TaskFactory.h>
#include <fsfw/ipc/QueueFactory.h>
#include <fsfw/ipc/CommandMessage.h>
FsfwExampleTask::FsfwExampleTask(object_id_t objectId): SystemObject(objectId),
poolManager(this, nullptr), demoSet(this),
monitor(objectId, MONITOR_ID, gp_id_t(objectId, FsfwDemoSet::VARIABLE_LIMIT), 30, 10)
{
commandQueue = QueueFactory::instance()->createMessageQueue(10,
CommandMessage::MAX_MESSAGE_SIZE);
}
FsfwExampleTask::~FsfwExampleTask() {
}
ReturnValue_t FsfwExampleTask::performOperation(uint8_t operationCode) {
if(operationCode == OpCodes::DELAY_SHORT){
TaskFactory::delayTask(5);
}
// TODO: Move this to new test controller?
ReturnValue_t result = performMonitoringDemo();
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if (operationCode == OpCodes::SEND_RAND_NUM) {
result = performSendOperation();
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
if (operationCode == OpCodes::RECEIVE_RAND_NUM) {
result = performReceiveOperation();
}
return 0;
}
object_id_t FsfwExampleTask::getNextRecipient() {
switch(this->getObjectId()) {
case(objects::TEST_DUMMY_1): {
return objects::TEST_DUMMY_2;
}
case(objects::TEST_DUMMY_2): {
return objects::TEST_DUMMY_3;
}
case(objects::TEST_DUMMY_3): {
return objects::TEST_DUMMY_1;
}
default:
return objects::TEST_DUMMY_1;
}
}
object_id_t FsfwExampleTask::getSender() {
switch(this->getObjectId()) {
case(objects::TEST_DUMMY_1): {
return objects::TEST_DUMMY_3;
}
case(objects::TEST_DUMMY_2): {
return objects::TEST_DUMMY_1;
}
case(objects::TEST_DUMMY_3): {
return objects::TEST_DUMMY_2;
}
default:
return objects::TEST_DUMMY_1;
}
}
ReturnValue_t FsfwExampleTask::initialize() {
// Get the dataset of the sender. Will be cached for later checks.
object_id_t sender = getSender();
HasLocalDataPoolIF* senderIF = ObjectManager::instance()->get<HasLocalDataPoolIF>(sender);
if(senderIF == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::initialize: Sender object invalid!" << std::endl;
#else
sif::printError("FsfwDemoTask::initialize: Sender object invalid!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
// we need a private copy of the previous dataset.. or we use the shared dataset.
senderSet = new FsfwDemoSet(senderIF);
if(senderSet == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::initialize: Sender dataset invalid!" << std::endl;
#else
sif::printError("FsfwDemoTask::initialize: Sender dataset invalid!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return poolManager.initialize(commandQueue);
}
ReturnValue_t FsfwExampleTask::initializeAfterTaskCreation() {
return poolManager.initializeAfterTaskCreation();
}
object_id_t FsfwExampleTask::getObjectId() const {
return SystemObject::getObjectId();
}
MessageQueueId_t FsfwExampleTask::getMessageQueueId(){
return commandQueue->getId();
}
void FsfwExampleTask::setTaskIF(PeriodicTaskIF* task){
this->task = task;
}
LocalPoolDataSetBase* FsfwExampleTask::getDataSetHandle(sid_t sid) {
return &demoSet;
}
uint32_t FsfwExampleTask::getPeriodicOperationFrequency() const {
return task->getPeriodMs();
}
ReturnValue_t FsfwExampleTask::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(FsfwDemoSet::PoolIds::VARIABLE, new PoolEntry<uint32_t>({0}));
localDataPoolMap.emplace(FsfwDemoSet::PoolIds::VARIABLE_LIMIT, new PoolEntry<uint16_t>({0}));
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FsfwExampleTask::performMonitoringDemo() {
ReturnValue_t result = demoSet.variableLimit.read(
MutexIF::TimeoutType::WAITING, 20);
if(result != HasReturnvaluesIF::RETURN_OK) {
/* Configuration error */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "DummyObject::performOperation: Could not read variableLimit!" << std::endl;
#else
sif::printError("DummyObject::performOperation: Could not read variableLimit!\n");
#endif
return result;
}
if(this->getObjectId() == objects::TEST_DUMMY_5){
if(demoSet.variableLimit.value > 20){
demoSet.variableLimit.value = 0;
}
demoSet.variableLimit.value++;
demoSet.variableLimit.commit(20);
monitor.check();
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FsfwExampleTask::performSendOperation() {
object_id_t nextRecipient = getNextRecipient();
FsfwExampleTask* target = ObjectManager::instance()->get<FsfwExampleTask>(nextRecipient);
if (target == nullptr) {
/* Configuration error */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "DummyObject::performOperation: Next recipient does not exist!" << std::endl;
#else
sif::printError("DummyObject::performOperation: Next recipient does not exist!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
uint32_t randomNumber = rand() % 100;
CommandMessage message;
message.setParameter(randomNumber);
message.setParameter2(this->getMessageQueueId());
/* Send message using own message queue */
ReturnValue_t result = commandQueue->sendMessage(target->getMessageQueueId(), &message);
if (result != HasReturnvaluesIF::RETURN_OK
&& result != MessageQueueIF::FULL) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::performSendOperation: Send failed with " << result <<
std::endl;
#else
sif::printError("FsfwDemoTask::performSendOperation: Send failed with %hu\n", result);
#endif
}
/* Send message without via MessageQueueSenderIF */
result = MessageQueueSenderIF::sendMessage(target->getMessageQueueId(), &message,
commandQueue->getId());
if (result != HasReturnvaluesIF::RETURN_OK
&& result != MessageQueueIF::FULL) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::performSendOperation: Send failed with " << result << std::endl;
#else
sif::printError("FsfwDemoTask::performSendOperation: Send failed with %hu\n", result);
#endif
}
demoSet.variableWrite.value = randomNumber;
result = demoSet.variableWrite.commit(20);
return result;
}
ReturnValue_t FsfwExampleTask::performReceiveOperation() {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
while (result != MessageQueueIF::EMPTY) {
CommandMessage receivedMessage;
result = commandQueue->receiveMessage(&receivedMessage);
if (result != HasReturnvaluesIF::RETURN_OK
&& result != MessageQueueIF::EMPTY) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::debug << "Receive failed with " << result << std::endl;
#endif
break;
}
if (result != MessageQueueIF::EMPTY) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
#if OBSW_VERBOSE_LEVEL >= 2
sif::debug << "Message Received by " << getObjectId() << " from Queue " <<
receivedMessage.getSender() << " ObjectId " << receivedMessage.getParameter() <<
" Queue " << receivedMessage.getParameter2() << std::endl;
#endif
#endif
if(senderSet == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
result = senderSet->variableRead.read(MutexIF::TimeoutType::WAITING,
20);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if(senderSet->variableRead.value != receivedMessage.getParameter()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::performReceiveOperation: Variable " << std::hex <<
"0x" << senderSet->variableRead.getDataPoolId() << std::dec <<
" has wrong value." << std::endl;
sif::error << "Value: " << demoSet.variableRead.value << ", expected: " <<
receivedMessage.getParameter() << std::endl;
#endif
}
}
}
return result;
}
MessageQueueId_t FsfwExampleTask::getCommandQueue() const {
return commandQueue->getId();
}
LocalDataPoolManager* FsfwExampleTask::getHkManagerHandle() {
return &poolManager;
}

View File

@ -0,0 +1,116 @@
#ifndef MISSION_DEMO_FSFWDEMOTASK_H_
#define MISSION_DEMO_FSFWDEMOTASK_H_
#include "testdefinitions/demoDefinitions.h"
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/datapoollocal/LocalPoolVariable.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/ipc/MessageQueueIF.h>
#include <fsfw/monitoring/AbsLimitMonitor.h>
class PeriodicTaskIF;
/**
* @brief This demo set shows the local data pool functionality and fixed
* timeslot capabilities of the FSFW.
*
* @details
* There will be multiple demo objects. Each demo object will generate a random
* number and send that number via message queues to the next demo object
* (e.g. DUMMY_1 sends the number to DUMMY_2 etc.). The receiving object
* will check the received value against the sent value by extracting the sent
* value directly from the sender via the local data pool interface.
* If the timing is set up correctly, the values will always be the same.
*/
class FsfwExampleTask:
public ExecutableObjectIF,
public SystemObject,
public HasLocalDataPoolIF {
public:
enum OpCodes {
SEND_RAND_NUM,
RECEIVE_RAND_NUM,
DELAY_SHORT
};
static constexpr uint8_t MONITOR_ID = 2;
/**
* @brief Simple constructor, only expects object ID.
* @param objectId
*/
FsfwExampleTask(object_id_t objectId);
virtual ~FsfwExampleTask();
/**
* @brief The performOperation method is executed in a task.
* @details There are no restrictions for calls within this method, so any
* other member of the class can be used.
* @return Currently, the return value is ignored.
*/
virtual ReturnValue_t performOperation(uint8_t operationCode = 0);
/**
* @brief This function will be called by the global object manager
* @details
* This function will always be called before any tasks are started.
* It can also be used to return error codes in the software initialization
* process cleanly.
* @return
*/
virtual ReturnValue_t initialize() override;
/**
* @brief This function will be called by the OSAL task handlers
* @details
* This function will be called before the first #performOperation
* call after the tasks have been started. It can be used if some
* initialization process requires task specific properties like
* periodic intervals (by using the PeriodicTaskIF* handle).
* @return
*/
virtual ReturnValue_t initializeAfterTaskCreation() override;
/**
* This function will be called by the OSAL task handler. The
* task interface handle can be cached to access task specific properties.
* @param task
*/
void setTaskIF(PeriodicTaskIF* task) override;
object_id_t getObjectId() const override;
MessageQueueId_t getMessageQueueId();
private:
LocalDataPoolManager poolManager;
FsfwDemoSet* senderSet = nullptr;
FsfwDemoSet demoSet;
AbsLimitMonitor<int32_t> monitor;
PeriodicTaskIF* task = nullptr;
MessageQueueIF* commandQueue = nullptr;
/* HasLocalDatapoolIF overrides */
MessageQueueId_t getCommandQueue() const override;
LocalPoolDataSetBase* getDataSetHandle(sid_t sid) override;
uint32_t getPeriodicOperationFrequency() const override;
virtual ReturnValue_t initializeLocalDataPool(
localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
virtual LocalDataPoolManager* getHkManagerHandle() override;
object_id_t getNextRecipient();
object_id_t getSender();
ReturnValue_t performMonitoringDemo();
ReturnValue_t performSendOperation();
ReturnValue_t performReceiveOperation();
uint8_t execCounter = 0;
};
#endif /* MISSION_DEMO_FSFWDEMOTASK_H_ */

View File

@ -0,0 +1,55 @@
#include "FsfwReaderTask.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/tasks/TaskFactory.h>
#include <fsfw/timemanager/Stopwatch.h>
#include <OBSWConfig.h>
FsfwReaderTask::FsfwReaderTask(object_id_t objectId, bool enablePrintout):
SystemObject(objectId), printoutEnabled(enablePrintout), opDivider(10),
readSet(this->getObjectId(),
gp_id_t(objects::TEST_DUMMY_1, FsfwDemoSet::PoolIds::VARIABLE),
gp_id_t(objects::TEST_DUMMY_2, FsfwDemoSet::PoolIds::VARIABLE),
gp_id_t(objects::TEST_DUMMY_3, FsfwDemoSet::PoolIds::VARIABLE)) {
/* Special protection for set reading because each variable is read from a different pool */
readSet.setReadCommitProtectionBehaviour(true);
}
FsfwReaderTask::~FsfwReaderTask() {
}
ReturnValue_t FsfwReaderTask::initializeAfterTaskCreation() {
/* Give other task some time to set up local data pools. */
TaskFactory::delayTask(20);
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FsfwReaderTask::performOperation(uint8_t operationCode) {
PoolReadGuard readHelper(&readSet);
uint32_t variable1 = readSet.variable1.value;
uint32_t variable2 = readSet.variable2.value;
uint32_t variable3 = readSet.variable3.value;
#if OBSW_VERBOSE_LEVEL >= 1
if(opDivider.checkAndIncrement() and printoutEnabled) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "FsfwPeriodicTask::performOperation: Reading variables." << std::endl;
sif::info << "Variable read from demo object 1: " << variable1 << std::endl;
sif::info << "Variable read from demo object 2: " << variable2 << std::endl;
sif::info << "Variable read from demo object 3: " << variable3 << std::endl;
#else
sif::printInfo("FsfwPeriodicTask::performOperation: Reading variables.\n\r");
sif::printInfo("Variable read from demo object 1: %d\n\r", variable1);
sif::printInfo("Variable read from demo object 2: %d\n\r", variable2);
sif::printInfo("Variable read from demo object 3: %d\n\r", variable3);
#endif
}
#else
if(variable1 and variable2 and variable3) {};
#endif
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,24 @@
#ifndef MISSION_DEMO_FSFWPERIODICTASK_H_
#define MISSION_DEMO_FSFWPERIODICTASK_H_
#include "testdefinitions/demoDefinitions.h"
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/objectmanager/SystemObject.h>
class FsfwReaderTask: public ExecutableObjectIF, public SystemObject {
public:
FsfwReaderTask(object_id_t objectId, bool enablePrintout);
virtual ~FsfwReaderTask();
ReturnValue_t initializeAfterTaskCreation() override;
virtual ReturnValue_t performOperation(uint8_t operationCode = 0);
private:
bool printoutEnabled = false;
PeriodicOperationDivider opDivider;
CompleteDemoReadSet readSet;
};
#endif /* MISSION_DEMO_FSFWPERIODICTASK_H_ */

View File

@ -0,0 +1,47 @@
#include "MutexExample.h"
#include <fsfw/ipc/MutexFactory.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
void MutexExample::example(){
MutexIF* mutex = MutexFactory::instance()->createMutex();
MutexIF* mutex2 = MutexFactory::instance()->createMutex();
ReturnValue_t result = mutex->lockMutex(MutexIF::TimeoutType::WAITING,
2 * 60 * 1000);
if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "MutexExample::example: Lock Failed with " << result << std::endl;
#else
sif::printError("MutexExample::example: Lock Failed with %hu\n", result);
#endif
}
result = mutex2->lockMutex(MutexIF::TimeoutType::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "MutexExample::example: Lock Failed with " << result << std::endl;
#else
sif::printError("MutexExample::example: Lock Failed with %hu\n", result);
#endif
}
result = mutex->unlockMutex();
if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "MutexExample::example: Unlock Failed with " << result << std::endl;
#else
sif::printError("MutexExample::example: Unlock Failed with %hu\n", result);
#endif
}
result = mutex2->unlockMutex();
if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "MutexExample::example: Unlock Failed with " << result << std::endl;
#else
sif::printError("MutexExample::example: Unlock Failed with %hu\n", result);
#endif
}
}

View File

@ -0,0 +1,8 @@
#ifndef MISSION_DEMO_MUTEXEXAMPLE_H_
#define MISSION_DEMO_MUTEXEXAMPLE_H_
namespace MutexExample {
void example();
};
#endif /* MISSION_DEMO_MUTEXEXAMPLE_H_ */

View File

@ -0,0 +1,80 @@
#include "TestTask.h"
#include <fsfw/objectmanager/ObjectManager.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
bool TestTask::oneShotAction = true;
MutexIF* TestTask::testLock = nullptr;
TestTask::TestTask(object_id_t objectId, bool periodicPrintout, bool periodicEvent):
SystemObject(objectId), testMode(testModes::A),
periodicPrinout(periodicPrintout), periodicEvent(periodicEvent) {
if(testLock == nullptr) {
testLock = MutexFactory::instance()->createMutex();
}
IPCStore = ObjectManager::instance()->get<StorageManagerIF>(objects::IPC_STORE);
}
TestTask::~TestTask() {
}
ReturnValue_t TestTask::performOperation(uint8_t operationCode) {
ReturnValue_t result = RETURN_OK;
testLock->lockMutex(MutexIF::TimeoutType::WAITING, 20);
if(oneShotAction) {
// Add code here which should only be run once
performOneShotAction();
oneShotAction = false;
}
testLock->unlockMutex();
// Add code here which should only be run once per performOperation
performPeriodicAction();
// Add code here which should only be run on alternating cycles.
if(testMode == testModes::A) {
performActionA();
testMode = testModes::B;
}
else if(testMode == testModes::B) {
performActionB();
testMode = testModes::A;
}
return result;
}
ReturnValue_t TestTask::performOneShotAction() {
/* Everything here will only be performed once. */
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestTask::performPeriodicAction() {
/* This is performed each task cycle */
ReturnValue_t result = RETURN_OK;
if(periodicPrinout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestTask::performPeriodicAction: Hello World!" << std::endl;
#else
sif::printInfo("TestTask::performPeriodicAction: Hello World!\n");
#endif
}
if(periodicEvent) {
triggerEvent(TEST_EVENT, 0x1234, 0x4321);
}
return result;
}
ReturnValue_t TestTask::performActionA() {
/* This is performed each alternating task cycle */
ReturnValue_t result = RETURN_OK;
return result;
}
ReturnValue_t TestTask::performActionB() {
/* This is performed each alternating task cycle */
ReturnValue_t result = RETURN_OK;
return result;
}

View File

@ -0,0 +1,56 @@
#ifndef MISSION_DEMO_TESTTASK_H_
#define MISSION_DEMO_TESTTASK_H_
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/storagemanager/StorageManagerIF.h>
#include "fsfw/events/Event.h"
#include "events/subsystemIdRanges.h"
/**
* @brief Test class for general C++ testing and any other code which will not be part of the
* primary mission software.
* @details
* Should not be used for board specific tests. Instead, a derived board test class should be used.
*/
class TestTask :
public SystemObject,
public ExecutableObjectIF,
public HasReturnvaluesIF {
public:
TestTask(object_id_t objectId, bool periodicPrintout = false, bool periodicEvent = false);
virtual ~TestTask();
virtual ReturnValue_t performOperation(uint8_t operationCode = 0);
static constexpr uint8_t subsystemId = SUBSYSTEM_ID::TEST_TASK_ID;
static constexpr Event TEST_EVENT = event::makeEvent(subsystemId, 0, severity::INFO);
protected:
virtual ReturnValue_t performOneShotAction();
virtual ReturnValue_t performPeriodicAction();
virtual ReturnValue_t performActionA();
virtual ReturnValue_t performActionB();
enum testModes: uint8_t {
A,
B
};
testModes testMode;
bool periodicPrinout = false;
bool periodicEvent = false;
bool testFlag = false;
uint8_t counter { 1 };
uint8_t counterTrigger { 3 };
void performPusInjectorTest();
void examplePacketTest();
private:
static bool oneShotAction;
static MutexIF* testLock;
StorageManagerIF* IPCStore;
};
#endif /* TESTTASK_H_ */

View File

@ -0,0 +1,63 @@
#ifndef MISSION_DEMO_DEMODEFINITIONS_H_
#define MISSION_DEMO_DEMODEFINITIONS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/datapoollocal/LocalPoolVariable.h>
/**
* @brief This demo set showcases the local data pool functionality of the
* FSFW
* @details
* Each demo object will have an own instance of this set class, which contains
* pool variables (for read and write access respectively).
*/
class FsfwDemoSet: public StaticLocalDataSet<3> {
public:
static constexpr uint32_t DEMO_SET_ID = 0;
enum PoolIds {
VARIABLE,
VARIABLE_LIMIT
};
FsfwDemoSet(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, DEMO_SET_ID) {}
lp_var_t<uint32_t> variableRead = lp_var_t<uint32_t>(sid.objectId,
PoolIds::VARIABLE, this, pool_rwm_t::VAR_READ);
lp_var_t<uint32_t> variableWrite = lp_var_t<uint32_t>(sid.objectId,
PoolIds::VARIABLE, this, pool_rwm_t::VAR_WRITE);
lp_var_t<uint16_t> variableLimit = lp_var_t<uint16_t>(sid.objectId,
PoolIds::VARIABLE_LIMIT, this);
private:
};
/**
* This set will enable object to read the dummy variables from the dataset
* above. An example application would be a consumer object like a controller
* which reads multiple sensor values at once.
*/
class CompleteDemoReadSet: public StaticLocalDataSet<3> {
public:
static constexpr uint32_t DEMO_SET_ID = 0;
CompleteDemoReadSet(object_id_t owner, gp_id_t variable1,
gp_id_t variable2, gp_id_t variable3):
StaticLocalDataSet(sid_t(owner, DEMO_SET_ID)),
variable1(variable1, this, pool_rwm_t::VAR_READ),
variable2(variable2, this, pool_rwm_t::VAR_READ),
variable3(variable3, this, pool_rwm_t::VAR_READ) {}
lp_var_t<uint32_t> variable1;
lp_var_t<uint32_t> variable2;
lp_var_t<uint32_t> variable3;
private:
};
#endif /* MISSION_DEMO_DEMODEFINITIONS_H_ */

View File

@ -0,0 +1,4 @@
target_sources(${TARGET_NAME} PRIVATE
utility.cpp
TmFunnel.cpp
)

View File

@ -0,0 +1,22 @@
#ifndef MISSION_UTILITY_TASKCREATION_H_
#define MISSION_UTILITY_TASKCREATION_H_
#include <fsfw/objectmanager/SystemObjectIF.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
namespace task {
void printInitError(const char* objName, object_id_t objectId) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "InitMission: Adding object " << objName << "("
<< std::setw(8) << std::setfill('0') << std::hex << objectId
<< std::dec << ") failed." << std::endl;
#else
sif::printError("InitMission: Adding object %s (0x%08x) failed.\n",
objName, static_cast<unsigned int>(objectId));
#endif
}
}
#endif /* MISSION_UTILITY_TASKCREATION_H_ */

View File

@ -0,0 +1,121 @@
#include "TmFunnel.h"
#include <fsfw/ipc/QueueFactory.h>
#include <fsfw/objectmanager/ObjectManager.h>
#include <fsfw/tmtcpacket/pus/tm.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
object_id_t TmFunnel::downlinkDestination = objects::NO_OBJECT;
object_id_t TmFunnel::storageDestination = objects::NO_OBJECT;
TmFunnel::TmFunnel(object_id_t objectId, uint32_t messageDepth):
SystemObject(objectId), messageDepth(messageDepth) {
tmQueue = QueueFactory::instance()->createMessageQueue(messageDepth,
MessageQueueMessage::MAX_MESSAGE_SIZE);
storageQueue = QueueFactory::instance()->createMessageQueue(messageDepth,
MessageQueueMessage::MAX_MESSAGE_SIZE);
}
TmFunnel::~TmFunnel() {
}
MessageQueueId_t TmFunnel::getReportReceptionQueue(uint8_t virtualChannel) {
return tmQueue->getId();
}
ReturnValue_t TmFunnel::performOperation(uint8_t operationCode) {
TmTcMessage currentMessage;
ReturnValue_t status = tmQueue->receiveMessage(&currentMessage);
while(status == HasReturnvaluesIF::RETURN_OK)
{
status = handlePacket(&currentMessage);
if(status != HasReturnvaluesIF::RETURN_OK){
break;
}
status = tmQueue->receiveMessage(&currentMessage);
}
if (status == MessageQueueIF::EMPTY) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return status;
}
}
ReturnValue_t TmFunnel::handlePacket(TmTcMessage* message) {
uint8_t* packetData = nullptr;
size_t size = 0;
ReturnValue_t result = tmPool->modifyData(message->getStorageId(),
&packetData, &size);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
TmPacketPusC packet(packetData);
packet.setPacketSequenceCount(this->sourceSequenceCount);
sourceSequenceCount++;
sourceSequenceCount = sourceSequenceCount %
SpacePacketBase::LIMIT_SEQUENCE_COUNT;
packet.setErrorControl();
result = tmQueue->sendToDefault(message);
if(result != HasReturnvaluesIF::RETURN_OK){
tmPool->deleteData(message->getStorageId());
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "TmFunnel::handlePacket: Error sending to downlink handler" << std::endl;
#endif
return result;
}
if(storageDestination != objects::NO_OBJECT) {
result = storageQueue->sendToDefault(message);
if(result != HasReturnvaluesIF::RETURN_OK){
tmPool->deleteData(message->getStorageId());
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "TmFunnel::handlePacket: Error sending to storage handler" << std::endl;
#endif
return result;
}
}
return result;
}
ReturnValue_t TmFunnel::initialize() {
tmPool = ObjectManager::instance()->get<StorageManagerIF>(objects::TM_STORE);
if(tmPool == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "TmFunnel::initialize: TM store not set." << std::endl;
sif::error << "Make sure the tm store is set up properly and implements StorageManagerIF" <<
std::endl;
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
}
AcceptsTelemetryIF* tmTarget = ObjectManager::instance()->
get<AcceptsTelemetryIF>(downlinkDestination);
if(tmTarget == nullptr){
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "TmFunnel::initialize: Downlink Destination not set." << std::endl;
sif::error << "Make sure the downlink destination object is set up properly and implements "
"AcceptsTelemetryIF" << std::endl;
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
}
tmQueue->setDefaultDestination(tmTarget->getReportReceptionQueue());
// Storage destination is optional.
if(storageDestination == objects::NO_OBJECT) {
return SystemObject::initialize();
}
AcceptsTelemetryIF* storageTarget = ObjectManager::instance()->
get<AcceptsTelemetryIF>(storageDestination);
if(storageTarget != nullptr) {
storageQueue->setDefaultDestination(
storageTarget->getReportReceptionQueue());
}
return SystemObject::initialize();
}

View File

@ -0,0 +1,51 @@
#ifndef MISSION_UTILITY_TMFUNNEL_H_
#define MISSION_UTILITY_TMFUNNEL_H_
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/tmtcservices/AcceptsTelemetryIF.h>
#include <fsfw/ipc/MessageQueueIF.h>
#include <fsfw/tmtcservices/TmTcMessage.h>
namespace Factory{
void setStaticFrameworkObjectIds();
}
/**
* @brief TM Recipient.
* @details
* Main telemetry receiver. All generated telemetry is funneled into
* this object.
* @ingroup utility
* @author J. Meier
*/
class TmFunnel:
public AcceptsTelemetryIF,
public ExecutableObjectIF,
public SystemObject {
friend void (Factory::setStaticFrameworkObjectIds)();
public:
TmFunnel(object_id_t objectId, uint32_t messageDepth = 20);
virtual ~TmFunnel();
virtual MessageQueueId_t getReportReceptionQueue(
uint8_t virtualChannel = 0) override;
virtual ReturnValue_t performOperation(uint8_t operationCode = 0) override;
virtual ReturnValue_t initialize() override;
protected:
static object_id_t downlinkDestination;
static object_id_t storageDestination;
private:
uint16_t sourceSequenceCount = 0;
MessageQueueIF* tmQueue = nullptr;
MessageQueueIF* storageQueue = nullptr;
StorageManagerIF* tmPool = nullptr;
uint32_t messageDepth = 0;
ReturnValue_t handlePacket(TmTcMessage* message);
};
#endif /* MISSION_UTILITY_TMFUNNEL_H_ */

View File

@ -0,0 +1,97 @@
/*
*
* Created: 29.03.2018
*
* Authors:
*
* Assembled from the code released on Stackoverflow by:
* Dennis (instructable.com/member/nqtronix) | https://stackoverflow.com/questions/23032002/c-c-how-to-get-integer-unix-timestamp-of-build-time-not-string
* and
* Alexis Wilke | https://stackoverflow.com/questions/10538444/do-you-know-of-a-c-macro-to-compute-unix-time-and-date
*
* Assembled by Jean Rabault
*
* UNIX_TIMESTAMP gives the UNIX timestamp (unsigned long integer of seconds since 1st Jan 1970) of compilation from macros using the compiler defined __TIME__ macro.
* This should include Gregorian calendar leap days, in particular the 29ths of February, 100 and 400 years modulo leaps.
*
* Careful: __TIME__ is the local time of the computer, NOT the UTC time in general!
*
*/
#ifndef COMPILE_TIME_H_
#define COMPILE_TIME_H_
// Some definitions for calculation
#define SEC_PER_MIN 60UL
#define SEC_PER_HOUR 3600UL
#define SEC_PER_DAY 86400UL
#define SEC_PER_YEAR (SEC_PER_DAY*365)
// extracts 1..4 characters from a string and interprets it as a decimal value
#define CONV_STR2DEC_1(str, i) (str[i]>'0'?str[i]-'0':0)
#define CONV_STR2DEC_2(str, i) (CONV_STR2DEC_1(str, i)*10 + str[i+1]-'0')
#define CONV_STR2DEC_3(str, i) (CONV_STR2DEC_2(str, i)*10 + str[i+2]-'0')
#define CONV_STR2DEC_4(str, i) (CONV_STR2DEC_3(str, i)*10 + str[i+3]-'0')
// Custom "glue logic" to convert the month name to a usable number
#define GET_MONTH(str, i) (str[i]=='J' && str[i+1]=='a' && str[i+2]=='n' ? 1 : \
str[i]=='F' && str[i+1]=='e' && str[i+2]=='b' ? 2 : \
str[i]=='M' && str[i+1]=='a' && str[i+2]=='r' ? 3 : \
str[i]=='A' && str[i+1]=='p' && str[i+2]=='r' ? 4 : \
str[i]=='M' && str[i+1]=='a' && str[i+2]=='y' ? 5 : \
str[i]=='J' && str[i+1]=='u' && str[i+2]=='n' ? 6 : \
str[i]=='J' && str[i+1]=='u' && str[i+2]=='l' ? 7 : \
str[i]=='A' && str[i+1]=='u' && str[i+2]=='g' ? 8 : \
str[i]=='S' && str[i+1]=='e' && str[i+2]=='p' ? 9 : \
str[i]=='O' && str[i+1]=='c' && str[i+2]=='t' ? 10 : \
str[i]=='N' && str[i+1]=='o' && str[i+2]=='v' ? 11 : \
str[i]=='D' && str[i+1]=='e' && str[i+2]=='c' ? 12 : 0)
// extract the information from the time string given by __TIME__ and __DATE__
#define __TIME_SECONDS__ CONV_STR2DEC_2(__TIME__, 6)
#define __TIME_MINUTES__ CONV_STR2DEC_2(__TIME__, 3)
#define __TIME_HOURS__ CONV_STR2DEC_2(__TIME__, 0)
#define __TIME_DAYS__ CONV_STR2DEC_2(__DATE__, 4)
#define __TIME_MONTH__ GET_MONTH(__DATE__, 0)
#define __TIME_YEARS__ CONV_STR2DEC_4(__DATE__, 7)
// Days in February
#define _UNIX_TIMESTAMP_FDAY(year) \
(((year) % 400) == 0UL ? 29UL : \
(((year) % 100) == 0UL ? 28UL : \
(((year) % 4) == 0UL ? 29UL : \
28UL)))
// Days in the year
#define _UNIX_TIMESTAMP_YDAY(year, month, day) \
( \
/* January */ day \
/* February */ + (month >= 2 ? 31UL : 0UL) \
/* March */ + (month >= 3 ? _UNIX_TIMESTAMP_FDAY(year) : 0UL) \
/* April */ + (month >= 4 ? 31UL : 0UL) \
/* May */ + (month >= 5 ? 30UL : 0UL) \
/* June */ + (month >= 6 ? 31UL : 0UL) \
/* July */ + (month >= 7 ? 30UL : 0UL) \
/* August */ + (month >= 8 ? 31UL : 0UL) \
/* September */+ (month >= 9 ? 31UL : 0UL) \
/* October */ + (month >= 10 ? 30UL : 0UL) \
/* November */ + (month >= 11 ? 31UL : 0UL) \
/* December */ + (month >= 12 ? 30UL : 0UL) \
)
// get the UNIX timestamp from a digits representation
#define _UNIX_TIMESTAMP(year, month, day, hour, minute, second) \
( /* time */ second \
+ minute * SEC_PER_MIN \
+ hour * SEC_PER_HOUR \
+ /* year day (month + day) */ (_UNIX_TIMESTAMP_YDAY(year, month, day) - 1) * SEC_PER_DAY \
+ /* year */ (year - 1970UL) * SEC_PER_YEAR \
+ ((year - 1969UL) / 4UL) * SEC_PER_DAY \
- ((year - 1901UL) / 100UL) * SEC_PER_DAY \
+ ((year - 1601UL) / 400UL) * SEC_PER_DAY \
)
// the UNIX timestamp
#define UNIX_TIMESTAMP (_UNIX_TIMESTAMP(__TIME_YEARS__, __TIME_MONTH__, __TIME_DAYS__, __TIME_HOURS__, __TIME_MINUTES__, __TIME_SECONDS__))
#endif

View File

@ -0,0 +1,22 @@
#include "utility.h"
#include <FSFWConfig.h>
#include <OBSWVersion.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
void utility::commonInitPrint(const char *const os, const char* const board) {
if(os == nullptr or board == nullptr) {
return;
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
std::cout << "-- FSFW Example (" << os<< ") v" << FSFW_EXAMPLE_VERSION << "." <<
FSFW_EXAMPLE_SUBVERSION << "." << FSFW_EXAMPLE_REVISION << " --" << std::endl;
std::cout << "-- Compiled for " << board << " --" << std::endl;
std::cout << "-- Compiled on " << __DATE__ << " " << __TIME__ << " --" << std::endl;
#else
printf("\n\r-- FSFW Example (%s) v%d.%d.%d --\n", os, FSFW_EXAMPLE_VERSION,
FSFW_EXAMPLE_SUBVERSION, FSFW_EXAMPLE_REVISION);
printf("-- Compiled for %s --\n", board);
printf("-- Compiled on %s %s --\n", __DATE__, __TIME__);
#endif
}

View File

@ -0,0 +1,11 @@
#ifndef COMMON_UTILITY_UTILITY_H_
#define COMMON_UTILITY_UTILITY_H_
namespace utility {
void commonInitPrint(const char *const os, const char* const board);
}
#endif /* COMMON_UTILITY_UTILITY_H_ */

View File

@ -1,4 +1,3 @@
if(FSFW_ADD_INTERNAL_TESTS)
add_subdirectory(internal)
endif()