add satrx-example for stm32f3-disco here
This commit is contained in:
78
satrs-example-stm32f3-disco/src/blinky.rs
Normal file
78
satrs-example-stm32f3-disco/src/blinky.rs
Normal file
@ -0,0 +1,78 @@
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
extern crate panic_itm;
|
||||
|
||||
use cortex_m_rt::entry;
|
||||
|
||||
use stm32f3_discovery::stm32f3xx_hal::delay::Delay;
|
||||
use stm32f3_discovery::stm32f3xx_hal::{pac, prelude::*};
|
||||
use stm32f3_discovery::leds::Leds;
|
||||
use stm32f3_discovery::switch_hal::{OutputSwitch, ToggleableOutputSwitch};
|
||||
|
||||
#[entry]
|
||||
fn main()-> ! {
|
||||
let dp = pac::Peripherals::take().unwrap();
|
||||
let mut rcc = dp.RCC.constrain();
|
||||
let cp = cortex_m::Peripherals::take().unwrap();
|
||||
let mut flash = dp.FLASH.constrain();
|
||||
let clocks = rcc.cfgr.freeze(&mut flash.acr);
|
||||
let mut delay = Delay::new(cp.SYST, clocks);
|
||||
|
||||
let mut gpioe = dp.GPIOE.split(&mut rcc.ahb);
|
||||
let mut leds = Leds::new(
|
||||
gpioe.pe8,
|
||||
gpioe.pe9,
|
||||
gpioe.pe10,
|
||||
gpioe.pe11,
|
||||
gpioe.pe12,
|
||||
gpioe.pe13,
|
||||
gpioe.pe14,
|
||||
gpioe.pe15,
|
||||
&mut gpioe.moder,
|
||||
&mut gpioe.otyper
|
||||
);
|
||||
let delay_ms = 200u16;
|
||||
loop {
|
||||
leds.ld3.toggle().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
leds.ld3.toggle().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
|
||||
//explicit on/off
|
||||
leds.ld4.on().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
leds.ld4.off().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
|
||||
leds.ld5.on().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
leds.ld5.off().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
|
||||
leds.ld6.on().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
leds.ld6.off().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
|
||||
leds.ld7.on().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
leds.ld7.off().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
|
||||
leds.ld8.on().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
leds.ld8.off().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
|
||||
leds.ld9.on().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
leds.ld9.off().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
|
||||
leds.ld10.on().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
leds.ld10.off().ok();
|
||||
delay.delay_ms(delay_ms);
|
||||
}
|
||||
}
|
604
satrs-example-stm32f3-disco/src/main.rs
Normal file
604
satrs-example-stm32f3-disco/src/main.rs
Normal file
@ -0,0 +1,604 @@
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
extern crate panic_itm;
|
||||
|
||||
use rtic::app;
|
||||
|
||||
use heapless::{
|
||||
mpmc::Q16,
|
||||
pool,
|
||||
pool::singleton::{Box, Pool},
|
||||
};
|
||||
#[allow(unused_imports)]
|
||||
use itm_logger::{debug, info, logger_init, warn};
|
||||
use satrs_core::spacepackets::{ecss::PusPacket, tm::PusTm};
|
||||
use satrs_core::{
|
||||
pus::{EcssTmErrorWithSend, EcssTmSenderCore},
|
||||
seq_count::SequenceCountProviderCore,
|
||||
};
|
||||
use stm32f3xx_hal::dma::dma1;
|
||||
use stm32f3xx_hal::gpio::{PushPull, AF7, PA2, PA3};
|
||||
use stm32f3xx_hal::pac::USART2;
|
||||
use stm32f3xx_hal::serial::{Rx, RxEvent, Serial, SerialDmaRx, SerialDmaTx, Tx, TxEvent};
|
||||
use systick_monotonic::{fugit::Duration, Systick};
|
||||
|
||||
const UART_BAUD: u32 = 115200;
|
||||
const BLINK_FREQ_MS: u64 = 1000;
|
||||
const TX_HANDLER_FREQ_MS: u64 = 20;
|
||||
const MIN_DELAY_BETWEEN_TX_PACKETS_MS: u16 = 5;
|
||||
const MAX_TC_LEN: usize = 200;
|
||||
const MAX_TM_LEN: usize = 200;
|
||||
pub const PUS_APID: u16 = 0x02;
|
||||
|
||||
type TxType = Tx<USART2, PA2<AF7<PushPull>>>;
|
||||
type RxType = Rx<USART2, PA3<AF7<PushPull>>>;
|
||||
type MsDuration = Duration<u64, 1, 1000>;
|
||||
type TxDmaTransferType = SerialDmaTx<&'static [u8], dma1::C7, TxType>;
|
||||
type RxDmaTransferType = SerialDmaRx<&'static mut [u8], dma1::C6, RxType>;
|
||||
|
||||
// This is the predictable maximum overhead of the COBS encoding scheme.
|
||||
// It is simply the maximum packet lenght dividied by 254 rounded up.
|
||||
const COBS_TC_OVERHEAD: usize = (MAX_TC_LEN + 254 - 1) / 254;
|
||||
const COBS_TM_OVERHEAD: usize = (MAX_TM_LEN + 254 - 1) / 254;
|
||||
|
||||
const TC_BUF_LEN: usize = MAX_TC_LEN + COBS_TC_OVERHEAD;
|
||||
const TM_BUF_LEN: usize = MAX_TC_LEN + COBS_TM_OVERHEAD;
|
||||
|
||||
// This is a static buffer which should ONLY (!) be used as the TX DMA
|
||||
// transfer buffer.
|
||||
static mut DMA_TX_BUF: [u8; TM_BUF_LEN] = [0; TM_BUF_LEN];
|
||||
// This is a static buffer which should ONLY (!) be used as the RX DMA
|
||||
// transfer buffer.
|
||||
static mut DMA_RX_BUF: [u8; TC_BUF_LEN] = [0; TC_BUF_LEN];
|
||||
|
||||
static TX_REQUESTS: Q16<(Box<poolmod::TM>, usize)> = Q16::new();
|
||||
|
||||
const TC_POOL_SLOTS: usize = 12;
|
||||
const TM_POOL_SLOTS: usize = 12;
|
||||
use core::sync::atomic::{AtomicU16, Ordering};
|
||||
|
||||
pub struct SeqCountProviderAtomicRef {
|
||||
atomic: AtomicU16,
|
||||
ordering: Ordering,
|
||||
}
|
||||
|
||||
impl SeqCountProviderAtomicRef {
|
||||
pub const fn new(ordering: Ordering) -> Self {
|
||||
Self {
|
||||
atomic: AtomicU16::new(0),
|
||||
ordering,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SequenceCountProviderCore<u16> for SeqCountProviderAtomicRef {
|
||||
fn get(&self) -> u16 {
|
||||
self.atomic.load(self.ordering)
|
||||
}
|
||||
|
||||
fn increment(&self) {
|
||||
self.atomic.fetch_add(1, self.ordering);
|
||||
}
|
||||
|
||||
fn get_and_increment(&self) -> u16 {
|
||||
self.atomic.fetch_add(1, self.ordering)
|
||||
}
|
||||
}
|
||||
|
||||
static SEQ_COUNT_PROVIDER: SeqCountProviderAtomicRef =
|
||||
SeqCountProviderAtomicRef::new(Ordering::Relaxed);
|
||||
|
||||
// Otherwise, warnings because of heapless pool macro.
|
||||
#[allow(non_camel_case_types)]
|
||||
mod poolmod {
|
||||
use super::*;
|
||||
// Must hold full TC length including COBS overhead.
|
||||
pool!(TC: [u8; TC_BUF_LEN]);
|
||||
// Only encoded at the end, so no need to account for COBS overhead.
|
||||
pool!(TM: [u8; MAX_TM_LEN]);
|
||||
}
|
||||
|
||||
pub struct TxIdle {
|
||||
tx: TxType,
|
||||
dma_channel: dma1::C7,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum TmStoreError {
|
||||
StoreFull,
|
||||
StoreSlotsTooSmall,
|
||||
}
|
||||
|
||||
impl From<TmStoreError> for EcssTmErrorWithSend<TmStoreError> {
|
||||
fn from(value: TmStoreError) -> Self {
|
||||
Self::SendError(value)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TmSender {
|
||||
mem_block: Option<Box<poolmod::TM>>,
|
||||
ctx: &'static str,
|
||||
}
|
||||
|
||||
impl TmSender {
|
||||
pub fn new(mem_block: Box<poolmod::TM>, ctx: &'static str) -> Self {
|
||||
Self {
|
||||
mem_block: Some(mem_block),
|
||||
ctx,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl EcssTmSenderCore for TmSender {
|
||||
type Error = TmStoreError;
|
||||
|
||||
fn send_tm(
|
||||
&mut self,
|
||||
tm: PusTm,
|
||||
) -> Result<(), satrs_core::pus::EcssTmErrorWithSend<Self::Error>> {
|
||||
let mem_block = self.mem_block.take();
|
||||
if mem_block.is_none() {
|
||||
panic!("send_tm should only be called once");
|
||||
}
|
||||
let mut mem_block = mem_block.unwrap();
|
||||
if tm.len_packed() > MAX_TM_LEN {
|
||||
return Err(EcssTmErrorWithSend::SendError(
|
||||
TmStoreError::StoreSlotsTooSmall,
|
||||
));
|
||||
}
|
||||
tm.write_to_bytes(mem_block.as_mut_slice())
|
||||
.map_err(|e| EcssTmErrorWithSend::EcssTmError(e.into()))?;
|
||||
info!(target: self.ctx, "Sending TM[{},{}] with size {}", tm.service(), tm.subservice(), tm.len_packed());
|
||||
TX_REQUESTS
|
||||
.enqueue((mem_block, tm.len_packed()))
|
||||
.map_err(|_| TmStoreError::StoreFull)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub enum UartTxState {
|
||||
// Wrapped in an option because we need an owned type later.
|
||||
Idle(Option<TxIdle>),
|
||||
// Same as above
|
||||
Transmitting(Option<TxDmaTransferType>),
|
||||
}
|
||||
|
||||
#[app(device = stm32f3xx_hal::pac, peripherals = true, dispatchers = [TIM20_BRK, TIM20_UP, TIM20_TRG_COM])]
|
||||
mod app {
|
||||
use super::*;
|
||||
use core::slice::Iter;
|
||||
use cortex_m::iprintln;
|
||||
use satrs_core::pus::verification::FailParams;
|
||||
use satrs_core::pus::verification::VerificationReporterCore;
|
||||
use satrs_core::spacepackets::{
|
||||
ecss::EcssEnumU16,
|
||||
tc::PusTc,
|
||||
time::cds::P_FIELD_BASE,
|
||||
tm::{PusTm, PusTmSecondaryHeader},
|
||||
CcsdsPacket, SpHeader,
|
||||
};
|
||||
#[allow(unused_imports)]
|
||||
use stm32f3_discovery::leds::Direction;
|
||||
use stm32f3_discovery::leds::Leds;
|
||||
use stm32f3xx_hal::prelude::*;
|
||||
use stm32f3xx_hal::Toggle;
|
||||
|
||||
use stm32f3_discovery::switch_hal::OutputSwitch;
|
||||
#[allow(dead_code)]
|
||||
type SerialType = Serial<USART2, (PA2<AF7<PushPull>>, PA3<AF7<PushPull>>)>;
|
||||
|
||||
#[shared]
|
||||
struct Shared {
|
||||
tx_transfer: UartTxState,
|
||||
rx_transfer: Option<RxDmaTransferType>,
|
||||
}
|
||||
|
||||
#[local]
|
||||
struct Local {
|
||||
leds: Leds,
|
||||
last_dir: Direction,
|
||||
verif_reporter: VerificationReporterCore,
|
||||
curr_dir: Iter<'static, Direction>,
|
||||
}
|
||||
|
||||
#[monotonic(binds = SysTick, default = true)]
|
||||
type MonoTimer = Systick<1000>;
|
||||
|
||||
#[init(local = [
|
||||
tc_pool_mem: [u8; TC_BUF_LEN * TC_POOL_SLOTS] = [0; TC_BUF_LEN * TC_POOL_SLOTS],
|
||||
tm_pool_mem: [u8; MAX_TM_LEN * TM_POOL_SLOTS] = [0; MAX_TM_LEN * TM_POOL_SLOTS]
|
||||
])]
|
||||
fn init(mut cx: init::Context) -> (Shared, Local, init::Monotonics) {
|
||||
let mut rcc = cx.device.RCC.constrain();
|
||||
|
||||
let mono = Systick::new(cx.core.SYST, 8_000_000);
|
||||
logger_init();
|
||||
let mut flash = cx.device.FLASH.constrain();
|
||||
let clocks = rcc
|
||||
.cfgr
|
||||
.use_hse(8.MHz())
|
||||
.sysclk(8.MHz())
|
||||
.pclk1(8.MHz())
|
||||
.freeze(&mut flash.acr);
|
||||
// setup ITM output
|
||||
iprintln!(
|
||||
&mut cx.core.ITM.stim[0],
|
||||
"Starting sat-rs demo application for the STM32F3-Discovery"
|
||||
);
|
||||
let mut gpioe = cx.device.GPIOE.split(&mut rcc.ahb);
|
||||
// Assign memory to the pools.
|
||||
poolmod::TC::grow(cx.local.tc_pool_mem);
|
||||
poolmod::TM::grow(cx.local.tm_pool_mem);
|
||||
|
||||
let verif_reporter = VerificationReporterCore::new(PUS_APID).unwrap();
|
||||
|
||||
let leds = Leds::new(
|
||||
gpioe.pe8,
|
||||
gpioe.pe9,
|
||||
gpioe.pe10,
|
||||
gpioe.pe11,
|
||||
gpioe.pe12,
|
||||
gpioe.pe13,
|
||||
gpioe.pe14,
|
||||
gpioe.pe15,
|
||||
&mut gpioe.moder,
|
||||
&mut gpioe.otyper,
|
||||
);
|
||||
let mut gpioa = cx.device.GPIOA.split(&mut rcc.ahb);
|
||||
// USART2 pins
|
||||
let mut pins = (
|
||||
// TX pin: PA2
|
||||
gpioa
|
||||
.pa2
|
||||
.into_af_push_pull(&mut gpioa.moder, &mut gpioa.otyper, &mut gpioa.afrl),
|
||||
// RX pin: PA3
|
||||
gpioa
|
||||
.pa3
|
||||
.into_af_push_pull(&mut gpioa.moder, &mut gpioa.otyper, &mut gpioa.afrl),
|
||||
);
|
||||
pins.1.internal_pull_up(&mut gpioa.pupdr, true);
|
||||
let mut usart2 = Serial::new(
|
||||
cx.device.USART2,
|
||||
pins,
|
||||
UART_BAUD.Bd(),
|
||||
clocks,
|
||||
&mut rcc.apb1,
|
||||
);
|
||||
usart2.configure_rx_interrupt(RxEvent::Idle, Toggle::On);
|
||||
// This interrupt is enabled to re-schedule new transfers in the interrupt handler immediately.
|
||||
usart2.configure_tx_interrupt(TxEvent::TransmissionComplete, Toggle::On);
|
||||
|
||||
let dma1 = cx.device.DMA1.split(&mut rcc.ahb);
|
||||
let (tx_serial, mut rx_serial) = usart2.split();
|
||||
|
||||
// This interrupt is immediately triggered, clear it. It will only be reset
|
||||
// by the hardware when data is received on RX (RXNE event)
|
||||
rx_serial.clear_event(RxEvent::Idle);
|
||||
let rx_transfer = rx_serial.read_exact(unsafe { DMA_RX_BUF.as_mut_slice() }, dma1.ch6);
|
||||
info!(target: "init", "Spawning tasks");
|
||||
blink::spawn().unwrap();
|
||||
serial_tx_handler::spawn().unwrap();
|
||||
(
|
||||
Shared {
|
||||
tx_transfer: UartTxState::Idle(Some(TxIdle {
|
||||
tx: tx_serial,
|
||||
dma_channel: dma1.ch7,
|
||||
})),
|
||||
rx_transfer: Some(rx_transfer),
|
||||
},
|
||||
Local {
|
||||
leds,
|
||||
last_dir: Direction::North,
|
||||
curr_dir: Direction::iter(),
|
||||
verif_reporter,
|
||||
},
|
||||
init::Monotonics(mono),
|
||||
)
|
||||
}
|
||||
|
||||
#[task(local = [leds, curr_dir, last_dir])]
|
||||
fn blink(cx: blink::Context) {
|
||||
let toggle_leds = |dir: &Direction| {
|
||||
let leds = cx.local.leds;
|
||||
let last_led = leds.for_direction(*cx.local.last_dir);
|
||||
last_led.off().ok();
|
||||
let led = leds.for_direction(*dir);
|
||||
led.on().ok();
|
||||
*cx.local.last_dir = *dir;
|
||||
};
|
||||
|
||||
match cx.local.curr_dir.next() {
|
||||
Some(dir) => {
|
||||
toggle_leds(dir);
|
||||
}
|
||||
None => {
|
||||
*cx.local.curr_dir = Direction::iter();
|
||||
toggle_leds(cx.local.curr_dir.next().unwrap());
|
||||
}
|
||||
}
|
||||
blink::spawn_after(MsDuration::from_ticks(BLINK_FREQ_MS)).unwrap();
|
||||
}
|
||||
|
||||
#[task(
|
||||
shared = [tx_transfer],
|
||||
local = []
|
||||
)]
|
||||
fn serial_tx_handler(mut cx: serial_tx_handler::Context) {
|
||||
if let Some((buf, len)) = TX_REQUESTS.dequeue() {
|
||||
cx.shared.tx_transfer.lock(|tx_state| match tx_state {
|
||||
UartTxState::Idle(tx) => {
|
||||
//debug!(target: "serial_tx_handler", "bytes: {:x?}", &buf[0..len]);
|
||||
// Safety: We only copy the data into the TX DMA buffer in this task.
|
||||
// If the DMA is active, another branch will be taken.
|
||||
let mut_tx_dma_buf = unsafe { &mut DMA_TX_BUF };
|
||||
// 0 sentinel value as start marker
|
||||
mut_tx_dma_buf[0] = 0;
|
||||
// Should never panic, we accounted for the overhead.
|
||||
// Write into transfer buffer directly, no need for intermediate
|
||||
// encoding buffer.
|
||||
let encoded_len = cobs::encode(&buf[0..len], &mut mut_tx_dma_buf[1..]);
|
||||
// 0 end marker
|
||||
mut_tx_dma_buf[encoded_len + 1] = 0;
|
||||
//debug!(target: "serial_tx_handler", "Sending {} bytes", encoded_len + 2);
|
||||
//debug!("sent: {:x?}", &mut_tx_dma_buf[0..encoded_len + 2]);
|
||||
let tx_idle = tx.take().unwrap();
|
||||
// Transfer completion and re-scheduling of new TX transfers will be done
|
||||
// by the IRQ handler.
|
||||
let transfer = tx_idle
|
||||
.tx
|
||||
.write_all(&mut_tx_dma_buf[0..encoded_len + 2], tx_idle.dma_channel);
|
||||
*tx_state = UartTxState::Transmitting(Some(transfer));
|
||||
// The memory block is automatically returned to the pool when it is dropped.
|
||||
}
|
||||
UartTxState::Transmitting(_) => {
|
||||
// This is a SW configuration error. Only the ISR which
|
||||
// detects transfer completion should be able to spawn a new
|
||||
// task, and that ISR should set the state to IDLE.
|
||||
panic!("invalid internal tx state detected")
|
||||
}
|
||||
})
|
||||
} else {
|
||||
cx.shared.tx_transfer.lock(|tx_state| {
|
||||
if let UartTxState::Idle(_) = tx_state {
|
||||
serial_tx_handler::spawn_after(MsDuration::from_ticks(TX_HANDLER_FREQ_MS))
|
||||
.unwrap();
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#[task(
|
||||
local = [
|
||||
stamp_buf: [u8; 7] = [0; 7],
|
||||
decode_buf: [u8; MAX_TC_LEN] = [0; MAX_TC_LEN],
|
||||
src_data_buf: [u8; MAX_TM_LEN] = [0; MAX_TM_LEN],
|
||||
verif_reporter
|
||||
],
|
||||
)]
|
||||
fn serial_rx_handler(
|
||||
cx: serial_rx_handler::Context,
|
||||
received_packet: Box<poolmod::TC>,
|
||||
rx_len: usize,
|
||||
) {
|
||||
let tgt: &'static str = "serial_rx_handler";
|
||||
cx.local.stamp_buf[0] = P_FIELD_BASE;
|
||||
info!(target: tgt, "Received packet with {} bytes", rx_len);
|
||||
let decode_buf = cx.local.decode_buf;
|
||||
let packet = received_packet.as_slice();
|
||||
let mut start_idx = None;
|
||||
for (idx, byte) in packet.iter().enumerate() {
|
||||
if *byte != 0 {
|
||||
start_idx = Some(idx);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if start_idx.is_none() {
|
||||
warn!(
|
||||
target: tgt,
|
||||
"decoding error, can only process cobs encoded frames, data is all 0"
|
||||
);
|
||||
return;
|
||||
}
|
||||
let start_idx = start_idx.unwrap();
|
||||
match cobs::decode(&received_packet.as_slice()[start_idx..], decode_buf) {
|
||||
Ok(len) => {
|
||||
info!(target: tgt, "Decoded packet length: {}", len);
|
||||
let pus_tc = PusTc::from_bytes(decode_buf);
|
||||
let verif_reporter = cx.local.verif_reporter;
|
||||
match pus_tc {
|
||||
Ok((tc, tc_len)) => handle_tc(
|
||||
tc,
|
||||
tc_len,
|
||||
verif_reporter,
|
||||
cx.local.src_data_buf,
|
||||
cx.local.stamp_buf,
|
||||
tgt,
|
||||
),
|
||||
Err(e) => {
|
||||
warn!(target: tgt, "Error unpacking PUS TC: {}", e);
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(_) => {
|
||||
warn!(
|
||||
target: tgt,
|
||||
"decoding error, can only process cobs encoded frames"
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn handle_tc(
|
||||
tc: PusTc,
|
||||
tc_len: usize,
|
||||
verif_reporter: &mut VerificationReporterCore,
|
||||
src_data_buf: &mut [u8; MAX_TM_LEN],
|
||||
stamp_buf: &[u8; 7],
|
||||
tgt: &'static str,
|
||||
) {
|
||||
info!(
|
||||
target: tgt,
|
||||
"Found PUS TC [{},{}] with length {}",
|
||||
tc.service(),
|
||||
tc.subservice(),
|
||||
tc_len
|
||||
);
|
||||
|
||||
let token = verif_reporter.add_tc(&tc);
|
||||
if tc.apid() != PUS_APID {
|
||||
warn!(target: tgt, "Received tc with unknown APID {}", tc.apid());
|
||||
let sendable = verif_reporter
|
||||
.acceptance_failure(
|
||||
src_data_buf,
|
||||
token,
|
||||
&SEQ_COUNT_PROVIDER,
|
||||
FailParams::new(stamp_buf, &EcssEnumU16::new(0), None),
|
||||
)
|
||||
.unwrap();
|
||||
let mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]);
|
||||
let mut sender = TmSender::new(mem_block, tgt);
|
||||
if let Err(e) =
|
||||
verif_reporter.send_acceptance_failure(sendable, &SEQ_COUNT_PROVIDER, &mut sender)
|
||||
{
|
||||
warn!(target: tgt, "Sending acceptance failure failed: {:?}", e.0);
|
||||
};
|
||||
return;
|
||||
}
|
||||
let sendable = verif_reporter
|
||||
.acceptance_success(src_data_buf, token, &SEQ_COUNT_PROVIDER, stamp_buf)
|
||||
.unwrap();
|
||||
|
||||
let mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]);
|
||||
let mut sender = TmSender::new(mem_block, tgt);
|
||||
let accepted_token = match verif_reporter.send_acceptance_success(
|
||||
sendable,
|
||||
&SEQ_COUNT_PROVIDER,
|
||||
&mut sender,
|
||||
) {
|
||||
Ok(token) => token,
|
||||
Err(e) => {
|
||||
warn!(target: "serial_rx_handler", "Sending acceptance success failed: {:?}", e.0);
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
if tc.service() == 17 {
|
||||
if tc.subservice() == 1 {
|
||||
let sendable = verif_reporter
|
||||
.start_success(src_data_buf, accepted_token, &SEQ_COUNT_PROVIDER, stamp_buf)
|
||||
.unwrap();
|
||||
let mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]);
|
||||
let mut sender = TmSender::new(mem_block, tgt);
|
||||
let started_token = match verif_reporter.send_start_success(
|
||||
sendable,
|
||||
&SEQ_COUNT_PROVIDER,
|
||||
&mut sender,
|
||||
) {
|
||||
Ok(token) => token,
|
||||
Err(e) => {
|
||||
warn!(target: tgt, "Sending acceptance success failed: {:?}", e.0);
|
||||
return;
|
||||
}
|
||||
};
|
||||
info!(
|
||||
target: tgt,
|
||||
"Received PUS ping telecommand, sending ping reply TM[17,2]"
|
||||
);
|
||||
let mut sp_header =
|
||||
SpHeader::tc_unseg(PUS_APID, SEQ_COUNT_PROVIDER.get(), 0).unwrap();
|
||||
let sec_header = PusTmSecondaryHeader::new_simple(17, 2, stamp_buf);
|
||||
let ping_reply = PusTm::new(&mut sp_header, sec_header, None, true);
|
||||
let mut mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]);
|
||||
let reply_len = ping_reply.write_to_bytes(mem_block.as_mut_slice()).unwrap();
|
||||
if TX_REQUESTS.enqueue((mem_block, reply_len)).is_err() {
|
||||
warn!(target: tgt, "TC queue full");
|
||||
return;
|
||||
}
|
||||
SEQ_COUNT_PROVIDER.increment();
|
||||
let sendable = verif_reporter
|
||||
.completion_success(src_data_buf, started_token, &SEQ_COUNT_PROVIDER, stamp_buf)
|
||||
.unwrap();
|
||||
let mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]);
|
||||
let mut sender = TmSender::new(mem_block, tgt);
|
||||
if let Err(e) = verif_reporter.send_step_or_completion_success(
|
||||
sendable,
|
||||
&SEQ_COUNT_PROVIDER,
|
||||
&mut sender,
|
||||
) {
|
||||
warn!(target: tgt, "Sending completion success failed: {:?}", e.0);
|
||||
}
|
||||
} else {
|
||||
// TODO: Invalid subservice
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[task(binds = DMA1_CH6, shared = [rx_transfer])]
|
||||
fn rx_dma_isr(mut cx: rx_dma_isr::Context) {
|
||||
cx.shared.rx_transfer.lock(|rx_transfer| {
|
||||
let rx_ref = rx_transfer.as_ref().unwrap();
|
||||
if rx_ref.is_complete() {
|
||||
let uart_rx_owned = rx_transfer.take().unwrap();
|
||||
let (buf, c, rx) = uart_rx_owned.stop();
|
||||
// The received data is transferred to another task now to avoid any processing overhead
|
||||
// during the interrupt. There are multiple ways to do this, we use a memory pool here
|
||||
// to do this.
|
||||
let mut mem_block = poolmod::TC::alloc()
|
||||
.expect("allocating memory block for rx failed")
|
||||
.init([0u8; TC_BUF_LEN]);
|
||||
// Copy data into memory pool.
|
||||
mem_block.copy_from_slice(buf);
|
||||
*rx_transfer = Some(rx.read_exact(buf, c));
|
||||
// Only send owning pointer to pool memory and the received packet length.
|
||||
serial_rx_handler::spawn(mem_block, TC_BUF_LEN)
|
||||
.expect("spawning rx handler task failed");
|
||||
// If this happens, there is a high chance that the maximum packet length was
|
||||
// exceeded. Circular mode is not used here, so data might be missed.
|
||||
warn!(
|
||||
"rx transfer with maximum length {}, might miss data",
|
||||
TC_BUF_LEN
|
||||
);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#[task(binds = USART2_EXTI26, shared = [rx_transfer, tx_transfer])]
|
||||
fn serial_isr(mut cx: serial_isr::Context) {
|
||||
cx.shared.tx_transfer.lock(|tx_state| match tx_state {
|
||||
UartTxState::Idle(_) => (),
|
||||
UartTxState::Transmitting(transfer) => {
|
||||
let transfer_ref = transfer.as_ref().unwrap();
|
||||
if transfer_ref.is_complete() {
|
||||
let transfer = transfer.take().unwrap();
|
||||
let (_, dma_channel, tx) = transfer.stop();
|
||||
*tx_state = UartTxState::Idle(Some(TxIdle { tx, dma_channel }));
|
||||
serial_tx_handler::spawn_after(MsDuration::from_ticks(
|
||||
MIN_DELAY_BETWEEN_TX_PACKETS_MS.into(),
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
});
|
||||
cx.shared.rx_transfer.lock(|rx_transfer| {
|
||||
let rx_transfer_ref = rx_transfer.as_ref().unwrap();
|
||||
// Received a partial packet.
|
||||
if rx_transfer_ref.is_event_triggered(RxEvent::Idle) {
|
||||
let rx_transfer_owned = rx_transfer.take().unwrap();
|
||||
let (buf, ch, mut rx, rx_len) = rx_transfer_owned.stop_and_return_received_bytes();
|
||||
// The received data is transferred to another task now to avoid any processing overhead
|
||||
// during the interrupt. There are multiple ways to do this, we use a memory pool here
|
||||
// to do this.
|
||||
let mut mem_block = poolmod::TC::alloc()
|
||||
.expect("allocating memory block for rx failed")
|
||||
.init([0u8; TC_BUF_LEN]);
|
||||
// Copy data into memory pool.
|
||||
mem_block[0..rx_len as usize].copy_from_slice(&buf[0..rx_len as usize]);
|
||||
rx.clear_event(RxEvent::Idle);
|
||||
// Only send owning pointer to pool memory and the received packet length.
|
||||
serial_rx_handler::spawn(mem_block, rx_len as usize)
|
||||
.expect("spawning rx handler task failed");
|
||||
*rx_transfer = Some(rx.read_exact(buf, ch));
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user