5 Commits

Author SHA1 Message Date
2756670efe cargo fmt
Some checks failed
Rust/spacepackets/pipeline/head There was a failure building this commit
2022-12-19 17:01:56 +01:00
eb5ace0658 Merge branch 'main' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-19 16:36:33 +01:00
b9cd08cefe Merge branch 'main' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-19 11:03:46 +01:00
0073db95f9 Merge branch 'add_cuc_time_impl' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-19 00:01:28 +01:00
251fcdd6c8 Merge branch 'add_cuc_time_impl' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-18 16:23:25 +01:00
21 changed files with 252 additions and 2647 deletions

View File

@ -20,21 +20,6 @@ jobs:
command: check
args: --release
msrv:
name: Check with MSRV
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
with:
toolchain: 1.60.0
override: true
profile: minimal
- uses: actions-rs/cargo@v1
with:
command: check
args: --release
cross-check:
name: Check Cross
runs-on: ubuntu-latest
@ -73,21 +58,6 @@ jobs:
command: fmt
args: --all -- --check
check-doc:
name: Check Documentation Build
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly
override: true
profile: minimal
- uses: actions-rs/cargo@v1
with:
command: doc
args: --all-features
clippy:
name: Clippy
runs-on: ubuntu-latest

7
.gitignore vendored
View File

@ -1,7 +0,0 @@
# Rust
/target
/Cargo.lock
# CLion
/.idea/*
!/.idea/runConfigurations

View File

@ -8,145 +8,6 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
# [unreleased]
# [v0.5.3] 2023-02-05
## Added
- `num_enum` dependency to avoid boilerplate code for primtive to enum conversions, for example
for the PUS subservices.
- `ecss.event` module containing a `Subservice` enum.
- `ecss.verification` module containing a `Subservice` enum.
- `ecss.scheduling` module containing a `Subservice` enum and some other helper enumerations.
- `ecss.hk` module containing a `Subservice` enum.
## Changed
- Added missing Service IDs to `ecss.PusServiceId` and marked in `#[non_exhaustive]`.
## Fixed
- `time.UnixTimestamp`: All constructors and `From` conversions now use the `new` constructor,
which should cause a correct conversion of 0 subsecond milliseconds to a `None` value.
# [v0.5.2] 2023-01-26
## Added
- Added `.gitignore`.
## Fixed
- Correct implementation of Trait `PartialEq` for `PusTc` and `PusTm`. The previous auto-derivation
were incorrect because they also compared fields unrelated to the raw byte representation.
## Changed
- Renamed `PusTc` `raw` method to `raw_bytes` and add better docs to avoid confusion.
Deprecate `raw` to avoid breaking change.
- Added `raw_bytes` method to `PusTm`.
# [v0.5.1] 2023-01-22
## Added
- `time::cds::TimeProvider`
- Add `Ord` and `PartialOrd`, use custom `PartialEq` impl to account for precision correctly.
- Add `precision_as_ns` function which converts microsecond and picosecond precision values
into nanoseconds.
- Add conversion trait to convert `cds::TimeProvider<DaysLen16Bits>` into
`cds::TimeProvider<DaysLen24Bits>` and vice-versa.
- `time::UnixTimestamp`
- Add `Ord` and `PartialOrd` implementations.
- Add `Add<Duration>` and `AddAssign<Duration>` implementations.
## Fixed
- `time::cds::TimeProvider`: Fixed a bug where subsecond milliseconds were not accounted for
when the provider has no submillisecond precision.
# [v0.5.0] 2023-01-20
The timestamp of `PusTm` is now optional. See Added and Changed section for details.
## Added
- `PusTmSecondaryHeader`: New `new_simple_no_timestamp` API to create secondary header without
timestamp.
- `PusTm`: Add `new_simple_no_timestamp` method to create TM without timestamp
- New `UnixTimestamp` abstraction which contains the unix seconds as an `i64`
and an optional subsecond millisecond counter (`u16`)
- `MS_PER_DAY` constant.
- CUC: Added `from_date_time` and `from_unix_stamp` constructors for time provider.
- CUC: Add `Add<Duration>` and `AddAssign<Duration>` impl for time provider.
### CDS time module
- Implement `Add<Duration>` and `AddAssign<Duration>` for time providers, which allows
easily adding offsets to the providers.
- Implement `TryFrom<DateTime<Utc>>` for time providers.
- `get_dyn_time_provider_from_bytes`: Requires `alloc` support and returns
the correct `TimeProvider` instance wrapped as a boxed trait object
`Box<DynCdsTimeProvider>` by checking the length of days field.
- Added constructor function to create the time provider
from `chrono::DateTime<Utc>` and a generic UNIX timestamp (`i64` seconds
and subsecond milliseconds).
- `MAX_DAYS_24_BITS` which contains maximum value which can be supplied
to the days field of a CDS time provider with 24 bits days field width.
- New `CdsTimestamp` trait which encapsulates common fields for all CDS time providers.
- `from_unix_secs_with_u24_days` and `from_unix_secs_with_u16_days` which create
the time provider from a `UnixTimestamp` reference.
- `from_dt_with_u16_days`, `from_dt_with_u24_days` and their `..._us_precision` and
`..._ps_precision` variants which allow to create time providers from
a `chrono::DateTime<Utc>`.
- Add `from_bytes_with_u24_days` and `from_bytes_with_u16_days` associated methods
## Changed
- (breaking) `unix_epoch_to_ccsds_epoch`: Expect and return `i64` instead of `u64` now.
- (breaking) `ccsds_epoch_to_unix_epoch`: Expect and return `i64` instead of `u64` now.
- (breaking) `PusTmSecondaryHeader`: Timestamp is optional now, which translates to a
timestamp of size 0.
- (breaking): `PusTm`: Renamed `time_stamp` method to `timestamp`, also returns
`Optional<&'src_data [u8]>` now.
- (breaking): `PusTmSecondaryHeader`: Renamed `time_stamp` field to `timestamp` for consistency.
- (breaking): Renamed `from_now_with_u24_days_and_us_prec` to `from_now_with_u24_days_us_precision`.
Also did the same for the `u16` variant.
- (breaking): Renamed `from_now_with_u24_days_and_ps_prec` to `from_now_with_u24_days_ps_precision`.
Also did the same for the `u16` variant.
- `CcsdsTimeProvider` trait (breaking):
- Add new `unix_stamp` method returning the new `UnixTimeStamp` struct.
- Add new `subsecond_millis` method returning counter `Option<u16>`.
- Default impl for `unix_stamp` which re-uses `subsecond_millis` and
existing `unix_seconds` method.
- `TimestampError` (breaking): Add `DateBeforeCcsdsEpoch` error type
because new CDS API allow supplying invalid date times before CCSDS epoch.
Make `TimestampError` with `#[non_exhaustive]` attribute to prevent
future breakages if new error variants are added.
# [v0.4.2] 14.01.2023
## Fixed
- CDS timestamp: Fixed another small logic error for stamp creation from the current
time with picosecond precision.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/8
# [v0.4.1] 14.01.2023
## Fixed
- CDS timestamp: The conversion function from the current time were buggy
when specifying picoseconds precision, which could lead to overflow
multiplications and/or incorrect precision fields.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/7
# [v0.4.0] 10.01.2023
## Fixed
- Remove `Default` derive on CDS time provider. This can lead to uninitialized preamble fields.
## Changed
- `serde` support is now optional and behind the `serde` feature.
@ -158,18 +19,12 @@ The timestamp of `PusTm` is now optional. See Added and Changed section for deta
The function now returns the remaining slice as well.
- All CDS specific functionality was moved into the `cds` submodule of the `time`
module. `CdsShortTimeProvider` was renamed to `TimeProvider`.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/3
## Added
- `SpHeader` getter function `sp_header` added for `PusTc`
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/6
- Added PFC enumerations: `ecss::UnsignedPfc` and `ecss::RealPfc`.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/5
- Added `std::error::Error` implementation for all error enumerations if the `std` feature
is enabled.
- CUC timestamp implementation as specified in CCSDS 301.0-B-4 section 3.2.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/4/files
- ACII timestamps as specified in CCSDS 301.0-B-4 section 3.5.
- Added MSRV in `Cargo.toml` with the `rust-version` field set to Rust 1.60.
- `serde` `Serialize` and `Deserialize` added to all types.

View File

@ -1,6 +1,6 @@
[package]
name = "spacepackets"
version = "0.5.3"
version = "0.3.1"
edition = "2021"
rust-version = "1.60"
authors = ["Robin Mueller <muellerr@irs.uni-stuttgart.de>"]
@ -14,15 +14,11 @@ categories = ["aerospace", "aerospace::space-protocols", "no-std", "hardware-sup
[dependencies]
zerocopy = "0.6"
crc = "3"
delegate = ">=0.8, <0.10"
[dependencies.num_enum]
version = "0.5"
default-features = false
crc = "3.0"
delegate = "0.8"
[dependencies.serde]
version = "1"
version = "1.0"
optional = true
default-features = false
features = ["derive"]

2
NOTICE
View File

@ -1,3 +1,3 @@
Generic implementations for various CCSDS and ECSS packet standards.
This software contains code developed at the University of Stuttgart's Institute of Space Systems.
This software contains code developed at the University of Stuttgart.

View File

@ -15,11 +15,9 @@ Currently, this includes the following components:
[CCSDS Blue Book 133.0-B-2](https://public.ccsds.org/Pubs/133x0b2e1.pdf)
- PUS Telecommand and PUS Telemetry implementation according to the
[ECSS-E-ST-70-41C standard](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
- CUC (CCSDS Unsegmented Time Code) implementation according to
[CCSDS 301.0-B-4 3.2](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
- CDS (CCSDS Day Segmented Time Code) implementation according to
- CDS Short Time Code implementation according to
[CCSDS 301.0-B-4 3.3](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
- Some helper types to support ASCII timecodes as specified in
- Some helper types to support ASCII timecodes ad specified in
[CCSDS 301.0-B-4 3.5](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
# Features

View File

@ -10,6 +10,6 @@ ARG DEBIAN_FRONTEND=noninteractive
# set CROSS_CONTAINER_IN_CONTAINER to inform `cross` that it is executed from within a container
ENV CROSS_CONTAINER_IN_CONTAINER=true
RUN rustup install nightly && \
rustup target add thumbv7em-none-eabihf armv7-unknown-linux-gnueabihf && \
# TODO: installing cross is problematic, permission issues
RUN rustup target add thumbv7em-none-eabihf armv7-unknown-linux-gnueabihf && \
rustup component add rustfmt clippy

View File

@ -13,29 +13,19 @@ pipeline {
sh 'cargo clippy'
}
}
stage('Docs') {
steps {
sh 'cargo +nightly doc --all-features'
}
}
stage('Rustfmt') {
steps {
sh 'cargo fmt --all --check'
sh 'cargo fmt'
}
}
stage('Test') {
steps {
sh 'cargo test --all-features'
sh 'cargo test'
}
}
stage('Check with all features') {
stage('Check') {
steps {
sh 'cargo check --all-features'
}
}
stage('Check with no features') {
steps {
sh 'cargo check --no-default-features'
sh 'cargo check'
}
}
stage('Check Cross Embedded Bare Metal') {

View File

@ -1,18 +0,0 @@
Checklist for new releases
=======
# Pre-Release
1. Make sure any new modules are documented sufficiently enough and check docs with
`cargo doc --all-features --open`.
2. Bump version specifier in `Cargo.toml`.
3. Update `CHANGELOG.md`: Convert `unreleased` section into version section with date and add new
`unreleased` section.
4. Run `cargo test --all-features`.
5. Run `cargo fmt` and `cargo clippy`. Check `cargo msrv` against MSRV in `Cargo.toml`.
6. Wait for CI/CD results for EGit and Github. These also check cross-compilation for bare-metal
targets.
# Post-Release
1. Create a new release on `EGit` based on the release branch.

View File

@ -1,74 +1,28 @@
//! Common definitions and helpers required to create PUS TMTC packets according to
//! [ECSS-E-ST-70-41C](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/)
//!
//! You can find the PUS telecommand definitions in the [crate::tc] module and ithe PUS telemetry definitions
//! inside the [crate::tm] module.
use crate::{ByteConversionError, CcsdsPacket, SizeMissmatch};
use core::fmt::{Debug, Display, Formatter};
use core::mem::size_of;
use crc::{Crc, CRC_16_IBM_3740};
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::error::Error;
pub mod event;
pub mod hk;
pub mod scheduling;
pub mod verification;
pub type CrcType = u16;
/// CRC algorithm used by the PUS standard.
pub const CRC_CCITT_FALSE: Crc<u16> = Crc::<u16>::new(&CRC_16_IBM_3740);
pub const CCSDS_HEADER_LEN: usize = size_of::<crate::zc::SpHeader>();
#[derive(Debug, Copy, Clone, Eq, PartialEq, IntoPrimitive, TryFromPrimitive)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
#[non_exhaustive]
pub enum PusServiceId {
/// Service 1
Verification = 1,
/// Service 2
DeviceAccess = 2,
/// Service 3
Housekeeping = 3,
/// Service 4
ParameterStatistics = 4,
/// Service 5
Event = 5,
/// Service 6
MemoryManagement = 6,
/// Service 8
Action = 8,
/// Service 9
TimeManagement = 9,
/// Service 11
Scheduling = 11,
/// Service 12
OnBoardMonitoring = 12,
/// Service 13
LargePacketTransfer = 13,
/// Service 14
RealTimeForwardingControl = 14,
/// Service 15
StorageAndRetrival = 15,
/// Service 17
Test = 17,
/// Service 18
OpsAndProcedures = 18,
/// Service 19
EventAction = 19,
/// Service 20
Parameter = 20,
/// Service 21
RequestSequencing = 21,
/// Service 22
PositionBasedScheduling = 22,
/// Service 23
FileManagement = 23,
}
/// All PUS versions. Only PUS C is supported by this library.
@ -94,7 +48,6 @@ impl TryFrom<u8> for PusVersion {
}
}
/// ECSS Packet Type Codes (PTC)s.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PacketTypeCodes {
@ -114,7 +67,6 @@ pub enum PacketTypeCodes {
pub type Ptc = PacketTypeCodes;
/// ECSS Packet Field Codes (PFC)s for the unsigned [Ptc].
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum UnsignedPfc {
@ -130,7 +82,6 @@ pub enum UnsignedPfc {
ThreeBits = 19,
}
/// ECSS Packet Field Codes (PFC)s for the real (floating point) [Ptc].
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum RealPfc {
@ -160,15 +111,16 @@ impl Display for PusError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
PusError::VersionNotSupported(v) => {
write!(f, "PUS version {v:?} not supported")
write!(f, "PUS version {:?} not supported", v)
}
PusError::IncorrectCrc(crc) => {
write!(f, "crc16 {crc:#04x} is incorrect")
write!(f, "crc16 {:#04x} is incorrect", crc)
}
PusError::RawDataTooShort(size) => {
write!(
f,
"deserialization error, provided raw data with size {size} too short"
"deserialization error, provided raw data with size {} too short",
size
)
}
PusError::NoRawData => {
@ -178,7 +130,7 @@ impl Display for PusError {
write!(f, "crc16 was not calculated")
}
PusError::ByteConversionError(e) => {
write!(f, "low level byte conversion error: {e}")
write!(f, "low level byte conversion error: {}", e)
}
}
}
@ -200,8 +152,6 @@ impl From<ByteConversionError> for PusError {
}
}
/// Generic trait to describe common attributes for both PUS Telecommands (TC) and PUS Telemetry
/// (TM) packets. All PUS packets are also a special type of [CcsdsPacket]s.
pub trait PusPacket: CcsdsPacket {
const PUS_VERSION: PusVersion = PusVersion::PusC;

View File

@ -1,43 +0,0 @@
//! PUS Service 5 Events
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Debug, Eq, PartialEq, Copy, Clone, IntoPrimitive, TryFromPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Subservice {
TmInfoReport = 1,
TmLowSeverityReport = 2,
TmMediumSeverityReport = 3,
TmHighSeverityReport = 4,
TcEnableEventGeneration = 5,
TcDisableEventGeneration = 6,
TcReportDisabledList = 7,
TmDisabledEventsReport = 8,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_conv_into_u8() {
let subservice: u8 = Subservice::TmLowSeverityReport.into();
assert_eq!(subservice, 2);
}
#[test]
fn test_conv_from_u8() {
let subservice: Subservice = 2.try_into().unwrap();
assert_eq!(subservice, Subservice::TmLowSeverityReport);
}
#[test]
fn test_conv_fails() {
let conversion = Subservice::try_from(9);
assert!(conversion.is_err());
let err = conversion.unwrap_err();
assert_eq!(err.number, 9);
}
}

View File

@ -1,31 +0,0 @@
//! PUS Service 3 Housekeeping
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Debug, Eq, PartialEq, Copy, Clone, IntoPrimitive, TryFromPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Subservice {
// Regular HK
TcCreateHkReportStructure = 1,
TcDeleteHkReportStructures = 3,
TcEnableHkGeneration = 5,
TcDisableHkGeneration = 6,
TcReportHkReportStructures = 9,
TmHkPacket = 25,
TcGenerateOneShotHk = 27,
TcModifyHkCollectionInterval = 31,
// Diagnostics HK
TcCreateDiagReportStructure = 2,
TcDeleteDiagReportStructures = 4,
TcEnableDiagGeneration = 7,
TcDisableDiagGeneration = 8,
TmHkStructuresReport = 10,
TcReportDiagReportStructures = 11,
TmDiagStructuresReport = 12,
TmDiagPacket = 26,
TcGenerateOneShotDiag = 28,
TcModifyDiagCollectionInterval = 32,
}

View File

@ -1,105 +0,0 @@
//! PUS Service 11 Scheduling
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Debug, PartialEq, Eq, Copy, Clone, IntoPrimitive, TryFromPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Subservice {
// Core subservices
TcEnableScheduling = 1,
TcDisableScheduling = 2,
TcResetScheduling = 3,
TcInsertActivity = 4,
TcDeleteActivityByRequestId = 5,
TcDeleteActivitiesByFilter = 6,
// Time shift subservices
TcTimeShiftActivityWithRequestId = 7,
TcTimeShiftActivitiesByFilter = 8,
TcTimeShiftAll = 15,
// Reporting subservices
TcDetailReportByRequestId = 9,
TmDetailReport = 10,
TcDetailReportByFilter = 11,
TcSummaryReportByRequestId = 12,
TmSummaryReport = 13,
TcSummaryReportByFilter = 14,
TcDetailReportAll = 16,
TcSummaryReportAll = 17,
// Subschedule subservices
TcReportSubscheduleStatus = 18,
TmReportSubscheduleStatus = 19,
TcEnableSubschedule = 20,
TcDisableSubschedule = 21,
// Group subservices
TcCreateScheduleGroup = 22,
TcDeleteScheduleGroup = 23,
TcEnableScheduleGroup = 24,
TcDisableScheduleGroup = 25,
TcReportAllGroupsStatus = 26,
TmReportAllGroupsStatus = 27,
}
/// This status applies to sub-schedules and groups as well as specified in ECSS-E-ST-70-41C 8.11.3
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum SchedStatus {
Disabled = 0,
Enabled = 1,
}
impl From<bool> for SchedStatus {
fn from(value: bool) -> Self {
if value {
SchedStatus::Enabled
} else {
SchedStatus::Disabled
}
}
}
/// Time window types as specified in ECSS-E-ST-70-41C 8.11.3
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum TimeWindowType {
SelectAll = 0,
TimeTagToTimeTag = 1,
FromTimeTag = 2,
ToTimeTag = 3,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_bool_conv_0() {
let enabled = true;
let status: SchedStatus = enabled.into();
assert_eq!(status, SchedStatus::Enabled)
}
#[test]
fn test_bool_conv_1() {
let enabled = false;
let status: SchedStatus = enabled.into();
assert_eq!(status, SchedStatus::Disabled)
}
#[test]
fn test_conv_into_u8() {
let subservice: u8 = Subservice::TcCreateScheduleGroup.into();
assert_eq!(subservice, 22);
}
#[test]
fn test_conv_from_u8() {
let subservice: Subservice = 22u8.try_into().unwrap();
assert_eq!(subservice, Subservice::TcCreateScheduleGroup);
}
}

View File

@ -1,35 +0,0 @@
//! PUS Service 1 Verification
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Debug, Eq, PartialEq, Copy, Clone, IntoPrimitive, TryFromPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Subservice {
TmAcceptanceSuccess = 1,
TmAcceptanceFailure = 2,
TmStartSuccess = 3,
TmStartFailure = 4,
TmStepSuccess = 5,
TmStepFailure = 6,
TmCompletionSuccess = 7,
TmCompletionFailure = 8,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_conv_into_u8() {
let subservice: u8 = Subservice::TmCompletionSuccess.into();
assert_eq!(subservice, 7);
}
#[test]
fn test_conv_from_u8() {
let subservice: Subservice = 7.try_into().unwrap();
assert_eq!(subservice, Subservice::TmCompletionSuccess);
}
}

View File

@ -9,11 +9,9 @@
//! [CCSDS Blue Book 133.0-B-2](https://public.ccsds.org/Pubs/133x0b2e1.pdf)
//! - PUS Telecommand and PUS Telemetry implementation according to the
//! [ECSS-E-ST-70-41C standard](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
//! - CUC (CCSDS Unsegmented Time Code) implementation according to
//! [CCSDS 301.0-B-4 3.2](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
//! - CDS (CCSDS Day Segmented Time Code) implementation according to
//! [CCSDS 301.0-B-4 3.3](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
//! - Some helper types to support ASCII timecodes as specified in
//! - CDS Short Time Code implementation according to
//! [CCSDS CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
//! - Some helper types and functions to support ASCII timecodes ad specified in
//! [CCSDS 301.0-B-4 3.5](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
//!
//! ## Features
@ -129,7 +127,6 @@ impl Display for ByteConversionError {
#[cfg(feature = "std")]
impl Error for ByteConversionError {}
/// CCSDS packet type enumeration.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PacketType {
@ -178,8 +175,6 @@ impl TryFrom<u8> for SequenceFlags {
}
}
/// Abstraction for the CCSDS Packet ID, which forms the last thirteen bits
/// of the first two bytes in the CCSDS primary header.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PacketId {
@ -263,8 +258,6 @@ impl From<u16> for PacketId {
}
}
/// Abstraction for the CCSDS Packet Sequence Control (PSC) field which is the
/// third and the fourth byte in the CCSDS primary header.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PacketSequenceCtrl {

View File

@ -205,35 +205,29 @@ impl PusTcSecondaryHeader {
}
}
/// This class models the PUS C telecommand packet. It is the primary data structure to generate the
/// raw byte representation of a PUS telecommand or to deserialize from one from raw bytes.
/// This class models a PUS telecommand. It is the primary data structure to generate the raw byte
/// representation of a PUS telecommand or to deserialize from one from raw bytes.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the
/// [serde] feature is used, which allows to send around TC packets in a raw byte format using a
/// serde provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
///
/// # Lifetimes
///
/// * `'raw_data` - If the TC is not constructed from a raw slice, this will be the life time of
/// a buffer where the user provided application data will be serialized into. If it
/// is, this is the lifetime of the raw byte slice it is constructed from.
#[derive(Eq, Copy, Clone, Debug)]
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTc<'raw_data> {
pub struct PusTc<'slice> {
sp_header: SpHeader,
pub sec_header: PusTcSecondaryHeader,
/// If this is set to false, a manual call to [PusTc::calc_own_crc16] or
/// [PusTc::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid.
pub calc_crc_on_serialization: bool,
#[cfg_attr(feature = "serde", serde(skip))]
raw_data: Option<&'raw_data [u8]>,
app_data: Option<&'raw_data [u8]>,
raw_data: Option<&'slice [u8]>,
app_data: Option<&'slice [u8]>,
crc16: Option<u16>,
}
impl<'raw_data> PusTc<'raw_data> {
impl<'slice> PusTc<'slice> {
/// Generates a new struct instance.
///
/// # Arguments
@ -249,7 +243,7 @@ impl<'raw_data> PusTc<'raw_data> {
pub fn new(
sp_header: &mut SpHeader,
sec_header: PusTcSecondaryHeader,
app_data: Option<&'raw_data [u8]>,
app_data: Option<&'slice [u8]>,
set_ccsds_len: bool,
) -> Self {
sp_header.set_packet_type(PacketType::Tc);
@ -274,7 +268,7 @@ impl<'raw_data> PusTc<'raw_data> {
sph: &mut SpHeader,
service: u8,
subservice: u8,
app_data: Option<&'raw_data [u8]>,
app_data: Option<&'slice [u8]>,
set_ccsds_len: bool,
) -> Self {
Self::new(
@ -285,10 +279,6 @@ impl<'raw_data> PusTc<'raw_data> {
)
}
pub fn sp_header(&self) -> &SpHeader {
&self.sp_header
}
pub fn len_packed(&self) -> usize {
let mut length = PUS_TC_MIN_LEN_WITHOUT_APP_DATA;
if let Some(app_data) = self.app_data {
@ -411,7 +401,7 @@ impl<'raw_data> PusTc<'raw_data> {
/// Create a [PusTc] instance from a raw slice. On success, it returns a tuple containing
/// the instance and the found byte length of the packet.
pub fn from_bytes(slice: &'raw_data [u8]) -> Result<(Self, usize), PusError> {
pub fn from_bytes(slice: &'slice [u8]) -> Result<(Self, usize), PusError> {
let raw_data_len = slice.len();
if raw_data_len < PUS_TC_MIN_LEN_WITHOUT_APP_DATA {
return Err(PusError::RawDataTooShort(raw_data_len));
@ -441,26 +431,11 @@ impl<'raw_data> PusTc<'raw_data> {
Ok((pus_tc, total_len))
}
#[deprecated(since = "0.5.2", note = "use raw_bytes() instead")]
pub fn raw(&self) -> Option<&'raw_data [u8]> {
self.raw_bytes()
}
/// If [Self] was constructed [Self::from_bytes], this function will return the slice it was
/// constructed from. Otherwise, [None] will be returned.
pub fn raw_bytes(&self) -> Option<&'raw_data [u8]> {
pub fn raw(&self) -> Option<&'slice [u8]> {
self.raw_data
}
}
impl PartialEq for PusTc<'_> {
fn eq(&self, other: &Self) -> bool {
self.sp_header == other.sp_header
&& self.sec_header == other.sec_header
&& self.app_data == other.app_data
}
}
//noinspection RsTraitImplementation
impl CcsdsPacket for PusTc<'_> {
ccsds_impl!();
@ -757,20 +732,4 @@ mod tests {
assert_eq!(slice[11], 0xee);
assert_eq!(slice[12], 0x63);
}
#[test]
fn partial_eq_pus_tc() {
// new vs new simple
let pus_tc_1 = base_ping_tc_simple_ctor();
let pus_tc_2 = base_ping_tc_full_ctor();
assert_eq!(pus_tc_1, pus_tc_2);
}
#[test]
fn partial_eq_serialized_vs_derialized() {
let pus_tc = base_ping_tc_simple_ctor();
let mut buf = [0; 32];
pus_tc.write_to_bytes(&mut buf).unwrap();
assert_eq!(pus_tc, PusTc::from_bytes(&buf).unwrap().0);
}
}

View File

@ -3,10 +3,8 @@
//! See [chrono::DateTime::format] for a usage example of the generated
//! [chrono::format::DelayedFormat] structs.
#[cfg(feature = "alloc")]
use chrono::{
format::{DelayedFormat, StrftimeItems},
DateTime, Utc,
};
use chrono::format::{DelayedFormat, StrftimeItems};
use chrono::{DateTime, Utc};
/// Tuple of format string and formatted size for time code A.
///

File diff suppressed because it is too large Load Diff

View File

@ -3,15 +3,9 @@
//!
//! The core data structure to do this is the [TimeProviderCcsdsEpoch] struct.
use super::*;
use chrono::Datelike;
use core::fmt::Debug;
use core::ops::{Add, AddAssign};
use core::time::Duration;
const MIN_CUC_LEN: usize = 2;
/// Base value for the preamble field for a time field parser to determine the time field type.
pub const P_FIELD_BASE: u8 = (CcsdsTimeCodes::CucCcsdsEpoch as u8) << 4;
/// Maximum length if the preamble field is not extended.
pub const MAX_CUC_LEN_SMALL_PREAMBLE: usize = 8;
@ -45,14 +39,12 @@ impl TryFrom<u8> for FractionalResolution {
/// Please note that this function will panic if the fractional value is not smaller than
/// the maximum number of fractions allowed for the particular resolution.
/// (e.g. passing 270 when the resolution only allows 255 values).
#[inline]
pub fn convert_fractional_part_to_ns(fractional_part: FractionalPart) -> u64 {
let div = fractional_res_to_div(fractional_part.0);
assert!(fractional_part.1 < div);
10_u64.pow(9) * fractional_part.1 as u64 / div as u64
}
#[inline(always)]
pub const fn fractional_res_to_div(res: FractionalResolution) -> u32 {
2_u32.pow(8 * res as u32) - 1
}
@ -72,20 +64,10 @@ pub fn fractional_part_from_subsec_ns(
if ns > sec_as_ns {
panic!("passed nanosecond value larger than 1 second");
}
let resolution = fractional_res_to_div(res) as u64;
// Use integer division because this can reduce code size of really small systems.
// First determine the nanoseconds for the smallest segment given the resolution.
// Then divide by that to find out the fractional part. For the calculation of the smallest
// fraction, we perform a ceiling division. This is because if we would use the default
// flooring division, we would divide by a smaller value, thereby allowing the calculation to
// invalid fractional parts which are too large. For the division of the nanoseconds by the
// smallest fraction, a flooring division is correct.
// The multiplication with 100000 is necessary to avoid precision loss during integer division.
// TODO: Floating point division might actually be faster option, but requires additional
// code on small embedded systems..
let fractional_part = ns * 100000 / ((sec_as_ns * 100000 + resolution) / resolution);
// Floating point division.
//let fractional_part = (ns as f64 / ((sec_as_ns as f64) / resolution as f64)).floor() as u32;
// Then divide by that to find out the fractional part. An integer division floors
// which is what we want here.
let fractional_part = ns / (sec_as_ns / fractional_res_to_div(res) as u64);
Some(FractionalPart(res, fractional_part as u32))
}
@ -94,7 +76,6 @@ pub fn fractional_part_from_subsec_ns(
pub enum CucError {
InvalidCounterWidth(u8),
InvalidFractionResolution(FractionalResolution),
/// Invalid counter supplied.
InvalidCounter(u8, u64),
InvalidFractions(FractionalResolution, u64),
}
@ -103,16 +84,16 @@ impl Display for CucError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
CucError::InvalidCounterWidth(w) => {
write!(f, "invalid cuc counter byte width {w}")
write!(f, "invalid cuc counter byte width {}", w)
}
CucError::InvalidFractionResolution(w) => {
write!(f, "invalid cuc fractional part byte width {w:?}")
write!(f, "invalid cuc fractional part byte width {:?}", w)
}
CucError::InvalidCounter(w, c) => {
write!(f, "invalid cuc counter {c} for width {w}")
write!(f, "invalid cuc counter {} for width {}", c, w)
}
CucError::InvalidFractions(w, c) => {
write!(f, "invalid cuc fractional part {c} for width {w:?}")
write!(f, "invalid cuc fractional part {} for width {:?}", c, w)
}
}
}
@ -134,8 +115,8 @@ pub struct FractionalPart(FractionalResolution, u32);
/// It has the capability to generate and read timestamps as specified in the CCSDS 301.0-B-4
/// section 3.2 . The preamble field only has one byte, which allows a time code representation
/// through the year 2094. The time is represented as a simple binary counter starting from the
/// fixed CCSDS epoch (1958-01-01T00:00:00+00:00). It is possible to provide subsecond accuracy
/// using the fractional field with various available [resolutions][FractionalResolution].
/// fixed CCSDS epoch (1958-01-01 00:00:00). It is possible to provide subsecond accuracy using the
/// fractional field with various available [resolutions][FractionalResolution].
///
/// Having a preamble field of one byte limits the width of the counter
/// type (generally seconds) to 4 bytes and the width of the fractions type to 3 bytes. This limits
@ -234,10 +215,9 @@ impl TimeProviderCcsdsEpoch {
/// The counter width will always be set to 4 bytes because the normal CCSDS epoch will overflow
/// when using less than that.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now(fraction_resolution: FractionalResolution) -> Result<Self, StdTimestampError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs() as i64);
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs());
if fraction_resolution == FractionalResolution::Seconds {
return Ok(Self::new(ccsds_epoch as u32));
}
@ -250,10 +230,9 @@ impl TimeProviderCcsdsEpoch {
/// Updates the current time stamp from the current time. The fractional field width remains
/// the same and will be updated accordingly.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn update_from_now(&mut self) -> Result<(), StdTimestampError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
self.counter.1 = unix_epoch_to_ccsds_epoch(now.as_secs() as i64) as u32;
self.counter.1 = unix_epoch_to_ccsds_epoch(now.as_secs()) as u32;
if self.fractions.is_some() {
self.fractions = fractional_part_from_subsec_ns(
self.fractions.unwrap().0,
@ -263,42 +242,6 @@ impl TimeProviderCcsdsEpoch {
Ok(())
}
pub fn from_date_time(
dt: &DateTime<Utc>,
res: FractionalResolution,
) -> Result<Self, TimestampError> {
// Year before CCSDS epoch is invalid.
if dt.year() < 1958 {
return Err(TimestampError::DateBeforeCcsdsEpoch(*dt));
}
Self::new_generic(
WidthCounterPair(4, dt.timestamp() as u32),
fractional_part_from_subsec_ns(res, dt.timestamp_subsec_nanos() as u64),
)
.map_err(|e| e.into())
}
pub fn from_unix_stamp(
unix_stamp: &UnixTimestamp,
res: FractionalResolution,
) -> Result<Self, TimestampError> {
let ccsds_epoch = unix_epoch_to_ccsds_epoch(unix_stamp.unix_seconds);
// Negative CCSDS epoch is invalid.
if ccsds_epoch < 0 {
return Err(TimestampError::DateBeforeCcsdsEpoch(
unix_stamp.as_date_time().unwrap(),
));
}
if ccsds_epoch > u32::MAX as i64 {
return Err(CucError::InvalidCounter(4, ccsds_epoch as u64).into());
}
let mut fractions = None;
if let Some(subsec_millis) = unix_stamp.subsecond_millis {
fractions = fractional_part_from_subsec_ns(res, subsec_millis as u64 * 10_u64.pow(6));
}
Self::new_generic(WidthCounterPair(4, ccsds_epoch as u32), fractions).map_err(|e| e.into())
}
pub fn new_u16_counter(counter: u16) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(WidthCounterPair(2, counter as u32), None).unwrap()
@ -357,7 +300,7 @@ impl TimeProviderCcsdsEpoch {
}
fn build_p_field(counter_width: u8, fractions_width: Option<FractionalResolution>) -> u8 {
let mut pfield = P_FIELD_BASE;
let mut pfield = (CcsdsTimeCodes::CucCcsdsEpoch as u8) << 4;
if !(1..=4).contains(&counter_width) {
// Okay to panic here, this function is private and all input values should
// have been sanitized
@ -395,11 +338,6 @@ impl TimeProviderCcsdsEpoch {
pfield & 0b11
}
#[inline]
fn unix_seconds(&self) -> i64 {
ccsds_epoch_to_unix_epoch(self.counter.1 as i64)
}
/// This returns the length of the individual components of the CUC timestamp in addition
/// to the total size.
///
@ -592,19 +530,10 @@ impl CcsdsTimeProvider for TimeProviderCcsdsEpoch {
CcsdsTimeCodes::CucCcsdsEpoch
}
/// Please note that this function only works as intended if the time counter resolution
/// is one second.
fn unix_seconds(&self) -> i64 {
self.unix_seconds()
}
fn subsecond_millis(&self) -> Option<u16> {
if let Some(fractions) = self.fractions {
if fractions.0 == FractionalResolution::Seconds {
return None;
}
// Rounding down here is the correct approach.
return Some((convert_fractional_part_to_ns(fractions) / 10_u32.pow(6) as u64) as u16);
}
None
ccsds_epoch_to_unix_epoch(self.counter.1 as u64) as i64
}
fn date_time(&self) -> Option<DateTime<Utc>> {
@ -621,95 +550,6 @@ impl CcsdsTimeProvider for TimeProviderCcsdsEpoch {
}
}
fn get_provider_values_after_duration_addition(
provider: &TimeProviderCcsdsEpoch,
duration: Duration,
) -> (u32, Option<FractionalPart>) {
let mut new_counter = provider.counter.1;
let subsec_nanos = duration.subsec_nanos();
let mut increment_counter = |amount: u32| {
let mut sum: u64 = 0;
let mut counter_inc_handler = |max_val: u64| {
sum = new_counter as u64 + amount as u64;
if sum >= max_val {
new_counter = (sum % max_val) as u32;
return;
}
new_counter = sum as u32;
};
match provider.counter.0 {
1 => counter_inc_handler(u8::MAX as u64),
2 => counter_inc_handler(u16::MAX as u64),
3 => counter_inc_handler((2_u32.pow(24) - 1) as u64),
4 => counter_inc_handler(u32::MAX as u64),
_ => {
// Should never happen
panic!("invalid counter width")
}
}
};
let fractional_part = if let Some(fractional_part) = &provider.fractions {
let fractional_increment =
fractional_part_from_subsec_ns(fractional_part.0, subsec_nanos as u64).unwrap();
let mut increment_fractions = |resolution| {
let mut new_fractions = fractional_part.1 + fractional_increment.1;
let max_fractions = fractional_res_to_div(resolution);
if new_fractions > max_fractions {
increment_counter(1);
new_fractions -= max_fractions;
}
Some(FractionalPart(resolution, new_fractions))
};
match fractional_increment.0 {
FractionalResolution::Seconds => None,
_ => increment_fractions(fractional_increment.0),
}
} else {
None
};
increment_counter(duration.as_secs() as u32);
(new_counter, fractional_part)
}
impl AddAssign<Duration> for TimeProviderCcsdsEpoch {
fn add_assign(&mut self, duration: Duration) {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(self, duration);
self.counter.1 = new_counter;
if self.fractions.is_some() {
self.fractions = new_fractional_part;
}
}
}
impl Add<Duration> for TimeProviderCcsdsEpoch {
type Output = Self;
fn add(self, duration: Duration) -> Self::Output {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(&self, duration);
if let Some(fractional_part) = new_fractional_part {
// The generated fractional part should always be valid, so its okay to unwrap here.
return Self::new_with_fractions(new_counter, fractional_part).unwrap();
}
Self::new(new_counter)
}
}
impl Add<Duration> for &TimeProviderCcsdsEpoch {
type Output = TimeProviderCcsdsEpoch;
fn add(self, duration: Duration) -> Self::Output {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(self, duration);
if let Some(fractional_part) = new_fractional_part {
// The generated fractional part should always be valid, so its okay to unwrap here.
return Self::Output::new_with_fractions(new_counter, fractional_part).unwrap();
}
Self::Output::new(new_counter)
}
}
#[cfg(test)]
mod tests {
use super::*;
@ -746,7 +586,6 @@ mod tests {
let zero_cuc = zero_cuc.unwrap();
let res = zero_cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
assert!(zero_cuc.subsecond_millis().is_none());
assert_eq!(zero_cuc.len_as_bytes(), 5);
assert_eq!(pfield_len(buf[0]), 1);
let written = res.unwrap();
@ -1028,39 +867,29 @@ mod tests {
#[test]
fn fractional_part_formula() {
let fractional_part =
fractional_part_from_subsec_ns(FractionalResolution::FourMs, 7843138).unwrap();
assert_eq!(fractional_part.1, 2);
7843137 / (10_u64.pow(9) / fractional_res_to_div(FractionalResolution::FourMs) as u64);
assert_eq!(fractional_part, 2);
}
#[test]
fn fractional_part_formula_2() {
let fractional_part =
fractional_part_from_subsec_ns(FractionalResolution::FourMs, 12000000).unwrap();
assert_eq!(fractional_part.1, 3);
12000000 / (10_u64.pow(9) / fractional_res_to_div(FractionalResolution::FourMs) as u64);
assert_eq!(fractional_part, 3);
}
#[test]
fn fractional_part_formula_3() {
let one_fraction_with_width_two_in_ns =
10_u64.pow(9) as f64 / (2_u32.pow(8 * 2) - 1) as f64;
assert_eq!(one_fraction_with_width_two_in_ns.ceil(), 15260.0);
let hundred_fractions_and_some =
(100.0 * one_fraction_with_width_two_in_ns).floor() as u64 + 7000;
let fractional_part = fractional_part_from_subsec_ns(
FractionalResolution::FifteenUs,
hundred_fractions_and_some,
)
.unwrap();
assert_eq!(fractional_part.1, 100);
// Using exactly 101.0 can yield values which will later be rounded down to 100
let hundred_and_one_fractions =
(101.001 * one_fraction_with_width_two_in_ns).floor() as u64;
let fractional_part = fractional_part_from_subsec_ns(
FractionalResolution::FifteenUs,
hundred_and_one_fractions,
)
.unwrap();
assert_eq!(fractional_part.1, 101);
let one_fraction_with_width_two_in_ns = 10_u64.pow(9) / (2_u32.pow(8 * 2) - 1) as u64;
assert_eq!(one_fraction_with_width_two_in_ns, 15259);
let hundred_fractions_and_some = 100 * one_fraction_with_width_two_in_ns + 7000;
let fractional_part = hundred_fractions_and_some
/ (10_u64.pow(9) / fractional_res_to_div(FractionalResolution::FifteenUs) as u64);
assert_eq!(fractional_part, 100);
let hundred_and_one_fractions = 101 * one_fraction_with_width_two_in_ns;
let fractional_part = hundred_and_one_fractions
/ (10_u64.pow(9) / fractional_res_to_div(FractionalResolution::FifteenUs) as u64);
assert_eq!(fractional_part, 101);
}
#[test]
@ -1085,41 +914,4 @@ mod tests {
let res = stamp.update_from_now();
assert!(res.is_ok());
}
#[test]
fn assert_largest_fractions() {
let fractions =
fractional_part_from_subsec_ns(FractionalResolution::SixtyNs, 10u64.pow(9) - 1)
.unwrap();
// The value can not be larger than representable by 3 bytes
// Assert that the maximum resolution can be reached
assert_eq!(fractions.1, 2_u32.pow(3 * 8) - 2);
}
#[test]
fn add_duration_basic() {
let mut cuc_stamp = TimeProviderCcsdsEpoch::new(200);
cuc_stamp.set_fractional_resolution(FractionalResolution::FifteenUs);
let duration = Duration::from_millis(2500);
cuc_stamp += duration;
assert_eq!(cuc_stamp.width_counter_pair().1, 202);
let fractions = cuc_stamp.width_fractions_pair().unwrap().1;
let expected_val =
(0.5 * fractional_res_to_div(FractionalResolution::FifteenUs) as f64).floor() as u32;
assert_eq!(fractions, expected_val);
let cuc_stamp2 = cuc_stamp + Duration::from_millis(501);
// What I would roughly expect
assert_eq!(cuc_stamp2.counter.1, 203);
assert!(cuc_stamp2.fractions.unwrap().1 < 100);
assert!(cuc_stamp2.subsecond_millis().unwrap() <= 1);
}
#[test]
fn add_duration_overflow() {
let mut cuc_stamp =
TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(1, 255), None).unwrap();
let duration = Duration::from_secs(10);
cuc_stamp += duration;
assert_eq!(cuc_stamp.counter.1, 10);
}
}

View File

@ -1,10 +1,7 @@
//! CCSDS Time Code Formats according to [CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
use crate::{ByteConversionError, SizeMissmatch};
use chrono::{DateTime, LocalResult, TimeZone, Utc};
use core::cmp::Ordering;
use core::fmt::{Display, Formatter};
use core::ops::{Add, AddAssign};
use core::time::Duration;
#[allow(unused_imports)]
#[cfg(not(feature = "std"))]
@ -23,7 +20,6 @@ pub mod cuc;
pub const DAYS_CCSDS_TO_UNIX: i32 = -4383;
pub const SECONDS_PER_DAY: u32 = 86400;
pub const MS_PER_DAY: u32 = SECONDS_PER_DAY * 1000;
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
@ -59,7 +55,6 @@ pub fn ccsds_time_code_from_p_field(pfield: u8) -> Result<CcsdsTimeCodes, u8> {
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[non_exhaustive]
pub enum TimestampError {
/// Contains tuple where first value is the expected time code and the second
/// value is the found raw value
@ -67,7 +62,6 @@ pub enum TimestampError {
ByteConversionError(ByteConversionError),
CdsError(cds::CdsError),
CucError(cuc::CucError),
DateBeforeCcsdsEpoch(DateTime<Utc>),
CustomEpochNotSupported,
}
@ -111,20 +105,18 @@ impl Display for TimestampError {
TimestampError::InvalidTimeCode(time_code, raw_val) => {
write!(
f,
"invalid raw time code value {raw_val} for time code {time_code:?}"
"invalid raw time code value {} for time code {:?}",
raw_val, time_code
)
}
TimestampError::CdsError(e) => {
write!(f, "cds error {e}")
write!(f, "cds error {}", e)
}
TimestampError::CucError(e) => {
write!(f, "cuc error {e}")
write!(f, "cuc error {}", e)
}
TimestampError::ByteConversionError(e) => {
write!(f, "byte conversion error {e}")
}
TimestampError::DateBeforeCcsdsEpoch(e) => {
write!(f, "datetime with date before ccsds epoch: {e}")
write!(f, "byte conversion error {}", e)
}
TimestampError::CustomEpochNotSupported => {
write!(f, "custom epochs are not supported")
@ -156,28 +148,28 @@ pub fn seconds_since_epoch() -> f64 {
/// Convert UNIX days to CCSDS days
///
/// - CCSDS epoch: 1958-01-01T00:00:00+00:00
/// - UNIX Epoch: 1970-01-01T00:00:00+00:00
/// - CCSDS epoch: 1958 January 1
/// - UNIX Epoch: 1970 January 1
pub const fn unix_to_ccsds_days(unix_days: i64) -> i64 {
unix_days - DAYS_CCSDS_TO_UNIX as i64
}
/// Convert CCSDS days to UNIX days
///
/// - CCSDS epoch: 1958-01-01T00:00:00+00:00
/// - UNIX Epoch: 1970-01-01T00:00:00+00:00
/// - CCSDS epoch: 1958 January 1
/// - UNIX Epoch: 1970 January 1
pub const fn ccsds_to_unix_days(ccsds_days: i64) -> i64 {
ccsds_days + DAYS_CCSDS_TO_UNIX as i64
}
/// Similar to [unix_to_ccsds_days] but converts the epoch instead, which is the number of elpased
/// seconds since the CCSDS and UNIX epoch times.
pub const fn unix_epoch_to_ccsds_epoch(unix_epoch: i64) -> i64 {
unix_epoch - (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)
pub const fn unix_epoch_to_ccsds_epoch(unix_epoch: u64) -> u64 {
(unix_epoch as i64 - (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)) as u64
}
pub const fn ccsds_epoch_to_unix_epoch(ccsds_epoch: i64) -> i64 {
ccsds_epoch + (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)
pub const fn ccsds_epoch_to_unix_epoch(ccsds_epoch: u64) -> u64 {
(ccsds_epoch as i64 + (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)) as u64
}
#[cfg(feature = "std")]
@ -207,9 +199,6 @@ pub trait TimeReader {
}
/// Trait for generic CCSDS time providers.
///
/// The UNIX helper methods and the [Self::date_time] method are not strictly necessary but extremely
/// practical because they are a very common and simple exchange format for time information.
pub trait CcsdsTimeProvider {
fn len_as_bytes(&self) -> usize;
@ -219,203 +208,10 @@ pub trait CcsdsTimeProvider {
/// in big endian format.
fn p_field(&self) -> (usize, [u8; 2]);
fn ccdsd_time_code(&self) -> CcsdsTimeCodes;
fn unix_seconds(&self) -> i64;
fn subsecond_millis(&self) -> Option<u16>;
fn unix_stamp(&self) -> UnixTimestamp {
if self.subsecond_millis().is_none() {
return UnixTimestamp::new_only_seconds(self.unix_seconds());
}
UnixTimestamp::const_new(self.unix_seconds(), self.subsecond_millis().unwrap())
}
fn date_time(&self) -> Option<DateTime<Utc>>;
}
/// UNIX timestamp: Elapsed seconds since 1970-01-01T00:00:00+00:00.
///
/// Also can optionally include subsecond millisecond for greater accuracy. Please note that a
/// subsecond millisecond value of 0 gets converted to [None].
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct UnixTimestamp {
pub unix_seconds: i64,
subsecond_millis: Option<u16>,
}
impl UnixTimestamp {
/// Returns none if the subsecond millisecond value is larger than 999. 0 is converted to
/// a [None] value.
pub fn new(unix_seconds: i64, subsec_millis: u16) -> Option<Self> {
if subsec_millis > 999 {
return None;
}
Some(Self::const_new(unix_seconds, subsec_millis))
}
/// Like [Self::new] but const. Panics if the subsecond value is larger than 999.
pub const fn const_new(unix_seconds: i64, subsec_millis: u16) -> Self {
if subsec_millis > 999 {
panic!("subsec milliseconds exceeds 999");
}
let subsecond_millis = if subsec_millis == 0 {
None
} else {
Some(subsec_millis)
};
Self {
unix_seconds,
subsecond_millis,
}
}
pub fn new_only_seconds(unix_seconds: i64) -> Self {
Self {
unix_seconds,
subsecond_millis: None,
}
}
pub fn subsecond_millis(&self) -> Option<u16> {
self.subsecond_millis
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now() -> Result<Self, SystemTimeError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
let epoch = now.as_secs();
Ok(Self::const_new(epoch as i64, now.subsec_millis() as u16))
}
#[inline]
pub fn unix_seconds_f64(&self) -> f64 {
let mut secs = self.unix_seconds as f64;
if let Some(subsec_millis) = self.subsecond_millis {
secs += subsec_millis as f64 / 1000.0;
}
secs
}
pub fn as_date_time(&self) -> LocalResult<DateTime<Utc>> {
Utc.timestamp_opt(
self.unix_seconds,
self.subsecond_millis.unwrap_or(0) as u32 * 10_u32.pow(6),
)
}
}
impl From<DateTime<Utc>> for UnixTimestamp {
fn from(value: DateTime<Utc>) -> Self {
Self::const_new(value.timestamp(), value.timestamp_subsec_millis() as u16)
}
}
impl PartialOrd for UnixTimestamp {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
if self == other {
return Some(Ordering::Equal);
}
match self.unix_seconds.cmp(&other.unix_seconds) {
Ordering::Less => return Some(Ordering::Less),
Ordering::Greater => return Some(Ordering::Greater),
_ => (),
}
match self
.subsecond_millis()
.unwrap_or(0)
.cmp(&other.subsecond_millis().unwrap_or(0))
{
Ordering::Less => {
return if self.unix_seconds < 0 {
Some(Ordering::Greater)
} else {
Some(Ordering::Less)
}
}
Ordering::Greater => {
return if self.unix_seconds < 0 {
Some(Ordering::Less)
} else {
Some(Ordering::Greater)
}
}
Ordering::Equal => (),
}
Some(Ordering::Equal)
}
}
impl Ord for UnixTimestamp {
fn cmp(&self, other: &Self) -> Ordering {
PartialOrd::partial_cmp(self, other).unwrap()
}
}
fn get_new_stamp_after_addition(
current_stamp: &UnixTimestamp,
duration: Duration,
) -> UnixTimestamp {
let mut new_subsec_millis =
current_stamp.subsecond_millis().unwrap_or(0) + duration.subsec_millis() as u16;
let mut new_unix_seconds = current_stamp.unix_seconds;
let mut increment_seconds = |value: u32| {
if new_unix_seconds < 0 {
new_unix_seconds = new_unix_seconds
.checked_sub(value.into())
.expect("new unix seconds would exceed i64::MIN");
} else {
new_unix_seconds = new_unix_seconds
.checked_add(value.into())
.expect("new unix seconds would exceed i64::MAX");
}
};
if new_subsec_millis >= 1000 {
new_subsec_millis -= 1000;
increment_seconds(1);
}
increment_seconds(
duration
.as_secs()
.try_into()
.expect("duration seconds exceeds u32::MAX"),
);
UnixTimestamp::const_new(new_unix_seconds, new_subsec_millis)
}
/// Please note that this operation will panic on the following conditions:
///
/// - Unix seconds after subtraction for stamps before the unix epoch exceeds [i64::MIN].
/// - Unix seconds after addition exceeds [i64::MAX].
/// - Seconds from duration to add exceeds [u32::MAX].
impl AddAssign<Duration> for UnixTimestamp {
fn add_assign(&mut self, duration: Duration) {
*self = get_new_stamp_after_addition(self, duration);
}
}
/// Please note that this operation will panic for the following conditions:
///
/// - Unix seconds after subtraction for stamps before the unix epoch exceeds [i64::MIN].
/// - Unix seconds after addition exceeds [i64::MAX].
/// - Unix seconds exceeds [u32::MAX].
impl Add<Duration> for UnixTimestamp {
type Output = Self;
fn add(self, duration: Duration) -> Self::Output {
get_new_stamp_after_addition(&self, duration)
}
}
impl Add<Duration> for &UnixTimestamp {
type Output = UnixTimestamp;
fn add(self, duration: Duration) -> Self::Output {
get_new_stamp_after_addition(self, duration)
}
}
#[cfg(all(test, feature = "std"))]
mod tests {
use super::*;
@ -438,116 +234,10 @@ mod tests {
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap();
let unix_epoch = now.as_secs();
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs() as i64) as u64;
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs());
assert!(ccsds_epoch > unix_epoch);
assert_eq!((ccsds_epoch - unix_epoch) % SECONDS_PER_DAY as u64, 0);
let days_diff = (ccsds_epoch - unix_epoch) / SECONDS_PER_DAY as u64;
assert_eq!(days_diff, -DAYS_CCSDS_TO_UNIX as u64);
}
#[test]
fn basic_unix_stamp_test() {
let stamp = UnixTimestamp::new_only_seconds(-200);
assert_eq!(stamp.unix_seconds, -200);
assert!(stamp.subsecond_millis().is_none());
let stamp = UnixTimestamp::new_only_seconds(250);
assert_eq!(stamp.unix_seconds, 250);
assert!(stamp.subsecond_millis().is_none());
}
#[test]
fn basic_float_unix_stamp_test() {
let stamp = UnixTimestamp::new(500, 600).unwrap();
assert!(stamp.subsecond_millis.is_some());
assert_eq!(stamp.unix_seconds, 500);
let subsec_millis = stamp.subsecond_millis().unwrap();
assert_eq!(subsec_millis, 600);
assert!((500.6 - stamp.unix_seconds_f64()).abs() < 0.0001);
}
#[test]
fn test_ord_larger() {
let stamp0 = UnixTimestamp::new_only_seconds(5);
let stamp1 = UnixTimestamp::new(5, 500).unwrap();
let stamp2 = UnixTimestamp::new_only_seconds(6);
assert!(stamp1 > stamp0);
assert!(stamp2 > stamp0);
assert!(stamp2 > stamp1);
}
#[test]
fn test_ord_smaller() {
let stamp0 = UnixTimestamp::new_only_seconds(5);
let stamp1 = UnixTimestamp::new(5, 500).unwrap();
let stamp2 = UnixTimestamp::new_only_seconds(6);
assert!(stamp0 < stamp1);
assert!(stamp0 < stamp2);
assert!(stamp1 < stamp2);
}
#[test]
fn test_ord_larger_neg_numbers() {
let stamp0 = UnixTimestamp::new_only_seconds(-5);
let stamp1 = UnixTimestamp::new(-5, 500).unwrap();
let stamp2 = UnixTimestamp::new_only_seconds(-6);
assert!(stamp0 > stamp1);
assert!(stamp0 > stamp2);
assert!(stamp1 > stamp2);
assert!(stamp1 >= stamp2);
assert!(stamp0 >= stamp1);
}
#[test]
fn test_ord_smaller_neg_numbers() {
let stamp0 = UnixTimestamp::new_only_seconds(-5);
let stamp1 = UnixTimestamp::new(-5, 500).unwrap();
let stamp2 = UnixTimestamp::new_only_seconds(-6);
assert!(stamp2 < stamp1);
assert!(stamp2 < stamp0);
assert!(stamp1 < stamp0);
assert!(stamp1 <= stamp0);
assert!(stamp2 <= stamp1);
}
#[test]
fn test_eq() {
let stamp0 = UnixTimestamp::new(5, 0).unwrap();
let stamp1 = UnixTimestamp::new_only_seconds(5);
assert_eq!(stamp0, stamp1);
assert!(stamp0 <= stamp1);
assert!(stamp0 >= stamp1);
assert!(!(stamp0 < stamp1));
assert!(!(stamp0 > stamp1));
}
#[test]
fn test_addition() {
let mut stamp0 = UnixTimestamp::new_only_seconds(1);
stamp0 += Duration::from_secs(5);
assert_eq!(stamp0.unix_seconds, 6);
assert!(stamp0.subsecond_millis().is_none());
let stamp1 = stamp0 + Duration::from_millis(500);
assert_eq!(stamp1.unix_seconds, 6);
assert!(stamp1.subsecond_millis().is_some());
assert_eq!(stamp1.subsecond_millis().unwrap(), 500);
}
#[test]
fn test_addition_on_ref() {
let stamp0 = &UnixTimestamp::new(20, 500).unwrap();
let stamp1 = stamp0 + Duration::from_millis(2500);
assert_eq!(stamp1.unix_seconds, 23);
assert!(stamp1.subsecond_millis().is_none());
}
#[test]
fn test_addition_spillover() {
let mut stamp0 = UnixTimestamp::new(1, 900).unwrap();
stamp0 += Duration::from_millis(100);
assert_eq!(stamp0.unix_seconds, 2);
assert!(stamp0.subsecond_millis().is_none());
stamp0 += Duration::from_millis(1100);
assert_eq!(stamp0.unix_seconds, 3);
assert_eq!(stamp0.subsecond_millis().unwrap(), 100);
}
}

183
src/tm.rs
View File

@ -48,7 +48,7 @@ pub mod zc {
pub struct PusTmSecHeader<'slice> {
pub(crate) zc_header: PusTmSecHeaderWithoutTimestamp,
pub(crate) timestamp: Option<&'slice [u8]>,
pub(crate) timestamp: &'slice [u8],
}
impl TryFrom<crate::tm::PusTmSecondaryHeader<'_>> for PusTmSecHeaderWithoutTimestamp {
@ -108,24 +108,27 @@ pub mod zc {
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTmSecondaryHeader<'stamp> {
pub struct PusTmSecondaryHeader<'slice> {
pus_version: PusVersion,
pub sc_time_ref_status: u8,
pub service: u8,
pub subservice: u8,
pub msg_counter: u16,
pub dest_id: u16,
pub timestamp: Option<&'stamp [u8]>,
pub time_stamp: &'slice [u8],
}
impl<'stamp> PusTmSecondaryHeader<'stamp> {
pub fn new_simple(service: u8, subservice: u8, timestamp: &'stamp [u8]) -> Self {
Self::new(service, subservice, 0, 0, Some(timestamp))
}
/// Like [Self::new_simple] but without a timestamp.
pub fn new_simple_no_timestamp(service: u8, subservice: u8) -> Self {
Self::new(service, subservice, 0, 0, None)
impl<'slice> PusTmSecondaryHeader<'slice> {
pub fn new_simple(service: u8, subservice: u8, time_stamp: &'slice [u8]) -> Self {
PusTmSecondaryHeader {
pus_version: PusVersion::PusC,
sc_time_ref_status: 0,
service,
subservice,
msg_counter: 0,
dest_id: 0,
time_stamp,
}
}
pub fn new(
@ -133,7 +136,7 @@ impl<'stamp> PusTmSecondaryHeader<'stamp> {
subservice: u8,
msg_counter: u16,
dest_id: u16,
timestamp: Option<&'stamp [u8]>,
time_stamp: &'slice [u8],
) -> Self {
PusTmSecondaryHeader {
pus_version: PusVersion::PusC,
@ -142,7 +145,7 @@ impl<'stamp> PusTmSecondaryHeader<'stamp> {
subservice,
msg_counter,
dest_id,
timestamp,
time_stamp,
}
}
}
@ -184,40 +187,35 @@ impl<'slice> TryFrom<zc::PusTmSecHeader<'slice>> for PusTmSecondaryHeader<'slice
subservice: sec_header.zc_header.subservice(),
msg_counter: sec_header.zc_header.msg_counter(),
dest_id: sec_header.zc_header.dest_id(),
timestamp: sec_header.timestamp,
time_stamp: sec_header.timestamp,
})
}
}
/// This class models the PUS C telemetry packet. It is the primary data structure to generate the
/// raw byte representation of PUS telemetry or to deserialize from one from raw bytes.
/// This class models a PUS telemetry and which can also be used. It is the primary data
/// structure to generate the raw byte representation of PUS telemetry or to
/// deserialize from one from raw bytes.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde]
/// feature is used which allows to send around TM packets in a raw byte format using a serde
/// provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
///
/// # Lifetimes
///
/// * `'raw_data` - If the TM is not constructed from a raw slice, this will be the life time of
/// a buffer where the user provided time stamp and source data will be serialized into. If it
/// is, this is the lifetime of the raw byte slice it is constructed from.
#[derive(Eq, Debug, Copy, Clone)]
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTm<'raw_data> {
pub struct PusTm<'slice> {
pub sp_header: SpHeader,
pub sec_header: PusTmSecondaryHeader<'raw_data>,
pub sec_header: PusTmSecondaryHeader<'slice>,
/// If this is set to false, a manual call to [PusTm::calc_own_crc16] or
/// [PusTm::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid.
pub calc_crc_on_serialization: bool,
#[cfg_attr(feature = "serde", serde(skip))]
raw_data: Option<&'raw_data [u8]>,
source_data: Option<&'raw_data [u8]>,
raw_data: Option<&'slice [u8]>,
source_data: Option<&'slice [u8]>,
crc16: Option<u16>,
}
impl<'raw_data> PusTm<'raw_data> {
impl<'slice> PusTm<'slice> {
/// Generates a new struct instance.
///
/// # Arguments
@ -232,8 +230,8 @@ impl<'raw_data> PusTm<'raw_data> {
/// the correct value to this field manually
pub fn new(
sp_header: &mut SpHeader,
sec_header: PusTmSecondaryHeader<'raw_data>,
source_data: Option<&'raw_data [u8]>,
sec_header: PusTmSecondaryHeader<'slice>,
source_data: Option<&'slice [u8]>,
set_ccsds_len: bool,
) -> Self {
sp_header.set_packet_type(PacketType::Tm);
@ -254,20 +252,18 @@ impl<'raw_data> PusTm<'raw_data> {
pub fn len_packed(&self) -> usize {
let mut length = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA;
if let Some(timestamp) = self.sec_header.timestamp {
length += timestamp.len();
}
length += self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
length += src_data.len();
}
length
}
pub fn timestamp(&self) -> Option<&'raw_data [u8]> {
self.sec_header.timestamp
pub fn time_stamp(&self) -> &'slice [u8] {
self.sec_header.time_stamp
}
pub fn source_data(&self) -> Option<&'raw_data [u8]> {
pub fn source_data(&self) -> Option<&'slice [u8]> {
self.source_data
}
@ -303,9 +299,7 @@ impl<'raw_data> PusTm<'raw_data> {
digest.update(sph_zc.as_bytes());
let pus_tc_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap();
digest.update(pus_tc_header.as_bytes());
if let Some(stamp) = self.sec_header.timestamp {
digest.update(stamp);
}
digest.update(self.sec_header.time_stamp);
if let Some(src_data) = self.source_data {
digest.update(src_data);
}
@ -338,11 +332,9 @@ impl<'raw_data> PusTm<'raw_data> {
.write_to_bytes(&mut slice[curr_idx..curr_idx + sec_header_len])
.ok_or(ByteConversionError::ZeroCopyToError)?;
curr_idx += sec_header_len;
if let Some(timestamp) = self.sec_header.timestamp {
let timestamp_len = timestamp.len();
slice[curr_idx..curr_idx + timestamp_len].copy_from_slice(timestamp);
curr_idx += timestamp_len;
}
let timestamp_len = self.sec_header.time_stamp.len();
slice[curr_idx..curr_idx + timestamp_len].copy_from_slice(self.sec_header.time_stamp);
curr_idx += timestamp_len;
if let Some(src_data) = self.source_data {
slice[curr_idx..curr_idx + src_data.len()].copy_from_slice(src_data);
curr_idx += src_data.len();
@ -364,10 +356,8 @@ impl<'raw_data> PusTm<'raw_data> {
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn append_to_vec(&self, vec: &mut Vec<u8>) -> Result<usize, PusError> {
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
let mut appended_len = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA;
if let Some(timestamp) = self.sec_header.timestamp {
appended_len += timestamp.len();
}
let mut appended_len =
PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
appended_len += src_data.len();
};
@ -379,10 +369,8 @@ impl<'raw_data> PusTm<'raw_data> {
let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap();
vec.extend_from_slice(sec_header.as_bytes());
ser_len += sec_header.as_bytes().len();
if let Some(timestamp) = self.sec_header.timestamp {
ser_len += timestamp.len();
vec.extend_from_slice(timestamp);
}
vec.extend_from_slice(self.sec_header.time_stamp);
ser_len += self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
vec.extend_from_slice(src_data);
ser_len += src_data.len();
@ -402,7 +390,7 @@ impl<'raw_data> PusTm<'raw_data> {
/// the instance and the found byte length of the packet. The timestamp length needs to be
/// known beforehand.
pub fn from_bytes(
slice: &'raw_data [u8],
slice: &'slice [u8],
timestamp_len: usize,
) -> Result<(Self, usize), PusError> {
let raw_data_len = slice.len();
@ -421,13 +409,9 @@ impl<'raw_data> PusTm<'raw_data> {
)
.ok_or(ByteConversionError::ZeroCopyFromError)?;
current_idx += PUC_TM_MIN_SEC_HEADER_LEN;
let mut timestamp = None;
if timestamp_len > 0 {
timestamp = Some(&slice[current_idx..current_idx + timestamp_len]);
}
let zc_sec_header_wrapper = zc::PusTmSecHeader {
zc_header: sec_header_zc,
timestamp,
timestamp: &slice[current_idx..current_idx + timestamp_len],
};
current_idx += timestamp_len;
let raw_data = &slice[0..total_len];
@ -442,20 +426,6 @@ impl<'raw_data> PusTm<'raw_data> {
verify_crc16_from_raw(raw_data, pus_tm.crc16.expect("CRC16 invalid"))?;
Ok((pus_tm, total_len))
}
/// If [Self] was constructed [Self::from_bytes], this function will return the slice it was
/// constructed from. Otherwise, [None] will be returned.
pub fn raw_bytes(&self) -> Option<&'raw_data [u8]> {
self.raw_data
}
}
impl PartialEq for PusTm<'_> {
fn eq(&self, other: &Self) -> bool {
self.sp_header == other.sp_header
&& self.sec_header == other.sec_header
&& self.source_data == other.source_data
}
}
//noinspection RsTraitImplementation
@ -498,33 +468,33 @@ mod tests {
use crate::ecss::PusVersion::PusC;
use crate::SpHeader;
fn base_ping_reply_full_ctor(timestamp: &[u8]) -> PusTm {
fn base_ping_reply_full_ctor(time_stamp: &[u8]) -> PusTm {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tm_header = PusTmSecondaryHeader::new_simple(17, 2, &timestamp);
PusTm::new(&mut sph, tm_header, None, true)
let tc_header = PusTmSecondaryHeader::new_simple(17, 2, &time_stamp);
PusTm::new(&mut sph, tc_header, None, true)
}
fn base_hk_reply<'a>(timestamp: &'a [u8], src_data: &'a [u8]) -> PusTm<'a> {
fn base_hk_reply<'a>(time_stamp: &'a [u8], src_data: &'a [u8]) -> PusTm<'a> {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(3, 5, &timestamp);
let tc_header = PusTmSecondaryHeader::new_simple(3, 5, &time_stamp);
PusTm::new(&mut sph, tc_header, Some(src_data), true)
}
fn dummy_timestamp() -> &'static [u8] {
fn dummy_time_stamp() -> &'static [u8] {
return &[0, 1, 2, 3, 4, 5, 6];
}
#[test]
fn test_basic() {
let timestamp = dummy_timestamp();
let pus_tm = base_ping_reply_full_ctor(&timestamp);
verify_ping_reply(&pus_tm, false, 22, dummy_timestamp());
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
verify_ping_reply(&pus_tm, false, 22, dummy_time_stamp());
}
#[test]
fn test_serialization_no_source_data() {
let timestamp = dummy_timestamp();
let pus_tm = base_ping_reply_full_ctor(&timestamp);
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
@ -536,7 +506,7 @@ mod tests {
#[test]
fn test_serialization_with_source_data() {
let src_data = [1, 2, 3];
let hk_reply = base_hk_reply(dummy_timestamp(), &src_data);
let hk_reply = base_hk_reply(dummy_time_stamp(), &src_data);
let mut buf: [u8; 32] = [0; 32];
let ser_len = hk_reply
.write_to_bytes(&mut buf)
@ -549,8 +519,8 @@ mod tests {
#[test]
fn test_setters() {
let timestamp = dummy_timestamp();
let mut pus_tm = base_ping_reply_full_ctor(&timestamp);
let time_stamp = dummy_time_stamp();
let mut pus_tm = base_ping_reply_full_ctor(&time_stamp);
pus_tm.set_sc_time_ref_status(0b1010);
pus_tm.set_dest_id(0x7fff);
pus_tm.set_msg_counter(0x1f1f);
@ -563,8 +533,8 @@ mod tests {
#[test]
fn test_deserialization_no_source_data() {
let timestamp = dummy_timestamp();
let pus_tm = base_ping_reply_full_ctor(&timestamp);
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
@ -572,13 +542,13 @@ mod tests {
assert_eq!(ser_len, 22);
let (tm_deserialized, size) = PusTm::from_bytes(&buf, 7).expect("Deserialization failed");
assert_eq!(ser_len, size);
verify_ping_reply(&tm_deserialized, false, 22, dummy_timestamp());
verify_ping_reply(&tm_deserialized, false, 22, dummy_time_stamp());
}
#[test]
fn test_manual_field_update() {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(17, 2, dummy_timestamp());
let tc_header = PusTmSecondaryHeader::new_simple(17, 2, dummy_time_stamp());
let mut tm = PusTm::new(&mut sph, tc_header, None, false);
tm.calc_crc_on_serialization = false;
assert_eq!(tm.data_len(), 0x00);
@ -598,8 +568,8 @@ mod tests {
#[test]
fn test_target_buf_too_small() {
let timestamp = dummy_timestamp();
let pus_tm = base_ping_reply_full_ctor(&timestamp);
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 16] = [0; 16];
let res = pus_tm.write_to_bytes(&mut buf);
assert!(res.is_err());
@ -622,8 +592,8 @@ mod tests {
#[test]
#[cfg(feature = "alloc")]
fn test_append_to_vec() {
let timestamp = dummy_timestamp();
let pus_tm = base_ping_reply_full_ctor(&timestamp);
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut vec = Vec::new();
let res = pus_tm.append_to_vec(&mut vec);
assert!(res.is_ok());
@ -635,7 +605,7 @@ mod tests {
#[cfg(feature = "alloc")]
fn test_append_to_vec_with_src_data() {
let src_data = [1, 2, 3];
let hk_reply = base_hk_reply(dummy_timestamp(), &src_data);
let hk_reply = base_hk_reply(dummy_time_stamp(), &src_data);
let mut vec = Vec::new();
vec.push(4);
let res = hk_reply.append_to_vec(&mut vec);
@ -664,7 +634,7 @@ mod tests {
assert_eq!(buf[11], 0x00);
assert_eq!(buf[12], 0x00);
// Timestamp
assert_eq!(&buf[13..20], dummy_timestamp());
assert_eq!(&buf[13..20], dummy_time_stamp());
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(&buf[0..20]);
let crc16 = digest.finalize();
@ -676,14 +646,14 @@ mod tests {
tm: &PusTm,
has_user_data: bool,
exp_full_len: usize,
exp_timestamp: &[u8],
exp_time_stamp: &[u8],
) {
assert!(tm.is_tm());
assert_eq!(PusPacket::service(tm), 17);
assert_eq!(PusPacket::subservice(tm), 2);
assert!(tm.sec_header_flag());
assert_eq!(tm.len_packed(), exp_full_len);
assert_eq!(tm.timestamp().unwrap(), exp_timestamp);
assert_eq!(tm.time_stamp(), exp_time_stamp);
if has_user_data {
assert!(!tm.user_data().is_none());
}
@ -695,21 +665,4 @@ mod tests {
assert_eq!(tm.msg_counter(), 0x0000);
assert_eq!(tm.sc_time_ref_status(), 0b0000);
}
#[test]
fn partial_eq_pus_tm() {
let timestamp = dummy_timestamp();
let pus_tm_1 = base_ping_reply_full_ctor(timestamp);
let pus_tm_2 = base_ping_reply_full_ctor(timestamp);
assert_eq!(pus_tm_1, pus_tm_2);
}
#[test]
fn partial_eq_serialized_vs_derialized() {
let timestamp = dummy_timestamp();
let pus_tm = base_ping_reply_full_ctor(timestamp);
let mut buf = [0; 32];
pus_tm.write_to_bytes(&mut buf).unwrap();
assert_eq!(pus_tm, PusTm::from_bytes(&buf, timestamp.len()).unwrap().0);
}
}