update docs

This commit is contained in:
Robin Müller 2025-04-01 20:58:18 +02:00
parent 52ec0d44aa
commit bd6488e87b

View File

@ -3,20 +3,20 @@
Software for space systems oftentimes has different requirements than the software for host
systems or servers. Currently, most space systems are considered embedded systems.
For these systems, the computation power and the available heap are the most important resources
which are constrained. This might make completeley heap based memory management schemes which
For these systems, the computation power and the available heap are important resources
which are also constrained. This might make completeley heap based memory management schemes which
are oftentimes used on host and server based systems unfeasable. Still, completely forbidding
heap allocations might make software development unnecessarilly difficult, especially in a
time where the OBSW might be running on Linux based systems with hundreds of MBs of RAM.
A useful pattern used commonly in space systems is to limit heap allocations to program
A useful pattern commonly used in space systems is to limit heap allocations to program
initialization time and avoid frequent run-time allocations. This prevents issues like
running out of memory (something even Rust can not protect from) or heap fragmentation on systems
without a MMU.
# Using pre-allocated pool structures
A huge candidate for heap allocations is the TMTC and handling. TC, TMs and IPC data are all
A candidate for heap allocations is the TMTC and handling. TC, TMs and IPC data are all
candidates where the data size might vary greatly. The regular solution for host systems
might be to send around this data as a `Vec<u8>` until it is dropped. `sat-rs` provides
another solution to avoid run-time allocations by offering pre-allocated static