rework event management module

This commit is contained in:
Robin Mueller
2025-10-16 12:53:06 +02:00
parent 5d40638964
commit 778512d50e
17 changed files with 2395 additions and 1261 deletions

View File

@@ -57,7 +57,7 @@ jobs:
steps:
- uses: actions/checkout@v4
- uses: dtolnay/rust-toolchain@nightly
- run: cargo +nightly doc --all-features --config 'build.rustdocflags=["--cfg", "docs_rs"]'
- run: RUSTDOCFLAGS="--cfg docsrs" cargo +nightly doc -p satrs --all-features
clippy:
name: Clippy

View File

@@ -17,5 +17,7 @@ fmt:
clippy:
cargo clippy -- -D warnings
docs:
cargo +nightly doc --all-features --config 'build.rustdocflags=["--cfg", "docs_rs"]'
docs-satrs:
RUSTDOCFLAGS="--cfg docsrs --generate-link-to-definition -Z unstable-options" cargo +nightly doc -p satrs --all-features
docs: docs-satrs

View File

@@ -11,7 +11,7 @@ use strum::IntoEnumIterator;
use num_enum::{IntoPrimitive, TryFromPrimitive};
use satrs::{
events::{EventU32TypedSev, SeverityInfo},
events_legacy::{EventU32TypedSev, SeverityInfo},
pool::{StaticMemoryPool, StaticPoolConfig},
};

View File

@@ -3,13 +3,13 @@ use std::sync::mpsc::{self};
use crate::pus::create_verification_reporter;
use arbitrary_int::traits::Integer as _;
use arbitrary_int::u11;
use satrs::event_man::{EventMessageU32, EventRoutingError};
use satrs::event_man_legacy::{EventMessageU32, EventRoutingError};
use satrs::pus::event::EventTmHook;
use satrs::pus::verification::VerificationReporter;
use satrs::pus::EcssTmSender;
use satrs::request::UniqueApidTargetId;
use satrs::{
event_man::{EventManagerWithBoundedMpsc, EventSendProvider, EventU32SenderMpscBounded},
event_man_legacy::{EventManagerWithBoundedMpsc, EventSendProvider, EventU32SenderMpscBounded},
pus::{
event_man::{
DefaultPusEventU32TmCreator, EventReporter, EventRequest, EventRequestWithToken,
@@ -219,7 +219,7 @@ impl<TmSender: EcssTmSender> EventHandler<TmSender> {
#[cfg(test)]
mod tests {
use satrs::{
events::EventU32,
events_legacy::EventU32,
pus::verification::VerificationReporterConfig,
spacepackets::ecss::{tm::PusTmReader, PusPacket},
tmtc::PacketAsVec,
@@ -228,7 +228,7 @@ mod tests {
use super::*;
const TEST_CREATOR_ID: UniqueApidTargetId = UniqueApidTargetId::new(u11::new(1), 2);
const TEST_EVENT: EventU32 = EventU32::new(satrs::events::Severity::Info, 1, 1);
const TEST_EVENT: EventU32 = EventU32::new(satrs::events_legacy::Severity::Info, 1, 1);
pub struct EventManagementTestbench {
pub event_tx: mpsc::SyncSender<EventMessageU32>,
@@ -268,7 +268,7 @@ mod tests {
.event_tx
.send(EventMessageU32::new(
TEST_CREATOR_ID.id(),
EventU32::new(satrs::events::Severity::Info, 1, 1),
EventU32::new(satrs::events_legacy::Severity::Info, 1, 1),
))
.expect("failed to send event");
testbench.pus_event_handler.handle_event_requests();

View File

@@ -1,7 +1,7 @@
use crate::pus::create_verification_reporter;
use crate::tmtc::sender::TmTcSender;
use log::info;
use satrs::event_man::{EventMessage, EventMessageU32};
use satrs::event_man_legacy::{EventMessage, EventMessageU32};
use satrs::pus::test::PusService17TestHandler;
use satrs::pus::verification::{FailParams, VerificationReporter, VerificationReportingProvider};
use satrs::pus::PartialPusHandlingError;

View File

@@ -24,12 +24,13 @@ cobs = { version = "0.4", default-features = false }
thiserror = { version = "2", default-features = false }
hashbrown = { version = ">=0.14, <=0.15", optional = true }
static_cell = { version = "2", optional = true }
dyn-clone = { version = "1", optional = true }
static_cell = { version = "2" }
heapless = { version = "0.9", optional = true }
dyn-clone = { version = "1", optional = true }
downcast-rs = { version = "2", default-features = false, optional = true }
bus = { version = "2.2", optional = true }
crossbeam-channel = { version = "0.5", default-features = false, optional = true }
postcard = { version = "1", features = ["alloc"] }
serde = { version = "1", default-features = false, optional = true }
socket2 = { version = "0.6", features = ["all"], optional = true }
arbitrary-int = "2"
@@ -48,7 +49,7 @@ tempfile = "3"
version = "1"
[features]
default = ["std"]
default = ["std", "heapless"]
std = [
"downcast-rs/std",
"alloc",
@@ -70,7 +71,7 @@ alloc = [
]
serde = ["dep:serde", "spacepackets/serde", "satrs-shared/serde"]
crossbeam = ["crossbeam-channel"]
heapless = ["dep:heapless", "static_cell"]
# heapless = ["dep:heapless", "static_cell"]
defmt = ["dep:defmt", "spacepackets/defmt"]
test_util = []

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,850 @@
//! # Event management and forwarding
//!
//! This is a legacy module. It is recommended to use [super::event_man] instead.
//!
//! It is recommended to read the
//! [sat-rs book chapter](https://absatsw.irs.uni-stuttgart.de/projects/sat-rs/book/events.html)
//! about events first.
//!
//! This module provides components to perform event routing. The most important component for this
//! task is the [EventManager]. It receives all events and then routes them to event subscribers
//! where appropriate.
//!
//! The event manager has a listener table abstracted by the [ListenerMapProvider], which maps
//! listener groups identified by [ListenerKey]s to a [listener ID][ComponentId].
//! It also contains a sender table abstracted by the [SenderMapProvider] which maps these sender
//! IDs to concrete [EventSendProvider]s. A simple approach would be to use one send event provider
//! for each OBSW thread and then subscribe for all interesting events for a particular thread
//! using the send event provider ID.
//!
//! This can be done with the [EventManager] like this:
//!
//! 1. Provide a concrete [EventReceiveProvider] implementation. This abstraction allow to use different
//! message queue backends. A straightforward implementation where dynamic memory allocation is
//! not a big concern would be to use the [std::sync::mpsc::Receiver] handle. The trait is
//! already implemented for this type.
//! 2. To set up event creators, create channel pairs using some message queue implementation.
//! Each event creator gets a (cloned) sender component which allows it to send events to the
//! manager.
//! 3. The event manager receives the receiver component as part of a [EventReceiveProvider]
//! implementation so all events are routed to the manager.
//! 4. Create the [event sender map][SenderMapProvider]s which allow routing events to
//! subscribers. You can now use the subscriber component IDs to subscribe
//! for event groups, for example by using the [EventManager::subscribe_single] method.
//! 5. Add the send provider as well using the [EventManager::add_sender] call so the event
//! manager can route listener groups to a the send provider.
//!
//! Some components like a PUS Event Service or PUS Event Action Service might require all
//! events to package them as telemetry or start actions where applicable.
//! Other components might only be interested in certain events. For example, a thermal system
//! handler might only be interested in temperature events generated by a thermal sensor component.
//!
//! # Examples
//!
//! You can check [integration test](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs/tests/pus_events.rs)
//! for a concrete example using multi-threading where events are routed to
//! different threads.
//!
//! The [satrs-example](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs-example)
//! also contains a full event manager instance and exposes a test event via the PUS test service.
//! The [PUS event](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs-example/src/pus/event.rs)
//! module and the generic [events module](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs-example/src/events.rs)
//! show how the event management modules can be integrated into a more complex software.
use crate::events_legacy::{EventU16, EventU32, GenericEvent, LargestEventRaw, LargestGroupIdRaw};
use crate::params::Params;
use crate::queue::GenericSendError;
use core::fmt::Debug;
use core::marker::PhantomData;
use core::slice::Iter;
use crate::ComponentId;
#[cfg(feature = "alloc")]
pub use alloc_mod::*;
#[cfg(feature = "std")]
pub use std_mod::*;
#[derive(PartialEq, Eq, Hash, Copy, Clone, Debug)]
pub enum ListenerKey {
Single(LargestEventRaw),
Group(LargestGroupIdRaw),
All,
}
#[derive(Debug)]
pub struct EventMessage<Event: GenericEvent, Parameters: Debug = Params> {
sender_id: ComponentId,
event: Event,
params: Option<Parameters>,
}
impl<Event: GenericEvent, Parameters: Debug + Clone> EventMessage<Event, Parameters> {
pub fn new_generic(sender_id: ComponentId, event: Event, params: Option<&Parameters>) -> Self {
Self {
sender_id,
event,
params: params.cloned(),
}
}
pub fn sender_id(&self) -> ComponentId {
self.sender_id
}
pub fn event(&self) -> Event {
self.event
}
pub fn params(&self) -> Option<&Parameters> {
self.params.as_ref()
}
pub fn new(sender_id: ComponentId, event: Event) -> Self {
Self::new_generic(sender_id, event, None)
}
pub fn new_with_params(sender_id: ComponentId, event: Event, params: &Parameters) -> Self {
Self::new_generic(sender_id, event, Some(params))
}
}
pub type EventMessageU32 = EventMessage<EventU32, Params>;
pub type EventMessageU16 = EventMessage<EventU16, Params>;
/// Generic abstraction
pub trait EventSendProvider<Event: GenericEvent, ParamProvider: Debug = Params> {
type Error;
fn target_id(&self) -> ComponentId;
fn send(&self, message: EventMessage<Event, ParamProvider>) -> Result<(), Self::Error>;
}
/// Generic abstraction for an event receiver.
pub trait EventReceiveProvider<Event: GenericEvent, ParamsProvider: Debug = Params> {
type Error;
/// This function has to be provided by any event receiver. A call may or may not return
/// an event and optional auxiliary data.
fn try_recv_event(&self) -> Result<Option<EventMessage<Event, ParamsProvider>>, Self::Error>;
}
pub trait ListenerMapProvider {
#[cfg(feature = "alloc")]
fn get_listeners(&self) -> alloc::vec::Vec<ListenerKey>;
fn contains_listener(&self, key: &ListenerKey) -> bool;
fn get_listener_ids(&self, key: &ListenerKey) -> Option<Iter<'_, ComponentId>>;
fn add_listener(&mut self, key: ListenerKey, listener_id: ComponentId) -> bool;
fn remove_duplicates(&mut self, key: &ListenerKey);
}
pub trait SenderMapProvider<
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent = EventU32,
ParamProvider: Debug = Params,
>
{
fn contains_send_event_provider(&self, target_id: &ComponentId) -> bool;
fn get_send_event_provider(&self, target_id: &ComponentId) -> Option<&EventSender>;
fn add_send_event_provider(&mut self, send_provider: EventSender) -> bool;
}
/// Generic event manager implementation.
///
/// # Generics
///
/// * `EventReceiver`: [EventReceiveProvider] used to receive all events.
/// * `SenderMap`: [SenderMapProvider] which maps channel IDs to send providers.
/// * `ListenerMap`: [ListenerMapProvider] which maps listener keys to channel IDs.
/// * `EventSender`: [EventSendProvider] contained within the sender map which sends the events.
/// * `Event`: The event type. This type must implement the [GenericEvent]. Currently only [EventU32]
/// and [EventU16] are supported.
/// * `ParamProvider`: Auxiliary data which is sent with the event to provide optional context
/// information
pub struct EventManager<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
SenderMap: SenderMapProvider<EventSender, Event, ParamProvider>,
ListenerMap: ListenerMapProvider,
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent = EventU32,
ParamProvider: Debug = Params,
> {
event_receiver: EventReceiver,
sender_map: SenderMap,
listener_map: ListenerMap,
phantom: core::marker::PhantomData<(EventSender, Event, ParamProvider)>,
}
#[derive(Debug)]
pub enum EventRoutingResult<Event: GenericEvent, ParamProvider: Debug> {
/// No event was received
Empty,
/// An event was received and routed to listeners.
Handled {
num_recipients: u32,
event_msg: EventMessage<Event, ParamProvider>,
},
}
#[derive(Debug)]
pub enum EventRoutingError {
Send(GenericSendError),
NoSendersForKey(ListenerKey),
NoSenderForId(ComponentId),
}
impl<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
SenderMap: SenderMapProvider<EventSender, Event, ParamProvider>,
ListenerMap: ListenerMapProvider,
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent + Copy,
ParamProvider: Debug,
> EventManager<EventReceiver, SenderMap, ListenerMap, EventSender, Event, ParamProvider>
{
pub fn remove_duplicates(&mut self, key: &ListenerKey) {
self.listener_map.remove_duplicates(key)
}
/// Subscribe for a unique event.
pub fn subscribe_single(&mut self, event: &Event, sender_id: ComponentId) {
self.update_listeners(ListenerKey::Single(event.raw_as_largest_type()), sender_id);
}
/// Subscribe for an event group.
pub fn subscribe_group(&mut self, group_id: LargestGroupIdRaw, sender_id: ComponentId) {
self.update_listeners(ListenerKey::Group(group_id), sender_id);
}
/// Subscribe for all events received by the manager.
///
/// For example, this can be useful for a handler component which sends every event as
/// a telemetry packet.
pub fn subscribe_all(&mut self, sender_id: ComponentId) {
self.update_listeners(ListenerKey::All, sender_id);
}
}
impl<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
SenderMap: SenderMapProvider<EventSenderMap, Event, ParamProvider>,
ListenerMap: ListenerMapProvider,
EventSenderMap: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent + Copy,
ParamProvider: Debug,
> EventManager<EventReceiver, SenderMap, ListenerMap, EventSenderMap, Event, ParamProvider>
{
pub fn new_with_custom_maps(
event_receiver: EventReceiver,
sender_map: SenderMap,
listener_map: ListenerMap,
) -> Self {
EventManager {
listener_map,
sender_map,
event_receiver,
phantom: PhantomData,
}
}
/// Add a new sender component which can be used to send events to subscribers.
pub fn add_sender(&mut self, send_provider: EventSenderMap) {
if !self
.sender_map
.contains_send_event_provider(&send_provider.target_id())
{
self.sender_map.add_send_event_provider(send_provider);
}
}
/// Generic function to update the event subscribers.
fn update_listeners(&mut self, key: ListenerKey, sender_id: ComponentId) {
self.listener_map.add_listener(key, sender_id);
}
}
impl<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
SenderMap: SenderMapProvider<EventSenderMap, Event, ParamProvider>,
ListenerMap: ListenerMapProvider,
EventSenderMap: EventSendProvider<Event, ParamProvider, Error = GenericSendError>,
Event: GenericEvent + Copy,
ParamProvider: Clone + Debug,
> EventManager<EventReceiver, SenderMap, ListenerMap, EventSenderMap, Event, ParamProvider>
{
/// This function will use the cached event receiver and try to receive one event.
/// If an event was received, it will try to route that event to all subscribed event listeners.
/// If this works without any issues, the [EventRoutingResult] will contain context information
/// about the routed event.
///
/// If an error occurs during the routing, the error handler will be called. The error handler
/// should take a reference to the event message as the first argument, and the routing error
/// as the second argument.
pub fn try_event_handling<E: FnMut(&EventMessage<Event, ParamProvider>, EventRoutingError)>(
&self,
mut error_handler: E,
) -> EventRoutingResult<Event, ParamProvider> {
let mut num_recipients = 0;
let mut send_handler =
|key: &ListenerKey, event_msg: &EventMessage<Event, ParamProvider>| {
if self.listener_map.contains_listener(key) {
if let Some(ids) = self.listener_map.get_listener_ids(key) {
for id in ids {
if let Some(sender) = self.sender_map.get_send_event_provider(id) {
if let Err(e) = sender.send(EventMessage::new_generic(
event_msg.sender_id,
event_msg.event,
event_msg.params.as_ref(),
)) {
error_handler(event_msg, EventRoutingError::Send(e));
} else {
num_recipients += 1;
}
} else {
error_handler(event_msg, EventRoutingError::NoSenderForId(*id));
}
}
} else {
error_handler(event_msg, EventRoutingError::NoSendersForKey(*key));
}
}
};
if let Ok(Some(event_msg)) = self.event_receiver.try_recv_event() {
let single_key = ListenerKey::Single(event_msg.event.raw_as_largest_type());
send_handler(&single_key, &event_msg);
let group_key = ListenerKey::Group(event_msg.event.group_id_as_largest_type());
send_handler(&group_key, &event_msg);
send_handler(&ListenerKey::All, &event_msg);
return EventRoutingResult::Handled {
num_recipients,
event_msg,
};
}
EventRoutingResult::Empty
}
}
#[cfg(feature = "alloc")]
pub mod alloc_mod {
use alloc::vec::Vec;
use hashbrown::HashMap;
use super::*;
/// Helper type which constrains the sender map and listener map generics to the [DefaultSenderMap]
/// and the [DefaultListenerMap]. It uses regular mpsc channels as the message queue backend.
pub type EventManagerWithMpsc<Event = EventU32, ParamProvider = Params> = EventManager<
EventU32ReceiverMpsc<ParamProvider>,
DefaultSenderMap<EventSenderMpsc<Event>, Event, ParamProvider>,
DefaultListenerMap,
EventSenderMpsc<Event>,
>;
/// Helper type which constrains the sender map and listener map generics to the [DefaultSenderMap]
/// and the [DefaultListenerMap]. It uses
/// [bounded mpsc senders](https://doc.rust-lang.org/std/sync/mpsc/struct.SyncSender.html) as the
/// message queue backend.
pub type EventManagerWithBoundedMpsc<Event = EventU32, ParamProvider = Params> = EventManager<
EventU32ReceiverMpsc<ParamProvider>,
DefaultSenderMap<EventSenderMpscBounded<Event>, Event, ParamProvider>,
DefaultListenerMap,
EventSenderMpscBounded<Event>,
>;
impl<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent + Copy,
ParamProvider: 'static + Debug,
>
EventManager<
EventReceiver,
DefaultSenderMap<EventSender, Event, ParamProvider>,
DefaultListenerMap,
EventSender,
Event,
ParamProvider,
>
{
/// Create an event manager where the sender table will be the [DefaultSenderMap]
/// and the listener table will be the [DefaultListenerMap].
pub fn new(event_receiver: EventReceiver) -> Self {
Self {
listener_map: DefaultListenerMap::default(),
sender_map: DefaultSenderMap::default(),
event_receiver,
phantom: PhantomData,
}
}
}
/// Default listener map.
///
/// Simple implementation which uses a [HashMap] and a [Vec] internally.
#[derive(Default)]
pub struct DefaultListenerMap {
listeners: HashMap<ListenerKey, Vec<ComponentId>>,
}
impl ListenerMapProvider for DefaultListenerMap {
fn get_listeners(&self) -> Vec<ListenerKey> {
let mut key_list = Vec::new();
for key in self.listeners.keys() {
key_list.push(*key);
}
key_list
}
fn contains_listener(&self, key: &ListenerKey) -> bool {
self.listeners.contains_key(key)
}
fn get_listener_ids(&self, key: &ListenerKey) -> Option<Iter<'_, ComponentId>> {
self.listeners.get(key).map(|vec| vec.iter())
}
fn add_listener(&mut self, key: ListenerKey, sender_id: ComponentId) -> bool {
if let Some(existing_list) = self.listeners.get_mut(&key) {
existing_list.push(sender_id);
} else {
let new_list = alloc::vec![sender_id];
self.listeners.insert(key, new_list);
}
true
}
fn remove_duplicates(&mut self, key: &ListenerKey) {
if let Some(list) = self.listeners.get_mut(key) {
list.sort_unstable();
list.dedup();
}
}
}
/// Default sender map.
///
/// Simple implementation which uses a [HashMap] internally.
pub struct DefaultSenderMap<
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent = EventU32,
ParamProvider: Debug = Params,
> {
senders: HashMap<ComponentId, EventSender>,
phantom: PhantomData<(Event, ParamProvider)>,
}
impl<
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent,
ParamProvider: Debug,
> Default for DefaultSenderMap<EventSender, Event, ParamProvider>
{
fn default() -> Self {
Self {
senders: Default::default(),
phantom: Default::default(),
}
}
}
impl<
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent,
ParamProvider: Debug,
> SenderMapProvider<EventSender, Event, ParamProvider>
for DefaultSenderMap<EventSender, Event, ParamProvider>
{
fn contains_send_event_provider(&self, id: &ComponentId) -> bool {
self.senders.contains_key(id)
}
fn get_send_event_provider(&self, id: &ComponentId) -> Option<&EventSender> {
self.senders
.get(id)
.filter(|sender| sender.target_id() == *id)
}
fn add_send_event_provider(&mut self, send_provider: EventSender) -> bool {
let id = send_provider.target_id();
if self.senders.contains_key(&id) {
return false;
}
self.senders.insert(id, send_provider).is_none()
}
}
}
#[cfg(feature = "std")]
pub mod std_mod {
use crate::queue::GenericReceiveError;
use super::*;
use std::sync::mpsc;
impl<Event: GenericEvent + Send, ParamProvider: Debug>
EventReceiveProvider<Event, ParamProvider>
for mpsc::Receiver<EventMessage<Event, ParamProvider>>
{
type Error = GenericReceiveError;
fn try_recv_event(
&self,
) -> Result<Option<EventMessage<Event, ParamProvider>>, Self::Error> {
match self.try_recv() {
Ok(msg) => Ok(Some(msg)),
Err(e) => match e {
mpsc::TryRecvError::Empty => Ok(None),
mpsc::TryRecvError::Disconnected => {
Err(GenericReceiveError::TxDisconnected(None))
}
},
}
}
}
pub type EventU32ReceiverMpsc<ParamProvider = Params> =
mpsc::Receiver<EventMessage<EventU32, ParamProvider>>;
pub type EventU16ReceiverMpsc<ParamProvider = Params> =
mpsc::Receiver<EventMessage<EventU16, ParamProvider>>;
/// Generic event sender which uses a regular [mpsc::Sender] as the messaging backend to
/// send events.
#[derive(Clone)]
pub struct EventSenderMpsc<Event: GenericEvent + Send> {
target_id: ComponentId,
sender: mpsc::Sender<EventMessage<Event>>,
}
impl<Event: GenericEvent + Send> EventSenderMpsc<Event> {
pub fn new(target_id: ComponentId, sender: mpsc::Sender<EventMessage<Event>>) -> Self {
Self { target_id, sender }
}
}
impl<Event: GenericEvent + Send> EventSendProvider<Event> for EventSenderMpsc<Event> {
type Error = GenericSendError;
fn target_id(&self) -> ComponentId {
self.target_id
}
fn send(&self, event_msg: EventMessage<Event>) -> Result<(), GenericSendError> {
self.sender
.send(event_msg)
.map_err(|_| GenericSendError::RxDisconnected)
}
}
/// Generic event sender which uses the [mpsc::SyncSender] as the messaging backend to send
/// events. This has the advantage that the channel is bounded and thus more deterministic.
#[derive(Clone)]
pub struct EventSenderMpscBounded<Event: GenericEvent + Send> {
target_id: ComponentId,
sender: mpsc::SyncSender<EventMessage<Event>>,
capacity: usize,
}
impl<Event: GenericEvent + Send> EventSenderMpscBounded<Event> {
pub fn new(
target_id: ComponentId,
sender: mpsc::SyncSender<EventMessage<Event>>,
capacity: usize,
) -> Self {
Self {
target_id,
sender,
capacity,
}
}
}
impl<Event: GenericEvent + Send> EventSendProvider<Event> for EventSenderMpscBounded<Event> {
type Error = GenericSendError;
fn target_id(&self) -> ComponentId {
self.target_id
}
fn send(&self, event_msg: EventMessage<Event>) -> Result<(), Self::Error> {
if let Err(e) = self.sender.try_send(event_msg) {
return match e {
mpsc::TrySendError::Full(_) => {
Err(GenericSendError::QueueFull(Some(self.capacity as u32)))
}
mpsc::TrySendError::Disconnected(_) => Err(GenericSendError::RxDisconnected),
};
}
Ok(())
}
}
pub type EventU32SenderMpsc = EventSenderMpsc<EventU32>;
pub type EventU16SenderMpsc = EventSenderMpsc<EventU16>;
pub type EventU32SenderMpscBounded = EventSenderMpscBounded<EventU32>;
pub type EventU16SenderMpscBounded = EventSenderMpscBounded<EventU16>;
}
#[cfg(test)]
mod tests {
use super::*;
use crate::event_man_legacy::EventManager;
use crate::events_legacy::{EventU32, GenericEvent, Severity};
use crate::params::{ParamsHeapless, ParamsRaw};
use crate::pus::test_util::{TEST_COMPONENT_ID_0, TEST_COMPONENT_ID_1};
use std::format;
use std::sync::mpsc::{self};
const TEST_EVENT: EventU32 = EventU32::new(Severity::Info, 0, 5);
fn check_next_event(
expected: EventU32,
receiver: &mpsc::Receiver<EventMessageU32>,
) -> Option<Params> {
if let Ok(event_msg) = receiver.try_recv() {
assert_eq!(event_msg.event, expected);
return event_msg.params;
}
None
}
fn check_handled_event(
res: EventRoutingResult<EventU32, Params>,
expected: EventU32,
expected_num_sent: u32,
expected_sender_id: ComponentId,
) {
assert!(matches!(res, EventRoutingResult::Handled { .. }));
if let EventRoutingResult::Handled {
num_recipients,
event_msg,
} = res
{
assert_eq!(event_msg.event, expected);
assert_eq!(event_msg.sender_id, expected_sender_id);
assert_eq!(num_recipients, expected_num_sent);
}
}
fn generic_event_man() -> (mpsc::Sender<EventMessageU32>, EventManagerWithMpsc) {
let (event_sender, event_receiver) = mpsc::channel();
(event_sender, EventManager::new(event_receiver))
}
#[test]
fn test_basic() {
let (event_sender, mut event_man) = generic_event_man();
let event_grp_0 = EventU32::new(Severity::Info, 0, 0);
let event_grp_1_0 = EventU32::new(Severity::High, 1, 0);
let (single_event_sender, single_event_receiver) = mpsc::channel();
let single_event_listener = EventSenderMpsc::new(0, single_event_sender);
event_man.subscribe_single(&event_grp_0, single_event_listener.target_id());
event_man.add_sender(single_event_listener);
let (group_event_sender_0, group_event_receiver_0) = mpsc::channel();
let group_event_listener = EventU32SenderMpsc::new(1, group_event_sender_0);
event_man.subscribe_group(event_grp_1_0.group_id(), group_event_listener.target_id());
event_man.add_sender(group_event_listener);
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
// Test event with one listener
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_grp_0))
.expect("Sending single error failed");
let res = event_man.try_event_handling(&error_handler);
check_handled_event(res, event_grp_0, 1, TEST_COMPONENT_ID_0.id());
check_next_event(event_grp_0, &single_event_receiver);
// Test event which is sent to all group listeners
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_1.id(), event_grp_1_0))
.expect("Sending group error failed");
let res = event_man.try_event_handling(&error_handler);
check_handled_event(res, event_grp_1_0, 1, TEST_COMPONENT_ID_1.id());
check_next_event(event_grp_1_0, &group_event_receiver_0);
}
#[test]
fn test_with_basic_params() {
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
let (event_sender, mut event_man) = generic_event_man();
let event_grp_0 = EventU32::new(Severity::Info, 0, 0);
let (single_event_sender, single_event_receiver) = mpsc::channel();
let single_event_listener = EventSenderMpsc::new(0, single_event_sender);
event_man.subscribe_single(&event_grp_0, single_event_listener.target_id());
event_man.add_sender(single_event_listener);
event_sender
.send(EventMessage::new_with_params(
TEST_COMPONENT_ID_0.id(),
event_grp_0,
&Params::Heapless((2_u32, 3_u32).into()),
))
.expect("Sending group error failed");
let res = event_man.try_event_handling(&error_handler);
check_handled_event(res, event_grp_0, 1, TEST_COMPONENT_ID_0.id());
let aux = check_next_event(event_grp_0, &single_event_receiver);
assert!(aux.is_some());
let aux = aux.unwrap();
if let Params::Heapless(ParamsHeapless::Raw(ParamsRaw::U32Pair(pair))) = aux {
assert_eq!(pair.0, 2);
assert_eq!(pair.1, 3);
} else {
panic!("{}", format!("Unexpected auxiliary value type {:?}", aux));
}
}
/// Test listening for multiple groups
#[test]
fn test_multi_group() {
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
let (event_sender, mut event_man) = generic_event_man();
let res = event_man.try_event_handling(error_handler);
assert!(matches!(res, EventRoutingResult::Empty));
let event_grp_0 = EventU32::new(Severity::Info, 0, 0);
let event_grp_1_0 = EventU32::new(Severity::High, 1, 0);
let (event_grp_0_sender, event_grp_0_receiver) = mpsc::channel();
let event_grp_0_and_1_listener = EventU32SenderMpsc::new(0, event_grp_0_sender);
event_man.subscribe_group(
event_grp_0.group_id(),
event_grp_0_and_1_listener.target_id(),
);
event_man.subscribe_group(
event_grp_1_0.group_id(),
event_grp_0_and_1_listener.target_id(),
);
event_man.add_sender(event_grp_0_and_1_listener);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_grp_0))
.expect("Sending Event Group 0 failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_1.id(), event_grp_1_0))
.expect("Sendign Event Group 1 failed");
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_grp_0, 1, TEST_COMPONENT_ID_0.id());
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_grp_1_0, 1, TEST_COMPONENT_ID_1.id());
check_next_event(event_grp_0, &event_grp_0_receiver);
check_next_event(event_grp_1_0, &event_grp_0_receiver);
}
/// Test listening to the same event from multiple listeners. Also test listening
/// to both group and single events from one listener
#[test]
fn test_listening_to_same_event_and_multi_type() {
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
let (event_sender, mut event_man) = generic_event_man();
let event_0 = EventU32::new(Severity::Info, 0, 5);
let event_1 = EventU32::new(Severity::High, 1, 0);
let (event_0_tx_0, event_0_rx_0) = mpsc::channel();
let (event_0_tx_1, event_0_rx_1) = mpsc::channel();
let event_listener_0 = EventU32SenderMpsc::new(0, event_0_tx_0);
let event_listener_1 = EventU32SenderMpsc::new(1, event_0_tx_1);
let event_listener_0_sender_id = event_listener_0.target_id();
event_man.subscribe_single(&event_0, event_listener_0_sender_id);
event_man.add_sender(event_listener_0);
let event_listener_1_sender_id = event_listener_1.target_id();
event_man.subscribe_single(&event_0, event_listener_1_sender_id);
event_man.add_sender(event_listener_1);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_0))
.expect("Triggering Event 0 failed");
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_0, 2, TEST_COMPONENT_ID_0.id());
check_next_event(event_0, &event_0_rx_0);
check_next_event(event_0, &event_0_rx_1);
event_man.subscribe_group(event_1.group_id(), event_listener_0_sender_id);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_0))
.expect("Triggering Event 0 failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_1.id(), event_1))
.expect("Triggering Event 1 failed");
// 3 Events messages will be sent now
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_0, 2, TEST_COMPONENT_ID_0.id());
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_1, 1, TEST_COMPONENT_ID_1.id());
// Both the single event and the group event should arrive now
check_next_event(event_0, &event_0_rx_0);
check_next_event(event_1, &event_0_rx_0);
// Do double insertion and then remove duplicates
event_man.subscribe_group(event_1.group_id(), event_listener_0_sender_id);
event_man.remove_duplicates(&ListenerKey::Group(event_1.group_id()));
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_1))
.expect("Triggering Event 1 failed");
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_1, 1, TEST_COMPONENT_ID_0.id());
}
#[test]
fn test_all_events_listener() {
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
let (event_sender, event_receiver) = mpsc::channel();
let mut event_man = EventManagerWithMpsc::new(event_receiver);
let event_0 = EventU32::new(Severity::Info, 0, 5);
let event_1 = EventU32::new(Severity::High, 1, 0);
let (event_0_tx_0, all_events_rx) = mpsc::channel();
let all_events_listener = EventU32SenderMpsc::new(0, event_0_tx_0);
event_man.subscribe_all(all_events_listener.target_id());
event_man.add_sender(all_events_listener);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_0))
.expect("Triggering event 0 failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_1.id(), event_1))
.expect("Triggering event 1 failed");
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_0, 1, TEST_COMPONENT_ID_0.id());
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_1, 1, TEST_COMPONENT_ID_1.id());
check_next_event(event_0, &all_events_rx);
check_next_event(event_1, &all_events_rx);
}
#[test]
fn test_bounded_event_sender_queue_full() {
let (event_sender, _event_receiver) = mpsc::sync_channel(3);
let event_sender = EventU32SenderMpscBounded::new(1, event_sender, 3);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT))
.expect("sending test event failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT))
.expect("sending test event failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT))
.expect("sending test event failed");
let error = event_sender.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT));
if let Err(e) = error {
assert!(matches!(e, GenericSendError::QueueFull(Some(3))));
} else {
panic!("unexpected error {error:?}");
}
}
#[test]
fn test_bounded_event_sender_rx_dropped() {
let (event_sender, event_receiver) = mpsc::sync_channel(3);
let event_sender = EventU32SenderMpscBounded::new(1, event_sender, 3);
drop(event_receiver);
if let Err(e) = event_sender.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT)) {
assert!(matches!(e, GenericSendError::RxDisconnected));
} else {
panic!("Expected error");
}
}
}

View File

@@ -1,8 +1,13 @@
//! Event support module
//! # Event support module
//!
//! This module includes the basic event structs [EventU32] and [EventU16] and versions with the
//! ECSS severity levels as a type parameter. These structs are simple abstractions on top of the
//! [u32] and [u16] types where the raw value is the unique identifier for a particular event.
//! The user can define events as custom structs or enumerations.
//! The event structures defined here are type erased and rely on some properties which
//! should be provided by the user through the [Event] and [serde::Serialize] trait.
//!
//! This in turn allows to use higher-level abstractions like the event manger.
//!
//! This module includes the basic type erased event structs [EventErasedAlloc] and
//! [EventErasedHeapless].
//! The abstraction also allows to group related events using a group ID, and the severity
//! of an event is encoded inside the raw value itself with four possible [Severity] levels:
//!
@@ -10,42 +15,26 @@
//! - LOW
//! - MEDIUM
//! - HIGH
//!
//! All event structs implement the [EcssEnumeration] trait and can be created as constants.
//! This allows to easily create a static list of constant events which can then be used to generate
//! event telemetry using the PUS event manager modules.
//!
//! # Examples
//!
//! ```
//! use satrs::events::{EventU16, EventU32, EventU32TypedSev, Severity, SeverityHigh, SeverityInfo};
//!
//! const MSG_RECVD: EventU32TypedSev<SeverityInfo> = EventU32TypedSev::new(1, 0);
//! const MSG_FAILED: EventU32 = EventU32::new(Severity::Low, 1, 1);
//!
//! const TEMPERATURE_HIGH: EventU32TypedSev<SeverityHigh> = EventU32TypedSev::new(2, 0);
//!
//! let small_event = EventU16::new(Severity::Info, 3, 0);
//! ```
use core::fmt::Debug;
use core::hash::Hash;
use core::marker::PhantomData;
use delegate::delegate;
use arbitrary_int::{prelude::*, u14};
#[cfg(feature = "heapless")]
use spacepackets::ByteConversionError;
use spacepackets::ecss::EcssEnumeration;
use spacepackets::util::{ToBeBytes, UnsignedEnum};
/// Using a type definition allows to change this to u64 in the future more easily
pub type LargestEventRaw = u32;
/// Using a type definition allows to change this to u32 in the future more easily
pub type LargestGroupIdRaw = u16;
pub const MAX_GROUP_ID_U32_EVENT: u16 = 2_u16.pow(14) - 1;
pub const MAX_GROUP_ID_U16_EVENT: u16 = 2_u16.pow(6) - 1;
pub const MAX_GROUP_ID_U32_EVENT: u16 = u14::MAX.value();
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[derive(
Copy, Clone, PartialEq, Eq, Debug, Hash, num_enum::TryFromPrimitive, num_enum::IntoPrimitive,
)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
pub enum Severity {
Info = 0,
Low = 1,
@@ -57,801 +46,203 @@ pub trait HasSeverity: Debug + PartialEq + Eq + Copy + Clone {
const SEVERITY: Severity;
}
/// Type level support struct
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct SeverityInfo {}
impl HasSeverity for SeverityInfo {
const SEVERITY: Severity = Severity::Info;
pub trait Event: Clone {
fn id(&self) -> EventId;
}
/// Type level support struct
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct SeverityLow {}
impl HasSeverity for SeverityLow {
const SEVERITY: Severity = Severity::Low;
}
pub type GroupId = u14;
/// Type level support struct
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct SeverityMedium {}
impl HasSeverity for SeverityMedium {
const SEVERITY: Severity = Severity::Medium;
}
/// Type level support struct
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct SeverityHigh {}
impl HasSeverity for SeverityHigh {
const SEVERITY: Severity = Severity::High;
}
pub trait GenericEvent: EcssEnumeration + Copy + Clone {
type Raw;
type GroupId;
type UniqueId;
fn raw(&self) -> Self::Raw;
fn severity(&self) -> Severity;
fn group_id(&self) -> Self::GroupId;
fn unique_id(&self) -> Self::UniqueId;
fn raw_as_largest_type(&self) -> LargestEventRaw;
fn group_id_as_largest_type(&self) -> LargestGroupIdRaw;
}
impl TryFrom<u8> for Severity {
type Error = ();
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
x if x == Severity::Info as u8 => Ok(Severity::Info),
x if x == Severity::Low as u8 => Ok(Severity::Low),
x if x == Severity::Medium as u8 => Ok(Severity::Medium),
x if x == Severity::High as u8 => Ok(Severity::High),
_ => Err(()),
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
/// Unique event identifier.
///
/// Consists of a group ID, a unique ID and the severity.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
struct EventBase<Raw, GroupId, UniqueId> {
severity: Severity,
pub struct EventId {
group_id: GroupId,
unique_id: UniqueId,
phantom: PhantomData<Raw>,
unique_id: u16,
severity: Severity,
}
impl<Raw: ToBeBytes, GroupId, UniqueId> EventBase<Raw, GroupId, UniqueId> {
fn write_to_bytes(
&self,
raw: Raw,
buf: &mut [u8],
width: usize,
) -> Result<usize, ByteConversionError> {
if buf.len() < width {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: width,
});
impl EventId {
pub fn new(severity: Severity, group_id: u14, unique_id: u16) -> Self {
Self {
severity,
group_id,
unique_id,
}
buf.copy_from_slice(raw.to_be_bytes().as_ref());
Ok(raw.written_len())
}
}
impl EventBase<u32, u16, u16> {
#[inline]
fn raw(&self) -> u32 {
((self.severity as u32) << 30) | ((self.group_id as u32) << 16) | self.unique_id as u32
}
}
impl EventBase<u16, u8, u8> {
#[inline]
fn raw(&self) -> u16 {
((self.severity as u16) << 14) | ((self.group_id as u16) << 8) | self.unique_id as u16
}
}
impl<RAW, GID, UID> EventBase<RAW, GID, UID> {
#[inline]
pub fn severity(&self) -> Severity {
self.severity
}
}
impl<RAW, GID> EventBase<RAW, GID, u16> {
#[inline]
pub fn unique_id(&self) -> u16 {
self.unique_id
}
}
impl<RAW, GID> EventBase<RAW, GID, u8> {
#[inline]
pub fn unique_id(&self) -> u8 {
self.unique_id
pub fn severity(&self) -> Severity {
self.severity
}
}
impl<RAW, UID> EventBase<RAW, u16, UID> {
#[inline]
pub fn group_id(&self) -> u16 {
pub fn group_id(&self) -> u14 {
self.group_id
}
}
impl<RAW, UID> EventBase<RAW, u8, UID> {
#[inline]
pub fn group_id(&self) -> u8 {
self.group_id
pub fn raw(&self) -> u32 {
((self.severity as u32) << 30)
| ((self.group_id.as_u16() as u32) << 16)
| (self.unique_id as u32)
}
}
macro_rules! event_provider_impl {
() => {
#[inline]
fn raw(&self) -> Self::Raw {
self.base.raw()
}
/// Retrieve the severity of an event. Returns None if that severity bit field of the raw event
/// ID is invalid
#[inline]
fn severity(&self) -> Severity {
self.base.severity()
}
#[inline]
fn group_id(&self) -> Self::GroupId {
self.base.group_id()
}
#[inline]
fn unique_id(&self) -> Self::UniqueId {
self.base.unique_id()
}
};
}
macro_rules! impl_event_provider {
($BaseIdent: ident, $TypedIdent: ident, $raw: ty, $gid: ty, $uid: ty) => {
impl GenericEvent for $BaseIdent {
type Raw = $raw;
type GroupId = $gid;
type UniqueId = $uid;
event_provider_impl!();
fn raw_as_largest_type(&self) -> LargestEventRaw {
self.raw().into()
}
fn group_id_as_largest_type(&self) -> LargestGroupIdRaw {
self.group_id().into()
}
}
impl<SEVERITY: HasSeverity> GenericEvent for $TypedIdent<SEVERITY> {
type Raw = $raw;
type GroupId = $gid;
type UniqueId = $uid;
delegate!(to self.event {
fn raw(&self) -> Self::Raw;
fn severity(&self) -> Severity;
fn group_id(&self) -> Self::GroupId;
fn unique_id(&self) -> Self::UniqueId;
fn raw_as_largest_type(&self) -> LargestEventRaw;
fn group_id_as_largest_type(&self) -> LargestGroupIdRaw;
});
}
}
}
macro_rules! try_from_impls {
($SevIdent: ident, $severity: path, $raw: ty, $TypedSevIdent: ident) => {
impl TryFrom<$raw> for $TypedSevIdent<$SevIdent> {
type Error = Severity;
fn try_from(raw: $raw) -> Result<Self, Self::Error> {
Self::try_from_generic($severity, raw)
}
}
};
}
macro_rules! const_from_fn {
($from_fn_name: ident, $TypedIdent: ident, $SevIdent: ident) => {
pub const fn $from_fn_name(event: $TypedIdent<$SevIdent>) -> Self {
Self {
base: event.event.base,
}
}
};
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct EventU32 {
base: EventBase<u32, u16, u16>,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct EventU32TypedSev<SEVERITY> {
event: EventU32,
phantom: PhantomData<SEVERITY>,
}
impl<SEVERITY: HasSeverity> From<EventU32TypedSev<SEVERITY>> for EventU32 {
fn from(e: EventU32TypedSev<SEVERITY>) -> Self {
Self { base: e.event.base }
}
}
impl<Severity: HasSeverity> AsRef<EventU32> for EventU32TypedSev<Severity> {
fn as_ref(&self) -> &EventU32 {
&self.event
}
}
impl<Severity: HasSeverity> AsMut<EventU32> for EventU32TypedSev<Severity> {
fn as_mut(&mut self) -> &mut EventU32 {
&mut self.event
}
}
impl_event_provider!(EventU32, EventU32TypedSev, u32, u16, u16);
impl EventU32 {
/// Generate an event. The raw representation of an event has 32 bits.
/// If the passed group ID is invalid (too large), None wil be returned
///
/// # Parameter
///
/// * `severity`: Each event has a [severity][Severity]. The raw value of the severity will
/// be stored inside the uppermost 2 bits of the raw event ID
/// * `group_id`: Related events can be grouped using a group ID. The group ID will occupy the
/// next 14 bits after the severity. Therefore, the size is limited by dec 16383 hex 0x3FFF.
/// * `unique_id`: Each event has a unique 16 bit ID occupying the last 16 bits of the
/// raw event ID
pub fn new_checked(
severity: Severity,
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Option<Self> {
if group_id > MAX_GROUP_ID_U32_EVENT {
return None;
}
Some(Self {
base: EventBase {
severity,
group_id,
unique_id,
phantom: PhantomData,
},
})
}
/// This constructor will panic if the passed group is is larger than [MAX_GROUP_ID_U32_EVENT].
pub const fn new(
severity: Severity,
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Self {
if group_id > MAX_GROUP_ID_U32_EVENT {
panic!("Group ID too large");
}
Self {
base: EventBase {
severity,
group_id,
unique_id,
phantom: PhantomData,
},
}
}
pub fn from_be_bytes(bytes: [u8; 4]) -> Self {
Self::from(u32::from_be_bytes(bytes))
}
const_from_fn!(const_from_info, EventU32TypedSev, SeverityInfo);
const_from_fn!(const_from_low, EventU32TypedSev, SeverityLow);
const_from_fn!(const_from_medium, EventU32TypedSev, SeverityMedium);
const_from_fn!(const_from_high, EventU32TypedSev, SeverityHigh);
}
impl From<u32> for EventU32 {
impl From<u32> for EventId {
fn from(raw: u32) -> Self {
// Severity conversion from u8 should never fail
let severity = Severity::try_from(((raw >> 30) & 0b11) as u8).unwrap();
let group_id = ((raw >> 16) & 0x3FFF) as u16;
let group_id = u14::new(((raw >> 16) & 0x3FFF) as u16);
let unique_id = (raw & 0xFFFF) as u16;
// Sanitized input, should never fail
Self::new(severity, group_id, unique_id)
}
}
impl UnsignedEnum for EventU32 {
fn size(&self) -> usize {
core::mem::size_of::<u32>()
/// Event which was type erased and serialized into a [alloc::vec::Vec].
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg(feature = "alloc")]
pub struct EventErasedAlloc {
id: EventId,
event_raw: alloc::vec::Vec<u8>,
}
#[cfg(feature = "alloc")]
impl EventErasedAlloc {
#[cfg(feature = "serde")]
/// Creates a new event by serializing the given event using [postcard].
pub fn new(event: &(impl serde::Serialize + Event)) -> Self {
Self {
id: event.id(),
event_raw: postcard::to_allocvec(event).unwrap(),
}
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
self.base.write_to_bytes(self.raw(), buf, self.size())
pub fn new_with_raw_event(id: EventId, event_raw: &[u8]) -> Self {
Self {
id,
event_raw: event_raw.to_vec(),
}
}
fn value(&self) -> u64 {
self.raw().into()
#[inline]
pub fn raw(&self) -> &[u8] {
&self.event_raw
}
}
impl EcssEnumeration for EventU32 {
fn pfc(&self) -> u8 {
u32::BITS as u8
#[cfg(feature = "serde")]
#[cfg(feature = "alloc")]
impl<T: serde::Serialize + Event> From<T> for EventErasedAlloc {
fn from(event: T) -> Self {
Self::new(&event)
}
}
impl<SEVERITY: HasSeverity> EventU32TypedSev<SEVERITY> {
/// This is similar to [EventU32::new] but the severity is a type generic, which allows to
/// have distinct types for events with different severities
pub fn new_checked(
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Option<Self> {
let event = EventU32::new_checked(SEVERITY::SEVERITY, group_id, unique_id)?;
Some(Self {
event,
phantom: PhantomData,
#[cfg(feature = "alloc")]
impl Event for EventErasedAlloc {
fn id(&self) -> EventId {
self.id
}
}
/// Event which was type erased and serialized into a [heapless::vec::Vec].
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg(feature = "heapless")]
pub struct EventErasedHeapless<const N: usize> {
id: EventId,
event_raw: heapless::vec::Vec<u8, N>,
}
#[cfg(feature = "heapless")]
impl<const N: usize> Event for EventErasedHeapless<N> {
fn id(&self) -> EventId {
self.id
}
}
#[cfg(feature = "heapless")]
impl<const N: usize> EventErasedHeapless<N> {
#[cfg(feature = "serde")]
/// Creates a new event by serializing the given event using [postcard].
pub fn new(event: &(impl serde::Serialize + Event)) -> Result<Self, ByteConversionError> {
let ser_size = postcard::experimental::serialized_size(event).unwrap();
if ser_size > N {
return Err(ByteConversionError::ToSliceTooSmall {
found: N,
expected: ser_size,
});
}
let mut vec = heapless::Vec::<u8, N>::new();
vec.resize(N, 0).unwrap();
postcard::to_slice(event, vec.as_mut_slice()).unwrap();
Ok(Self {
id: event.id(),
event_raw: vec,
})
}
/// This constructor will panic if the `group_id` is larger than [MAX_GROUP_ID_U32_EVENT].
pub const fn new(
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Self {
let event = EventU32::new(SEVERITY::SEVERITY, group_id, unique_id);
Self {
event,
phantom: PhantomData,
}
pub fn new_with_raw_event(id: EventId, event_raw: heapless::Vec<u8, N>) -> Self {
Self { id, event_raw }
}
fn try_from_generic(expected: Severity, raw: u32) -> Result<Self, Severity> {
let severity = Severity::try_from(((raw >> 30) & 0b11) as u8).unwrap();
if severity != expected {
return Err(severity);
}
Ok(Self::new(
((raw >> 16) & 0x3FFF) as u16,
(raw & 0xFFFF) as u16,
))
}
}
try_from_impls!(SeverityInfo, Severity::Info, u32, EventU32TypedSev);
try_from_impls!(SeverityLow, Severity::Low, u32, EventU32TypedSev);
try_from_impls!(SeverityMedium, Severity::Medium, u32, EventU32TypedSev);
try_from_impls!(SeverityHigh, Severity::High, u32, EventU32TypedSev);
//noinspection RsTraitImplementation
impl<SEVERITY: HasSeverity> UnsignedEnum for EventU32TypedSev<SEVERITY> {
delegate!(to self.event {
fn size(&self) -> usize;
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError>;
fn value(&self) -> u64;
});
}
//noinspection RsTraitImplementation
impl<SEVERITY: HasSeverity> EcssEnumeration for EventU32TypedSev<SEVERITY> {
delegate!(to self.event {
fn pfc(&self) -> u8;
});
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct EventU16 {
base: EventBase<u16, u8, u8>,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct EventU16TypedSev<SEVERITY> {
event: EventU16,
phantom: PhantomData<SEVERITY>,
}
impl<Severity: HasSeverity> AsRef<EventU16> for EventU16TypedSev<Severity> {
fn as_ref(&self) -> &EventU16 {
&self.event
}
}
impl<Severity: HasSeverity> AsMut<EventU16> for EventU16TypedSev<Severity> {
fn as_mut(&mut self) -> &mut EventU16 {
&mut self.event
}
}
impl EventU16 {
/// Generate a small event. The raw representation of a small event has 16 bits.
/// If the passed group ID is invalid (too large), [None] wil be returned
///
/// # Parameter
///
/// * `severity`: Each event has a [severity][Severity]. The raw value of the severity will
/// be stored inside the uppermost 2 bits of the raw event ID
/// * `group_id`: Related events can be grouped using a group ID. The group ID will occupy the
/// next 6 bits after the severity. Therefore, the size is limited by dec 63 hex 0x3F.
/// * `unique_id`: Each event has a unique 8 bit ID occupying the last 8 bits of the
/// raw event ID
pub fn new_checked(
severity: Severity,
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Option<Self> {
if group_id > (2u8.pow(6) - 1) {
return None;
}
Some(Self {
base: EventBase {
severity,
group_id,
unique_id,
phantom: Default::default(),
},
})
}
/// This constructor will panic if the `group_id` is larger than [MAX_GROUP_ID_U16_EVENT].
pub const fn new(
severity: Severity,
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Self {
if group_id > (2u8.pow(6) - 1) {
panic!("Group ID too large");
}
Self {
base: EventBase {
severity,
group_id,
unique_id,
phantom: PhantomData,
},
}
}
pub fn from_be_bytes(bytes: [u8; 2]) -> Self {
Self::from(u16::from_be_bytes(bytes))
}
const_from_fn!(const_from_info, EventU16TypedSev, SeverityInfo);
const_from_fn!(const_from_low, EventU16TypedSev, SeverityLow);
const_from_fn!(const_from_medium, EventU16TypedSev, SeverityMedium);
const_from_fn!(const_from_high, EventU16TypedSev, SeverityHigh);
}
impl From<u16> for EventU16 {
fn from(raw: <Self as GenericEvent>::Raw) -> Self {
let severity = Severity::try_from(((raw >> 14) & 0b11) as u8).unwrap();
let group_id = ((raw >> 8) & 0x3F) as u8;
let unique_id = (raw & 0xFF) as u8;
// Sanitized input, new call should never fail
Self::new(severity, group_id, unique_id)
}
}
impl UnsignedEnum for EventU16 {
fn size(&self) -> usize {
core::mem::size_of::<u16>()
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
self.base.write_to_bytes(self.raw(), buf, self.size())
}
fn value(&self) -> u64 {
self.raw().into()
}
}
impl EcssEnumeration for EventU16 {
#[inline]
fn pfc(&self) -> u8 {
u16::BITS as u8
}
}
impl<SEVERITY: HasSeverity> EventU16TypedSev<SEVERITY> {
/// This is similar to [EventU16::new] but the severity is a type generic, which allows to
/// have distinct types for events with different severities
pub fn new_checked(
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Option<Self> {
let event = EventU16::new_checked(SEVERITY::SEVERITY, group_id, unique_id)?;
Some(Self {
event,
phantom: PhantomData,
})
}
/// This constructor will panic if the `group_id` is larger than [MAX_GROUP_ID_U16_EVENT].
pub const fn new(
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Self {
let event = EventU16::new(SEVERITY::SEVERITY, group_id, unique_id);
Self {
event,
phantom: PhantomData,
}
}
fn try_from_generic(expected: Severity, raw: u16) -> Result<Self, Severity> {
let severity = Severity::try_from(((raw >> 14) & 0b11) as u8).unwrap();
if severity != expected {
return Err(severity);
}
Ok(Self::new(((raw >> 8) & 0x3F) as u8, (raw & 0xFF) as u8))
}
}
impl_event_provider!(EventU16, EventU16TypedSev, u16, u8, u8);
//noinspection RsTraitImplementation
impl<SEVERITY: HasSeverity> UnsignedEnum for EventU16TypedSev<SEVERITY> {
delegate!(to self.event {
fn size(&self) -> usize;
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError>;
fn value(&self) -> u64;
});
}
//noinspection RsTraitImplementation
impl<SEVERITY: HasSeverity> EcssEnumeration for EventU16TypedSev<SEVERITY> {
delegate!(to self.event {
fn pfc(&self) -> u8;
});
}
try_from_impls!(SeverityInfo, Severity::Info, u16, EventU16TypedSev);
try_from_impls!(SeverityLow, Severity::Low, u16, EventU16TypedSev);
try_from_impls!(SeverityMedium, Severity::Medium, u16, EventU16TypedSev);
try_from_impls!(SeverityHigh, Severity::High, u16, EventU16TypedSev);
impl<Severity: HasSeverity> PartialEq<EventU32> for EventU32TypedSev<Severity> {
#[inline]
fn eq(&self, other: &EventU32) -> bool {
self.raw() == other.raw()
}
}
impl<Severity: HasSeverity> PartialEq<EventU32TypedSev<Severity>> for EventU32 {
#[inline]
fn eq(&self, other: &EventU32TypedSev<Severity>) -> bool {
self.raw() == other.raw()
}
}
impl<Severity: HasSeverity> PartialEq<EventU16> for EventU16TypedSev<Severity> {
#[inline]
fn eq(&self, other: &EventU16) -> bool {
self.raw() == other.raw()
}
}
impl<Severity: HasSeverity> PartialEq<EventU16TypedSev<Severity>> for EventU16 {
#[inline]
fn eq(&self, other: &EventU16TypedSev<Severity>) -> bool {
self.raw() == other.raw()
pub fn raw(&self) -> &[u8] {
&self.event_raw
}
}
#[cfg(test)]
mod tests {
use super::EventU32TypedSev;
use super::*;
use spacepackets::ByteConversionError;
use std::mem::size_of;
fn assert_size<T>(_: T, val: usize) {
assert_eq!(size_of::<T>(), val);
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum TestEvent {
Info,
ErrorOtherGroup,
}
const INFO_EVENT: EventU32TypedSev<SeverityInfo> = EventU32TypedSev::new(0, 0);
const INFO_EVENT_SMALL: EventU16TypedSev<SeverityInfo> = EventU16TypedSev::new(0, 0);
const HIGH_SEV_EVENT: EventU32TypedSev<SeverityHigh> = EventU32TypedSev::new(0x3FFF, 0xFFFF);
const HIGH_SEV_EVENT_SMALL: EventU16TypedSev<SeverityHigh> = EventU16TypedSev::new(0x3F, 0xff);
/// This working is a test in itself.
const INFO_REDUCED: EventU32 = EventU32::const_from_info(INFO_EVENT);
#[test]
fn test_normal_from_raw_conversion() {
let conv_from_raw = EventU32TypedSev::<SeverityInfo>::try_from(INFO_EVENT.raw())
.expect("Creating typed EventU32 failed");
assert_eq!(conv_from_raw, INFO_EVENT);
}
#[test]
fn test_small_from_raw_conversion() {
let conv_from_raw = EventU16TypedSev::<SeverityInfo>::try_from(INFO_EVENT_SMALL.raw())
.expect("Creating typed EventU16 failed");
assert_eq!(conv_from_raw, INFO_EVENT_SMALL);
}
#[test]
fn verify_normal_size() {
assert_size(INFO_EVENT.raw(), 4)
}
#[test]
fn verify_small_size() {
assert_size(INFO_EVENT_SMALL.raw(), 2)
impl Event for TestEvent {
fn id(&self) -> EventId {
match self {
TestEvent::Info => EventId::new(Severity::Info, u14::new(0), 0),
TestEvent::ErrorOtherGroup => EventId::new(Severity::High, u14::new(1), 1),
}
}
}
#[test]
fn test_normal_event_getters() {
assert_eq!(INFO_EVENT.severity(), Severity::Info);
assert_eq!(INFO_EVENT.unique_id(), 0);
assert_eq!(INFO_EVENT.group_id(), 0);
let raw_event = INFO_EVENT.raw();
assert_eq!(TestEvent::Info.id().severity(), Severity::Info);
assert_eq!(TestEvent::Info.id().unique_id(), 0);
assert_eq!(TestEvent::Info.id().group_id().value(), 0);
assert_eq!(TestEvent::ErrorOtherGroup.id().group_id().value(), 1);
assert_eq!(TestEvent::ErrorOtherGroup.id().unique_id(), 1);
let raw_event = TestEvent::Info.id().raw();
assert_eq!(raw_event, 0x00000000);
}
#[test]
fn test_small_event_getters() {
assert_eq!(INFO_EVENT_SMALL.severity(), Severity::Info);
assert_eq!(INFO_EVENT_SMALL.unique_id(), 0);
assert_eq!(INFO_EVENT_SMALL.group_id(), 0);
let raw_event = INFO_EVENT_SMALL.raw();
assert_eq!(raw_event, 0x00000000);
#[cfg(feature = "serde")]
fn test_basic_erased_alloc_event() {
let event = EventErasedAlloc::new(&TestEvent::Info);
let test_event: TestEvent = postcard::from_bytes(event.raw()).unwrap();
assert_eq!(test_event, TestEvent::Info);
}
#[test]
fn all_ones_event_regular() {
assert_eq!(HIGH_SEV_EVENT.severity(), Severity::High);
assert_eq!(HIGH_SEV_EVENT.group_id(), 0x3FFF);
assert_eq!(HIGH_SEV_EVENT.unique_id(), 0xFFFF);
let raw_event = HIGH_SEV_EVENT.raw();
assert_eq!(raw_event, 0xFFFFFFFF);
}
#[test]
fn all_ones_event_small() {
assert_eq!(HIGH_SEV_EVENT_SMALL.severity(), Severity::High);
assert_eq!(HIGH_SEV_EVENT_SMALL.group_id(), 0x3F);
assert_eq!(HIGH_SEV_EVENT_SMALL.unique_id(), 0xFF);
let raw_event = HIGH_SEV_EVENT_SMALL.raw();
assert_eq!(raw_event, 0xFFFF);
}
#[test]
fn invalid_group_id_normal() {
assert!(EventU32TypedSev::<SeverityMedium>::new_checked(2_u16.pow(14), 0).is_none());
}
#[test]
fn invalid_group_id_small() {
assert!(EventU16TypedSev::<SeverityMedium>::new_checked(2_u8.pow(6), 0).is_none());
}
#[test]
fn regular_new() {
assert_eq!(
EventU32TypedSev::<SeverityInfo>::new_checked(0, 0)
.expect("Creating regular event failed"),
INFO_EVENT
);
}
#[test]
fn small_new() {
assert_eq!(
EventU16TypedSev::<SeverityInfo>::new_checked(0, 0)
.expect("Creating regular event failed"),
INFO_EVENT_SMALL
);
}
#[test]
fn as_largest_type() {
let event_raw = HIGH_SEV_EVENT.raw_as_largest_type();
assert_size(event_raw, 4);
assert_eq!(event_raw, 0xFFFFFFFF);
}
#[test]
fn as_largest_type_for_small_event() {
let event_raw = HIGH_SEV_EVENT_SMALL.raw_as_largest_type();
assert_size(event_raw, 4);
assert_eq!(event_raw, 0xFFFF);
}
#[test]
fn as_largest_group_id() {
let group_id = HIGH_SEV_EVENT.group_id_as_largest_type();
assert_size(group_id, 2);
assert_eq!(group_id, 0x3FFF);
}
#[test]
fn as_largest_group_id_small_event() {
let group_id = HIGH_SEV_EVENT_SMALL.group_id_as_largest_type();
assert_size(group_id, 2);
assert_eq!(group_id, 0x3F);
}
#[test]
fn write_to_buf() {
let mut buf: [u8; 4] = [0; 4];
assert!(HIGH_SEV_EVENT.write_to_be_bytes(&mut buf).is_ok());
let val_from_raw = u32::from_be_bytes(buf);
assert_eq!(val_from_raw, 0xFFFFFFFF);
let event_read_back = EventU32::from_be_bytes(buf);
assert_eq!(event_read_back, HIGH_SEV_EVENT);
}
#[test]
fn write_to_buf_small() {
let mut buf: [u8; 2] = [0; 2];
assert!(HIGH_SEV_EVENT_SMALL.write_to_be_bytes(&mut buf).is_ok());
let val_from_raw = u16::from_be_bytes(buf);
assert_eq!(val_from_raw, 0xFFFF);
let event_read_back = EventU16::from_be_bytes(buf);
assert_eq!(event_read_back, HIGH_SEV_EVENT_SMALL);
}
#[test]
fn write_to_buf_insufficient_buf() {
let mut buf: [u8; 3] = [0; 3];
let err = HIGH_SEV_EVENT.write_to_be_bytes(&mut buf);
assert!(err.is_err());
let err = err.unwrap_err();
if let ByteConversionError::ToSliceTooSmall { found, expected } = err {
assert_eq!(expected, 4);
assert_eq!(found, 3);
}
}
#[test]
fn write_to_buf_small_insufficient_buf() {
let mut buf: [u8; 1] = [0; 1];
let err = HIGH_SEV_EVENT_SMALL.write_to_be_bytes(&mut buf);
assert!(err.is_err());
let err = err.unwrap_err();
if let ByteConversionError::ToSliceTooSmall { found, expected } = err {
assert_eq!(expected, 2);
assert_eq!(found, 1);
}
}
#[test]
fn severity_from_invalid_raw_val() {
let invalid = 0xFF;
assert!(Severity::try_from(invalid).is_err());
let invalid = Severity::High as u8 + 1;
assert!(Severity::try_from(invalid).is_err());
}
#[test]
fn reduction() {
let event = EventU32TypedSev::<SeverityInfo>::new(1, 1);
let raw = event.raw();
let reduced: EventU32 = event.into();
assert_eq!(reduced.group_id(), 1);
assert_eq!(reduced.unique_id(), 1);
assert_eq!(raw, reduced.raw());
}
#[test]
fn const_reducation() {
assert_eq!(INFO_REDUCED.raw(), INFO_EVENT.raw());
#[cfg(all(feature = "serde", feature = "alloc"))]
fn test_basic_erased_heapless_event() {
let event = EventErasedHeapless::<8>::new(&TestEvent::Info).unwrap();
let test_event: TestEvent = postcard::from_bytes(event.raw()).unwrap();
assert_eq!(test_event, TestEvent::Info);
}
}

859
satrs/src/events_legacy.rs Normal file
View File

@@ -0,0 +1,859 @@
//! # Event support module
//!
//! This is a legacy module. It is recommended to use [super::events] instead.
//!
//! This module includes the basic event structs [EventU32] and [EventU16] and versions with the
//! ECSS severity levels as a type parameter. These structs are simple abstractions on top of the
//! [u32] and [u16] types where the raw value is the unique identifier for a particular event.
//! The abstraction also allows to group related events using a group ID, and the severity
//! of an event is encoded inside the raw value itself with four possible [Severity] levels:
//!
//! - INFO
//! - LOW
//! - MEDIUM
//! - HIGH
//!
//! All event structs implement the [EcssEnumeration] trait and can be created as constants.
//! This allows to easily create a static list of constant events which can then be used to generate
//! event telemetry using the PUS event manager modules.
//!
//! # Examples
//!
//! ```
//! use satrs::events_legacy::{EventU16, EventU32, EventU32TypedSev, Severity, SeverityHigh, SeverityInfo};
//!
//! const MSG_RECVD: EventU32TypedSev<SeverityInfo> = EventU32TypedSev::new(1, 0);
//! const MSG_FAILED: EventU32 = EventU32::new(Severity::Low, 1, 1);
//!
//! const TEMPERATURE_HIGH: EventU32TypedSev<SeverityHigh> = EventU32TypedSev::new(2, 0);
//!
//! let small_event = EventU16::new(Severity::Info, 3, 0);
//! ```
use core::fmt::Debug;
use core::hash::Hash;
use core::marker::PhantomData;
use delegate::delegate;
use spacepackets::ByteConversionError;
use spacepackets::ecss::EcssEnumeration;
use spacepackets::util::{ToBeBytes, UnsignedEnum};
/// Using a type definition allows to change this to u64 in the future more easily
pub type LargestEventRaw = u32;
/// Using a type definition allows to change this to u32 in the future more easily
pub type LargestGroupIdRaw = u16;
pub const MAX_GROUP_ID_U32_EVENT: u16 = 2_u16.pow(14) - 1;
pub const MAX_GROUP_ID_U16_EVENT: u16 = 2_u16.pow(6) - 1;
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Severity {
Info = 0,
Low = 1,
Medium = 2,
High = 3,
}
pub trait HasSeverity: Debug + PartialEq + Eq + Copy + Clone {
const SEVERITY: Severity;
}
/// Type level support struct
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct SeverityInfo {}
impl HasSeverity for SeverityInfo {
const SEVERITY: Severity = Severity::Info;
}
/// Type level support struct
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct SeverityLow {}
impl HasSeverity for SeverityLow {
const SEVERITY: Severity = Severity::Low;
}
/// Type level support struct
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct SeverityMedium {}
impl HasSeverity for SeverityMedium {
const SEVERITY: Severity = Severity::Medium;
}
/// Type level support struct
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct SeverityHigh {}
impl HasSeverity for SeverityHigh {
const SEVERITY: Severity = Severity::High;
}
pub trait GenericEvent: EcssEnumeration + Copy + Clone {
type Raw;
type GroupId;
type UniqueId;
fn raw(&self) -> Self::Raw;
fn severity(&self) -> Severity;
fn group_id(&self) -> Self::GroupId;
fn unique_id(&self) -> Self::UniqueId;
fn raw_as_largest_type(&self) -> LargestEventRaw;
fn group_id_as_largest_type(&self) -> LargestGroupIdRaw;
}
impl TryFrom<u8> for Severity {
type Error = ();
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
x if x == Severity::Info as u8 => Ok(Severity::Info),
x if x == Severity::Low as u8 => Ok(Severity::Low),
x if x == Severity::Medium as u8 => Ok(Severity::Medium),
x if x == Severity::High as u8 => Ok(Severity::High),
_ => Err(()),
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
struct EventBase<Raw, GroupId, UniqueId> {
severity: Severity,
group_id: GroupId,
unique_id: UniqueId,
phantom: PhantomData<Raw>,
}
impl<Raw: ToBeBytes, GroupId, UniqueId> EventBase<Raw, GroupId, UniqueId> {
fn write_to_bytes(
&self,
raw: Raw,
buf: &mut [u8],
width: usize,
) -> Result<usize, ByteConversionError> {
if buf.len() < width {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: width,
});
}
buf.copy_from_slice(raw.to_be_bytes().as_ref());
Ok(raw.written_len())
}
}
impl EventBase<u32, u16, u16> {
#[inline]
fn raw(&self) -> u32 {
((self.severity as u32) << 30) | ((self.group_id as u32) << 16) | self.unique_id as u32
}
}
impl EventBase<u16, u8, u8> {
#[inline]
fn raw(&self) -> u16 {
((self.severity as u16) << 14) | ((self.group_id as u16) << 8) | self.unique_id as u16
}
}
impl<RAW, GID, UID> EventBase<RAW, GID, UID> {
#[inline]
pub fn severity(&self) -> Severity {
self.severity
}
}
impl<RAW, GID> EventBase<RAW, GID, u16> {
#[inline]
pub fn unique_id(&self) -> u16 {
self.unique_id
}
}
impl<RAW, GID> EventBase<RAW, GID, u8> {
#[inline]
pub fn unique_id(&self) -> u8 {
self.unique_id
}
}
impl<RAW, UID> EventBase<RAW, u16, UID> {
#[inline]
pub fn group_id(&self) -> u16 {
self.group_id
}
}
impl<RAW, UID> EventBase<RAW, u8, UID> {
#[inline]
pub fn group_id(&self) -> u8 {
self.group_id
}
}
macro_rules! event_provider_impl {
() => {
#[inline]
fn raw(&self) -> Self::Raw {
self.base.raw()
}
/// Retrieve the severity of an event. Returns None if that severity bit field of the raw event
/// ID is invalid
#[inline]
fn severity(&self) -> Severity {
self.base.severity()
}
#[inline]
fn group_id(&self) -> Self::GroupId {
self.base.group_id()
}
#[inline]
fn unique_id(&self) -> Self::UniqueId {
self.base.unique_id()
}
};
}
macro_rules! impl_event_provider {
($BaseIdent: ident, $TypedIdent: ident, $raw: ty, $gid: ty, $uid: ty) => {
impl GenericEvent for $BaseIdent {
type Raw = $raw;
type GroupId = $gid;
type UniqueId = $uid;
event_provider_impl!();
fn raw_as_largest_type(&self) -> LargestEventRaw {
self.raw().into()
}
fn group_id_as_largest_type(&self) -> LargestGroupIdRaw {
self.group_id().into()
}
}
impl<SEVERITY: HasSeverity> GenericEvent for $TypedIdent<SEVERITY> {
type Raw = $raw;
type GroupId = $gid;
type UniqueId = $uid;
delegate!(to self.event {
fn raw(&self) -> Self::Raw;
fn severity(&self) -> Severity;
fn group_id(&self) -> Self::GroupId;
fn unique_id(&self) -> Self::UniqueId;
fn raw_as_largest_type(&self) -> LargestEventRaw;
fn group_id_as_largest_type(&self) -> LargestGroupIdRaw;
});
}
}
}
macro_rules! try_from_impls {
($SevIdent: ident, $severity: path, $raw: ty, $TypedSevIdent: ident) => {
impl TryFrom<$raw> for $TypedSevIdent<$SevIdent> {
type Error = Severity;
fn try_from(raw: $raw) -> Result<Self, Self::Error> {
Self::try_from_generic($severity, raw)
}
}
};
}
macro_rules! const_from_fn {
($from_fn_name: ident, $TypedIdent: ident, $SevIdent: ident) => {
pub const fn $from_fn_name(event: $TypedIdent<$SevIdent>) -> Self {
Self {
base: event.event.base,
}
}
};
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct EventU32 {
base: EventBase<u32, u16, u16>,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct EventU32TypedSev<SEVERITY> {
event: EventU32,
phantom: PhantomData<SEVERITY>,
}
impl<SEVERITY: HasSeverity> From<EventU32TypedSev<SEVERITY>> for EventU32 {
fn from(e: EventU32TypedSev<SEVERITY>) -> Self {
Self { base: e.event.base }
}
}
impl<Severity: HasSeverity> AsRef<EventU32> for EventU32TypedSev<Severity> {
fn as_ref(&self) -> &EventU32 {
&self.event
}
}
impl<Severity: HasSeverity> AsMut<EventU32> for EventU32TypedSev<Severity> {
fn as_mut(&mut self) -> &mut EventU32 {
&mut self.event
}
}
impl_event_provider!(EventU32, EventU32TypedSev, u32, u16, u16);
impl EventU32 {
/// Generate an event. The raw representation of an event has 32 bits.
/// If the passed group ID is invalid (too large), None wil be returned
///
/// # Parameter
///
/// * `severity`: Each event has a [severity][Severity]. The raw value of the severity will
/// be stored inside the uppermost 2 bits of the raw event ID
/// * `group_id`: Related events can be grouped using a group ID. The group ID will occupy the
/// next 14 bits after the severity. Therefore, the size is limited by dec 16383 hex 0x3FFF.
/// * `unique_id`: Each event has a unique 16 bit ID occupying the last 16 bits of the
/// raw event ID
pub fn new_checked(
severity: Severity,
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Option<Self> {
if group_id > MAX_GROUP_ID_U32_EVENT {
return None;
}
Some(Self {
base: EventBase {
severity,
group_id,
unique_id,
phantom: PhantomData,
},
})
}
/// This constructor will panic if the passed group is is larger than [MAX_GROUP_ID_U32_EVENT].
pub const fn new(
severity: Severity,
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Self {
if group_id > MAX_GROUP_ID_U32_EVENT {
panic!("Group ID too large");
}
Self {
base: EventBase {
severity,
group_id,
unique_id,
phantom: PhantomData,
},
}
}
pub fn from_be_bytes(bytes: [u8; 4]) -> Self {
Self::from(u32::from_be_bytes(bytes))
}
const_from_fn!(const_from_info, EventU32TypedSev, SeverityInfo);
const_from_fn!(const_from_low, EventU32TypedSev, SeverityLow);
const_from_fn!(const_from_medium, EventU32TypedSev, SeverityMedium);
const_from_fn!(const_from_high, EventU32TypedSev, SeverityHigh);
}
impl From<u32> for EventU32 {
fn from(raw: u32) -> Self {
// Severity conversion from u8 should never fail
let severity = Severity::try_from(((raw >> 30) & 0b11) as u8).unwrap();
let group_id = ((raw >> 16) & 0x3FFF) as u16;
let unique_id = (raw & 0xFFFF) as u16;
// Sanitized input, should never fail
Self::new(severity, group_id, unique_id)
}
}
impl UnsignedEnum for EventU32 {
fn size(&self) -> usize {
core::mem::size_of::<u32>()
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
self.base.write_to_bytes(self.raw(), buf, self.size())
}
fn value(&self) -> u64 {
self.raw().into()
}
}
impl EcssEnumeration for EventU32 {
fn pfc(&self) -> u8 {
u32::BITS as u8
}
}
impl<SEVERITY: HasSeverity> EventU32TypedSev<SEVERITY> {
/// This is similar to [EventU32::new] but the severity is a type generic, which allows to
/// have distinct types for events with different severities
pub fn new_checked(
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Option<Self> {
let event = EventU32::new_checked(SEVERITY::SEVERITY, group_id, unique_id)?;
Some(Self {
event,
phantom: PhantomData,
})
}
/// This constructor will panic if the `group_id` is larger than [MAX_GROUP_ID_U32_EVENT].
pub const fn new(
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Self {
let event = EventU32::new(SEVERITY::SEVERITY, group_id, unique_id);
Self {
event,
phantom: PhantomData,
}
}
fn try_from_generic(expected: Severity, raw: u32) -> Result<Self, Severity> {
let severity = Severity::try_from(((raw >> 30) & 0b11) as u8).unwrap();
if severity != expected {
return Err(severity);
}
Ok(Self::new(
((raw >> 16) & 0x3FFF) as u16,
(raw & 0xFFFF) as u16,
))
}
}
try_from_impls!(SeverityInfo, Severity::Info, u32, EventU32TypedSev);
try_from_impls!(SeverityLow, Severity::Low, u32, EventU32TypedSev);
try_from_impls!(SeverityMedium, Severity::Medium, u32, EventU32TypedSev);
try_from_impls!(SeverityHigh, Severity::High, u32, EventU32TypedSev);
//noinspection RsTraitImplementation
impl<SEVERITY: HasSeverity> UnsignedEnum for EventU32TypedSev<SEVERITY> {
delegate!(to self.event {
fn size(&self) -> usize;
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError>;
fn value(&self) -> u64;
});
}
//noinspection RsTraitImplementation
impl<SEVERITY: HasSeverity> EcssEnumeration for EventU32TypedSev<SEVERITY> {
delegate!(to self.event {
fn pfc(&self) -> u8;
});
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct EventU16 {
base: EventBase<u16, u8, u8>,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct EventU16TypedSev<SEVERITY> {
event: EventU16,
phantom: PhantomData<SEVERITY>,
}
impl<Severity: HasSeverity> AsRef<EventU16> for EventU16TypedSev<Severity> {
fn as_ref(&self) -> &EventU16 {
&self.event
}
}
impl<Severity: HasSeverity> AsMut<EventU16> for EventU16TypedSev<Severity> {
fn as_mut(&mut self) -> &mut EventU16 {
&mut self.event
}
}
impl EventU16 {
/// Generate a small event. The raw representation of a small event has 16 bits.
/// If the passed group ID is invalid (too large), [None] wil be returned
///
/// # Parameter
///
/// * `severity`: Each event has a [severity][Severity]. The raw value of the severity will
/// be stored inside the uppermost 2 bits of the raw event ID
/// * `group_id`: Related events can be grouped using a group ID. The group ID will occupy the
/// next 6 bits after the severity. Therefore, the size is limited by dec 63 hex 0x3F.
/// * `unique_id`: Each event has a unique 8 bit ID occupying the last 8 bits of the
/// raw event ID
pub fn new_checked(
severity: Severity,
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Option<Self> {
if group_id > (2u8.pow(6) - 1) {
return None;
}
Some(Self {
base: EventBase {
severity,
group_id,
unique_id,
phantom: Default::default(),
},
})
}
/// This constructor will panic if the `group_id` is larger than [MAX_GROUP_ID_U16_EVENT].
pub const fn new(
severity: Severity,
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Self {
if group_id > (2u8.pow(6) - 1) {
panic!("Group ID too large");
}
Self {
base: EventBase {
severity,
group_id,
unique_id,
phantom: PhantomData,
},
}
}
pub fn from_be_bytes(bytes: [u8; 2]) -> Self {
Self::from(u16::from_be_bytes(bytes))
}
const_from_fn!(const_from_info, EventU16TypedSev, SeverityInfo);
const_from_fn!(const_from_low, EventU16TypedSev, SeverityLow);
const_from_fn!(const_from_medium, EventU16TypedSev, SeverityMedium);
const_from_fn!(const_from_high, EventU16TypedSev, SeverityHigh);
}
impl From<u16> for EventU16 {
fn from(raw: <Self as GenericEvent>::Raw) -> Self {
let severity = Severity::try_from(((raw >> 14) & 0b11) as u8).unwrap();
let group_id = ((raw >> 8) & 0x3F) as u8;
let unique_id = (raw & 0xFF) as u8;
// Sanitized input, new call should never fail
Self::new(severity, group_id, unique_id)
}
}
impl UnsignedEnum for EventU16 {
fn size(&self) -> usize {
core::mem::size_of::<u16>()
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
self.base.write_to_bytes(self.raw(), buf, self.size())
}
fn value(&self) -> u64 {
self.raw().into()
}
}
impl EcssEnumeration for EventU16 {
#[inline]
fn pfc(&self) -> u8 {
u16::BITS as u8
}
}
impl<SEVERITY: HasSeverity> EventU16TypedSev<SEVERITY> {
/// This is similar to [EventU16::new] but the severity is a type generic, which allows to
/// have distinct types for events with different severities
pub fn new_checked(
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Option<Self> {
let event = EventU16::new_checked(SEVERITY::SEVERITY, group_id, unique_id)?;
Some(Self {
event,
phantom: PhantomData,
})
}
/// This constructor will panic if the `group_id` is larger than [MAX_GROUP_ID_U16_EVENT].
pub const fn new(
group_id: <Self as GenericEvent>::GroupId,
unique_id: <Self as GenericEvent>::UniqueId,
) -> Self {
let event = EventU16::new(SEVERITY::SEVERITY, group_id, unique_id);
Self {
event,
phantom: PhantomData,
}
}
fn try_from_generic(expected: Severity, raw: u16) -> Result<Self, Severity> {
let severity = Severity::try_from(((raw >> 14) & 0b11) as u8).unwrap();
if severity != expected {
return Err(severity);
}
Ok(Self::new(((raw >> 8) & 0x3F) as u8, (raw & 0xFF) as u8))
}
}
impl_event_provider!(EventU16, EventU16TypedSev, u16, u8, u8);
//noinspection RsTraitImplementation
impl<SEVERITY: HasSeverity> UnsignedEnum for EventU16TypedSev<SEVERITY> {
delegate!(to self.event {
fn size(&self) -> usize;
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError>;
fn value(&self) -> u64;
});
}
//noinspection RsTraitImplementation
impl<SEVERITY: HasSeverity> EcssEnumeration for EventU16TypedSev<SEVERITY> {
delegate!(to self.event {
fn pfc(&self) -> u8;
});
}
try_from_impls!(SeverityInfo, Severity::Info, u16, EventU16TypedSev);
try_from_impls!(SeverityLow, Severity::Low, u16, EventU16TypedSev);
try_from_impls!(SeverityMedium, Severity::Medium, u16, EventU16TypedSev);
try_from_impls!(SeverityHigh, Severity::High, u16, EventU16TypedSev);
impl<Severity: HasSeverity> PartialEq<EventU32> for EventU32TypedSev<Severity> {
#[inline]
fn eq(&self, other: &EventU32) -> bool {
self.raw() == other.raw()
}
}
impl<Severity: HasSeverity> PartialEq<EventU32TypedSev<Severity>> for EventU32 {
#[inline]
fn eq(&self, other: &EventU32TypedSev<Severity>) -> bool {
self.raw() == other.raw()
}
}
impl<Severity: HasSeverity> PartialEq<EventU16> for EventU16TypedSev<Severity> {
#[inline]
fn eq(&self, other: &EventU16) -> bool {
self.raw() == other.raw()
}
}
impl<Severity: HasSeverity> PartialEq<EventU16TypedSev<Severity>> for EventU16 {
#[inline]
fn eq(&self, other: &EventU16TypedSev<Severity>) -> bool {
self.raw() == other.raw()
}
}
#[cfg(test)]
mod tests {
use super::EventU32TypedSev;
use super::*;
use spacepackets::ByteConversionError;
use std::mem::size_of;
fn assert_size<T>(_: T, val: usize) {
assert_eq!(size_of::<T>(), val);
}
const INFO_EVENT: EventU32TypedSev<SeverityInfo> = EventU32TypedSev::new(0, 0);
const INFO_EVENT_SMALL: EventU16TypedSev<SeverityInfo> = EventU16TypedSev::new(0, 0);
const HIGH_SEV_EVENT: EventU32TypedSev<SeverityHigh> = EventU32TypedSev::new(0x3FFF, 0xFFFF);
const HIGH_SEV_EVENT_SMALL: EventU16TypedSev<SeverityHigh> = EventU16TypedSev::new(0x3F, 0xff);
/// This working is a test in itself.
const INFO_REDUCED: EventU32 = EventU32::const_from_info(INFO_EVENT);
#[test]
fn test_normal_from_raw_conversion() {
let conv_from_raw = EventU32TypedSev::<SeverityInfo>::try_from(INFO_EVENT.raw())
.expect("Creating typed EventU32 failed");
assert_eq!(conv_from_raw, INFO_EVENT);
}
#[test]
fn test_small_from_raw_conversion() {
let conv_from_raw = EventU16TypedSev::<SeverityInfo>::try_from(INFO_EVENT_SMALL.raw())
.expect("Creating typed EventU16 failed");
assert_eq!(conv_from_raw, INFO_EVENT_SMALL);
}
#[test]
fn verify_normal_size() {
assert_size(INFO_EVENT.raw(), 4)
}
#[test]
fn verify_small_size() {
assert_size(INFO_EVENT_SMALL.raw(), 2)
}
#[test]
fn test_normal_event_getters() {
assert_eq!(INFO_EVENT.severity(), Severity::Info);
assert_eq!(INFO_EVENT.unique_id(), 0);
assert_eq!(INFO_EVENT.group_id(), 0);
let raw_event = INFO_EVENT.raw();
assert_eq!(raw_event, 0x00000000);
}
#[test]
fn test_small_event_getters() {
assert_eq!(INFO_EVENT_SMALL.severity(), Severity::Info);
assert_eq!(INFO_EVENT_SMALL.unique_id(), 0);
assert_eq!(INFO_EVENT_SMALL.group_id(), 0);
let raw_event = INFO_EVENT_SMALL.raw();
assert_eq!(raw_event, 0x00000000);
}
#[test]
fn all_ones_event_regular() {
assert_eq!(HIGH_SEV_EVENT.severity(), Severity::High);
assert_eq!(HIGH_SEV_EVENT.group_id(), 0x3FFF);
assert_eq!(HIGH_SEV_EVENT.unique_id(), 0xFFFF);
let raw_event = HIGH_SEV_EVENT.raw();
assert_eq!(raw_event, 0xFFFFFFFF);
}
#[test]
fn all_ones_event_small() {
assert_eq!(HIGH_SEV_EVENT_SMALL.severity(), Severity::High);
assert_eq!(HIGH_SEV_EVENT_SMALL.group_id(), 0x3F);
assert_eq!(HIGH_SEV_EVENT_SMALL.unique_id(), 0xFF);
let raw_event = HIGH_SEV_EVENT_SMALL.raw();
assert_eq!(raw_event, 0xFFFF);
}
#[test]
fn invalid_group_id_normal() {
assert!(EventU32TypedSev::<SeverityMedium>::new_checked(2_u16.pow(14), 0).is_none());
}
#[test]
fn invalid_group_id_small() {
assert!(EventU16TypedSev::<SeverityMedium>::new_checked(2_u8.pow(6), 0).is_none());
}
#[test]
fn regular_new() {
assert_eq!(
EventU32TypedSev::<SeverityInfo>::new_checked(0, 0)
.expect("Creating regular event failed"),
INFO_EVENT
);
}
#[test]
fn small_new() {
assert_eq!(
EventU16TypedSev::<SeverityInfo>::new_checked(0, 0)
.expect("Creating regular event failed"),
INFO_EVENT_SMALL
);
}
#[test]
fn as_largest_type() {
let event_raw = HIGH_SEV_EVENT.raw_as_largest_type();
assert_size(event_raw, 4);
assert_eq!(event_raw, 0xFFFFFFFF);
}
#[test]
fn as_largest_type_for_small_event() {
let event_raw = HIGH_SEV_EVENT_SMALL.raw_as_largest_type();
assert_size(event_raw, 4);
assert_eq!(event_raw, 0xFFFF);
}
#[test]
fn as_largest_group_id() {
let group_id = HIGH_SEV_EVENT.group_id_as_largest_type();
assert_size(group_id, 2);
assert_eq!(group_id, 0x3FFF);
}
#[test]
fn as_largest_group_id_small_event() {
let group_id = HIGH_SEV_EVENT_SMALL.group_id_as_largest_type();
assert_size(group_id, 2);
assert_eq!(group_id, 0x3F);
}
#[test]
fn write_to_buf() {
let mut buf: [u8; 4] = [0; 4];
assert!(HIGH_SEV_EVENT.write_to_be_bytes(&mut buf).is_ok());
let val_from_raw = u32::from_be_bytes(buf);
assert_eq!(val_from_raw, 0xFFFFFFFF);
let event_read_back = EventU32::from_be_bytes(buf);
assert_eq!(event_read_back, HIGH_SEV_EVENT);
}
#[test]
fn write_to_buf_small() {
let mut buf: [u8; 2] = [0; 2];
assert!(HIGH_SEV_EVENT_SMALL.write_to_be_bytes(&mut buf).is_ok());
let val_from_raw = u16::from_be_bytes(buf);
assert_eq!(val_from_raw, 0xFFFF);
let event_read_back = EventU16::from_be_bytes(buf);
assert_eq!(event_read_back, HIGH_SEV_EVENT_SMALL);
}
#[test]
fn write_to_buf_insufficient_buf() {
let mut buf: [u8; 3] = [0; 3];
let err = HIGH_SEV_EVENT.write_to_be_bytes(&mut buf);
assert!(err.is_err());
let err = err.unwrap_err();
if let ByteConversionError::ToSliceTooSmall { found, expected } = err {
assert_eq!(expected, 4);
assert_eq!(found, 3);
}
}
#[test]
fn write_to_buf_small_insufficient_buf() {
let mut buf: [u8; 1] = [0; 1];
let err = HIGH_SEV_EVENT_SMALL.write_to_be_bytes(&mut buf);
assert!(err.is_err());
let err = err.unwrap_err();
if let ByteConversionError::ToSliceTooSmall { found, expected } = err {
assert_eq!(expected, 2);
assert_eq!(found, 1);
}
}
#[test]
fn severity_from_invalid_raw_val() {
let invalid = 0xFF;
assert!(Severity::try_from(invalid).is_err());
let invalid = Severity::High as u8 + 1;
assert!(Severity::try_from(invalid).is_err());
}
#[test]
fn reduction() {
let event = EventU32TypedSev::<SeverityInfo>::new(1, 1);
let raw = event.raw();
let reduced: EventU32 = event.into();
assert_eq!(reduced.group_id(), 1);
assert_eq!(reduced.unique_id(), 1);
assert_eq!(raw, reduced.raw());
}
#[test]
fn const_reducation() {
assert_eq!(INFO_REDUCED.raw(), INFO_EVENT.raw());
}
}

View File

@@ -15,7 +15,7 @@
//! the [ECSS PUS C standard](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#[cfg(feature = "alloc")]
#[cfg(any(feature = "alloc", test))]
extern crate alloc;
#[cfg(feature = "alloc")]
extern crate downcast_rs;
@@ -27,7 +27,9 @@ pub mod action;
pub mod dev_mgmt;
pub mod encoding;
pub mod event_man;
pub mod event_man_legacy;
pub mod events;
pub mod events_legacy;
#[cfg(feature = "std")]
pub mod executable;
pub mod hal;

View File

@@ -258,6 +258,9 @@ pub trait PoolProvider {
/// Delete data inside the pool given a [PoolAddr].
fn delete(&mut self, addr: PoolAddr) -> Result<(), PoolError>;
fn clear(&mut self) -> Result<(), PoolError>;
fn has_element_at(&self, addr: &PoolAddr) -> Result<bool, PoolError>;
/// Retrieve the length of the data at the given store address.
@@ -714,6 +717,13 @@ pub mod heapless_mod {
Ok(())
}
fn clear(&mut self) -> Result<(), PoolError> {
for size in self.sizes_lists.iter_mut() {
size.fill(STORE_FREE);
}
Ok(())
}
fn has_element_at(&self, addr: &PoolAddr) -> Result<bool, PoolError> {
let addr = StaticPoolAddr::from(*addr);
self.validate_addr(&addr)?;
@@ -1055,6 +1065,13 @@ mod alloc_mod {
_ => size,
})
}
fn clear(&mut self) -> Result<(), PoolError> {
for size in self.sizes_lists.iter_mut() {
size.fill(STORE_FREE);
}
Ok(())
}
}
impl PoolProviderWithGuards for StaticMemoryPool {
@@ -1597,223 +1614,228 @@ mod tests {
mod heapless_tests {
use super::*;
use crate::static_subpool;
use std::cell::UnsafeCell;
use std::sync::Mutex;
const SUBPOOL_1_BLOCK_SIZE: usize = 4;
const SUBPOOL_1_NUM_ELEMENTS: u16 = 4;
static SUBPOOL_1: static_cell::ConstStaticCell<
[u8; SUBPOOL_1_NUM_ELEMENTS as usize * SUBPOOL_1_BLOCK_SIZE],
> = static_cell::ConstStaticCell::new(
[0; SUBPOOL_1_NUM_ELEMENTS as usize * SUBPOOL_1_BLOCK_SIZE],
);
static SUBPOOL_1_SIZES: Mutex<UnsafeCell<[usize; SUBPOOL_1_NUM_ELEMENTS as usize]>> =
Mutex::new(UnsafeCell::new(
[STORE_FREE; SUBPOOL_1_NUM_ELEMENTS as usize],
));
const SUBPOOL_2_NUM_ELEMENTS: u16 = 2;
const SUBPOOL_2_BLOCK_SIZE: usize = 8;
static SUBPOOL_2: static_cell::ConstStaticCell<
[u8; SUBPOOL_2_NUM_ELEMENTS as usize * SUBPOOL_2_BLOCK_SIZE],
> = static_cell::ConstStaticCell::new(
[0; SUBPOOL_2_NUM_ELEMENTS as usize * SUBPOOL_2_BLOCK_SIZE],
);
static SUBPOOL_2_SIZES: static_cell::ConstStaticCell<
[usize; SUBPOOL_2_NUM_ELEMENTS as usize],
> = static_cell::ConstStaticCell::new([STORE_FREE; SUBPOOL_2_NUM_ELEMENTS as usize]);
const SUBPOOL_3_NUM_ELEMENTS: u16 = 1;
const SUBPOOL_3_BLOCK_SIZE: usize = 16;
static_subpool!(
SUBPOOL_3,
SUBPOOL_3_SIZES,
SUBPOOL_3_NUM_ELEMENTS as usize,
SUBPOOL_3_BLOCK_SIZE
);
const SUBPOOL_4_NUM_ELEMENTS: u16 = 2;
const SUBPOOL_4_BLOCK_SIZE: usize = 16;
static_subpool!(
SUBPOOL_4,
SUBPOOL_4_SIZES,
SUBPOOL_4_NUM_ELEMENTS as usize,
SUBPOOL_4_BLOCK_SIZE
);
const SUBPOOL_5_NUM_ELEMENTS: u16 = 1;
const SUBPOOL_5_BLOCK_SIZE: usize = 8;
static_subpool!(
SUBPOOL_5,
SUBPOOL_5_SIZES,
SUBPOOL_5_NUM_ELEMENTS as usize,
SUBPOOL_5_BLOCK_SIZE
);
const SUBPOOL_6_NUM_ELEMENTS: u16 = 1;
const SUBPOOL_6_BLOCK_SIZE: usize = 12;
static_subpool!(
SUBPOOL_6,
SUBPOOL_6_SIZES,
SUBPOOL_6_NUM_ELEMENTS as usize,
SUBPOOL_6_BLOCK_SIZE
);
fn small_heapless_pool() -> StaticHeaplessMemoryPool<3> {
let mut heapless_pool: StaticHeaplessMemoryPool<3> =
StaticHeaplessMemoryPool::new(false);
assert!(
heapless_pool
.grow(
SUBPOOL_1.take(),
unsafe { &mut *SUBPOOL_1_SIZES.lock().unwrap().get() },
SUBPOOL_1_NUM_ELEMENTS,
true
)
.is_ok()
);
assert!(
heapless_pool
.grow(
SUBPOOL_2.take(),
SUBPOOL_2_SIZES.take(),
SUBPOOL_2_NUM_ELEMENTS,
true
)
.is_ok()
);
assert!(
heapless_pool
.grow(
SUBPOOL_3.take(),
SUBPOOL_3_SIZES.take(),
SUBPOOL_3_NUM_ELEMENTS,
true
)
.is_ok()
);
heapless_pool
macro_rules! make_heapless_pool {
($prefix:ident) => {{
paste::paste! {
static [<$prefix _SUBPOOL_1>]: static_cell::ConstStaticCell<
[u8; SUBPOOL_1_NUM_ELEMENTS as usize * SUBPOOL_1_BLOCK_SIZE],
> = static_cell::ConstStaticCell::new(
[0; SUBPOOL_1_NUM_ELEMENTS as usize * SUBPOOL_1_BLOCK_SIZE],
);
static [<$prefix _SUBPOOL_1_SIZES>]: std::sync::Mutex<
std::cell::UnsafeCell<[usize; SUBPOOL_1_NUM_ELEMENTS as usize]>
> = std::sync::Mutex::new(
std::cell::UnsafeCell::new([STORE_FREE; SUBPOOL_1_NUM_ELEMENTS as usize])
);
static [<$prefix _SUBPOOL_2>]: static_cell::ConstStaticCell<
[u8; SUBPOOL_2_NUM_ELEMENTS as usize * SUBPOOL_2_BLOCK_SIZE],
> = static_cell::ConstStaticCell::new(
[0; SUBPOOL_2_NUM_ELEMENTS as usize * SUBPOOL_2_BLOCK_SIZE],
);
static [<$prefix _SUBPOOL_2_SIZES>]: static_cell::ConstStaticCell<
[usize; SUBPOOL_2_NUM_ELEMENTS as usize],
> = static_cell::ConstStaticCell::new(
[STORE_FREE; SUBPOOL_2_NUM_ELEMENTS as usize]
);
static [<$prefix _SUBPOOL_3>]: static_cell::ConstStaticCell<
[u8; SUBPOOL_3_NUM_ELEMENTS as usize * SUBPOOL_3_BLOCK_SIZE],
> = static_cell::ConstStaticCell::new(
[0; SUBPOOL_3_NUM_ELEMENTS as usize * SUBPOOL_3_BLOCK_SIZE],
);
static [<$prefix _SUBPOOL_3_SIZES>]: static_cell::ConstStaticCell<
[usize; SUBPOOL_3_NUM_ELEMENTS as usize],
> = static_cell::ConstStaticCell::new(
[STORE_FREE; SUBPOOL_3_NUM_ELEMENTS as usize]
);
let mut heapless_pool: StaticHeaplessMemoryPool<3> =
StaticHeaplessMemoryPool::new(false);
heapless_pool
.grow(
[<$prefix _SUBPOOL_1>].take(),
unsafe { &mut *[<$prefix _SUBPOOL_1_SIZES>].lock().unwrap().get() },
SUBPOOL_1_NUM_ELEMENTS,
true
)
.unwrap();
heapless_pool
.grow(
[<$prefix _SUBPOOL_2>].take(),
[<$prefix _SUBPOOL_2_SIZES>].take(),
SUBPOOL_2_NUM_ELEMENTS,
true
)
.unwrap();
heapless_pool
.grow(
[<$prefix _SUBPOOL_3>].take(),
[<$prefix _SUBPOOL_3_SIZES>].take(),
SUBPOOL_3_NUM_ELEMENTS,
true
)
.unwrap();
heapless_pool
}
}};
}
#[test]
fn test_heapless_add_and_read() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T0);
generic_test_add_and_read::<16>(&mut pool_provider);
}
#[test]
fn test_add_smaller_than_full_slot() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T1);
generic_test_add_smaller_than_full_slot(&mut pool_provider);
}
#[test]
fn test_delete() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T2);
generic_test_delete(&mut pool_provider);
}
#[test]
fn test_modify() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T3);
generic_test_modify(&mut pool_provider);
}
#[test]
fn test_consecutive_reservation() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T4);
generic_test_consecutive_reservation(&mut pool_provider);
}
#[test]
fn test_read_does_not_exist() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T5);
generic_test_read_does_not_exist(&mut pool_provider);
}
#[test]
fn test_store_full() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T6);
generic_test_store_full(&mut pool_provider);
}
#[test]
fn test_invalid_pool_idx() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T7);
generic_test_invalid_pool_idx(&mut pool_provider);
}
#[test]
fn test_invalid_packet_idx() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T8);
generic_test_invalid_packet_idx(&mut pool_provider);
}
#[test]
fn test_add_too_large() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T9);
generic_test_add_too_large(&mut pool_provider);
}
#[test]
fn test_data_too_large_1() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T10);
generic_test_data_too_large_1(&mut pool_provider);
}
#[test]
fn test_free_element_too_large() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T11);
generic_test_free_element_too_large(&mut pool_provider);
}
#[test]
fn test_pool_guard_deletion_man_creation() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T12);
generic_test_pool_guard_deletion_man_creation(&mut pool_provider);
}
#[test]
fn test_pool_guard_deletion() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T13);
generic_test_pool_guard_deletion(&mut pool_provider);
}
#[test]
fn test_pool_guard_with_release() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T14);
generic_test_pool_guard_with_release(&mut pool_provider);
}
#[test]
fn test_pool_modify_guard_man_creation() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T15);
generic_test_pool_modify_guard_man_creation(&mut pool_provider);
}
#[test]
fn test_pool_modify_guard() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T16);
generic_test_pool_modify_guard(&mut pool_provider);
}
#[test]
fn modify_pool_index_above_0() {
let mut pool_provider = small_heapless_pool();
let mut pool_provider = make_heapless_pool!(T17);
generic_modify_pool_index_above_0(&mut pool_provider);
}
#[test]
fn test_spills_to_higher_subpools() {
static_subpool!(
SUBPOOL_2_T18,
SUBPOOL_2_SIZES_T18,
SUBPOOL_2_NUM_ELEMENTS as usize,
SUBPOOL_2_BLOCK_SIZE
);
static_subpool!(
SUBPOOL_4_T18,
SUBPOOL_4_SIZES_T18,
SUBPOOL_4_NUM_ELEMENTS as usize,
SUBPOOL_4_BLOCK_SIZE
);
let mut heapless_pool: StaticHeaplessMemoryPool<2> =
StaticHeaplessMemoryPool::new(true);
assert!(
heapless_pool
.grow(
SUBPOOL_2.take(),
SUBPOOL_2_SIZES.take(),
SUBPOOL_2_T18.take(),
SUBPOOL_2_SIZES_T18.take(),
SUBPOOL_2_NUM_ELEMENTS,
true
)
@@ -1822,8 +1844,8 @@ mod tests {
assert!(
heapless_pool
.grow(
SUBPOOL_4.take(),
SUBPOOL_4_SIZES.take(),
SUBPOOL_4_T18.take(),
SUBPOOL_4_SIZES_T18.take(),
SUBPOOL_4_NUM_ELEMENTS,
true
)
@@ -1836,6 +1858,18 @@ mod tests {
fn test_spillage_fails_as_well() {
let mut heapless_pool: StaticHeaplessMemoryPool<2> =
StaticHeaplessMemoryPool::new(true);
static_subpool!(
SUBPOOL_5,
SUBPOOL_5_SIZES,
SUBPOOL_5_NUM_ELEMENTS as usize,
SUBPOOL_5_BLOCK_SIZE
);
static_subpool!(
SUBPOOL_3,
SUBPOOL_3_SIZES,
SUBPOOL_3_NUM_ELEMENTS as usize,
SUBPOOL_3_BLOCK_SIZE
);
assert!(
heapless_pool
.grow(
@@ -1863,6 +1897,24 @@ mod tests {
fn test_spillage_works_across_multiple_subpools() {
let mut heapless_pool: StaticHeaplessMemoryPool<3> =
StaticHeaplessMemoryPool::new(true);
static_subpool!(
SUBPOOL_3,
SUBPOOL_3_SIZES,
SUBPOOL_3_NUM_ELEMENTS as usize,
SUBPOOL_3_BLOCK_SIZE
);
static_subpool!(
SUBPOOL_5,
SUBPOOL_5_SIZES,
SUBPOOL_5_NUM_ELEMENTS as usize,
SUBPOOL_5_BLOCK_SIZE
);
static_subpool!(
SUBPOOL_6,
SUBPOOL_6_SIZES,
SUBPOOL_6_NUM_ELEMENTS as usize,
SUBPOOL_6_BLOCK_SIZE
);
assert!(
heapless_pool
.grow(
@@ -1898,6 +1950,24 @@ mod tests {
#[test]
fn test_spillage_fails_across_multiple_subpools() {
static_subpool!(
SUBPOOL_3,
SUBPOOL_3_SIZES,
SUBPOOL_3_NUM_ELEMENTS as usize,
SUBPOOL_3_BLOCK_SIZE
);
static_subpool!(
SUBPOOL_5,
SUBPOOL_5_SIZES,
SUBPOOL_5_NUM_ELEMENTS as usize,
SUBPOOL_5_BLOCK_SIZE
);
static_subpool!(
SUBPOOL_6,
SUBPOOL_6_SIZES,
SUBPOOL_6_NUM_ELEMENTS as usize,
SUBPOOL_6_BLOCK_SIZE
);
let mut heapless_pool: StaticHeaplessMemoryPool<3> =
StaticHeaplessMemoryPool::new(true);
assert!(

View File

@@ -265,7 +265,7 @@ mod alloc_mod {
mod tests {
use super::*;
use crate::ComponentId;
use crate::events::{EventU32, Severity};
use crate::events_legacy::{EventU32, Severity};
use crate::pus::test_util::TEST_COMPONENT_ID_0;
use crate::pus::tests::CommonTmInfo;
use crate::pus::{ChannelWithId, EcssTmSender, EcssTmtcError, PusTmVariant};

View File

@@ -1,6 +1,6 @@
use crate::events::{EventU32, GenericEvent, Severity};
use crate::events_legacy::{EventU32, GenericEvent, Severity};
#[cfg(feature = "alloc")]
use crate::events::{EventU32TypedSev, HasSeverity};
use crate::events_legacy::{EventU32TypedSev, HasSeverity};
#[cfg(feature = "alloc")]
use core::hash::Hash;
#[cfg(feature = "alloc")]
@@ -100,7 +100,7 @@ pub mod alloc_mod {
use core::marker::PhantomData;
use crate::{
events::EventU16,
events_legacy::EventU16,
params::{Params, WritableToBeBytes},
pus::event::{DummyEventHook, EventTmHook},
};
@@ -318,7 +318,7 @@ mod tests {
use super::*;
use crate::request::UniqueApidTargetId;
use crate::{events::SeverityInfo, tmtc::PacketAsVec};
use crate::{events_legacy::SeverityInfo, tmtc::PacketAsVec};
use std::sync::mpsc::{self, TryRecvError};
const INFO_EVENT: EventU32TypedSev<SeverityInfo> = EventU32TypedSev::<SeverityInfo>::new(1, 0);

View File

@@ -1,4 +1,4 @@
use crate::events::EventU32;
use crate::events_legacy::EventU32;
use crate::pus::event_man::{EventRequest, EventRequestWithToken};
use crate::pus::verification::TcStateToken;
use crate::pus::{DirectPusPacketHandlerResult, PartialPusHandlingError, PusPacketHandlingError};
@@ -168,7 +168,7 @@ mod tests {
use crate::pus::{GenericConversionError, HandlingStatus, MpscTcReceiver};
use crate::tmtc::PacketSenderWithSharedPool;
use crate::{
events::EventU32,
events_legacy::EventU32,
pus::{
DirectPusPacketHandlerResult, EcssTcInSharedPoolCacher, PusPacketHandlingError,
event_man::EventRequestWithToken,
@@ -179,7 +179,7 @@ mod tests {
use super::PusEventServiceHandler;
const TEST_EVENT_0: EventU32 = EventU32::new(crate::events::Severity::Info, 5, 25);
const TEST_EVENT_0: EventU32 = EventU32::new(crate::events_legacy::Severity::Info, 5, 25);
struct Pus5HandlerWithStoreTester {
common: PusServiceHandlerWithSharedStoreCommon,

View File

@@ -1,94 +0,0 @@
#![allow(dead_code, unused_imports)]
use satrs::events::{
EventU32, EventU32TypedSev, GenericEvent, HasSeverity, LargestEventRaw, LargestGroupIdRaw,
Severity, SeverityInfo, SeverityLow, SeverityMedium,
};
use std::convert::AsRef;
#[derive(Debug)]
struct GroupIdIntrospection {
name: &'static str,
id: LargestGroupIdRaw,
}
#[derive(Debug)]
struct EventIntrospection {
name: &'static str,
group_id: GroupIdIntrospection,
event: &'static EventU32,
info: &'static str,
}
//#[event(descr="This is some info event")]
const INFO_EVENT_0: EventU32TypedSev<SeverityInfo> = EventU32TypedSev::new(0, 0);
const INFO_EVENT_0_ERASED: EventU32 = EventU32::const_from_info(INFO_EVENT_0);
// This is ideally auto-generated
const INFO_EVENT_0_INTROSPECTION: EventIntrospection = EventIntrospection {
name: "INFO_EVENT_0",
group_id: GroupIdIntrospection {
id: 0,
name: "Group ID 0 without name",
},
event: &INFO_EVENT_0_ERASED,
info: "This is some info event",
};
//#[event(descr="This is some low severity event")]
const SOME_LOW_SEV_EVENT: EventU32TypedSev<SeverityLow> = EventU32TypedSev::new(0, 12);
//const EVENT_LIST: [&'static Event; 2] = [&INFO_EVENT_0, &SOME_LOW_SEV_EVENT];
//#[event_group]
const TEST_GROUP_NAME: u16 = 1;
// Auto-generated?
const TEST_GROUP_NAME_NAME: &str = "TEST_GROUP_NAME";
//#[event(desc="Some medium severity event")]
const MEDIUM_SEV_EVENT_IN_OTHER_GROUP: EventU32TypedSev<SeverityMedium> =
EventU32TypedSev::new(TEST_GROUP_NAME, 0);
const MEDIUM_SEV_EVENT_IN_OTHER_GROUP_REDUCED: EventU32 =
EventU32::const_from_medium(MEDIUM_SEV_EVENT_IN_OTHER_GROUP);
// Also auto-generated
const MEDIUM_SEV_EVENT_IN_OTHER_GROUP_INTROSPECTION: EventIntrospection = EventIntrospection {
name: "MEDIUM_SEV_EVENT_IN_OTHER_GROUP",
group_id: GroupIdIntrospection {
name: TEST_GROUP_NAME_NAME,
id: TEST_GROUP_NAME,
},
event: &MEDIUM_SEV_EVENT_IN_OTHER_GROUP_REDUCED,
info: "Some medium severity event",
};
const CONST_SLICE: &[u8] = &[0, 1, 2, 3];
const INTROSPECTION_FOR_TEST_GROUP_0: [&EventIntrospection; 2] =
[&INFO_EVENT_0_INTROSPECTION, &INFO_EVENT_0_INTROSPECTION];
//const INTROSPECTION_FOR_TABLE: &'static [&EventIntrospection] = &INTROSPECTION_FOR_TEST_GROUP_0;
const INTROSPECTION_FOR_TEST_GROUP_NAME: [&EventIntrospection; 1] =
[&MEDIUM_SEV_EVENT_IN_OTHER_GROUP_INTROSPECTION];
//const BLAH: &'static [&EventIntrospection] = &INTROSPECTION_FOR_TEST_GROUP_NAME;
const ALL_EVENTS: [&[&EventIntrospection]; 2] = [
&INTROSPECTION_FOR_TEST_GROUP_0,
&INTROSPECTION_FOR_TEST_GROUP_NAME,
];
#[test]
fn main() {
//let test = stringify!(INFO_EVENT);
//println!("{:?}", test);
//for event in EVENT_LIST {
// println!("{:?}", event);
//}
//for events in ALL_EVENTS.into_iter().flatten() {
// dbg!("{:?}", events);
//}
//for introspection_info in INTROSPECTION_FOR_TEST_GROUP {
// dbg!("{:?}", introspection_info);
//}
//let test_struct =
}

View File

@@ -1,9 +1,9 @@
use arbitrary_int::u11;
use satrs::event_man::{
use satrs::event_man_legacy::{
EventManagerWithMpsc, EventMessage, EventMessageU32, EventRoutingError, EventSendProvider,
EventU32SenderMpsc,
};
use satrs::events::{EventU32, EventU32TypedSev, Severity, SeverityInfo};
use satrs::events_legacy::{EventU32, EventU32TypedSev, Severity, SeverityInfo};
use satrs::params::U32Pair;
use satrs::params::{Params, ParamsHeapless, WritableToBeBytes};
use satrs::pus::event_man::{DefaultPusEventReportingMap, EventReporter, PusEventTmCreatorWithMap};