Add CUC impl #4

Merged
muellerr merged 28 commits from add_cuc_time_impl into main 2023-01-09 11:14:42 +01:00
7 changed files with 2287 additions and 1296 deletions

View File

@ -33,6 +33,8 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/5
- Added `std::error::Error` implementation for all error enumerations if the `std` feature
is enabled.
- CUC timestamp implementation as specified in CCSDS 301.0-B-4 section 3.2.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/4/files
- ACII timestamps as specified in CCSDS 301.0-B-4 section 3.5.
- Added MSRV in `Cargo.toml` with the `rust-version` field set to Rust 1.60.
- `serde` `Serialize` and `Deserialize` added to all types.

View File

@ -264,6 +264,14 @@ pub trait ToBeBytes {
fn to_be_bytes(&self) -> Self::ByteArray;
}
impl ToBeBytes for () {
type ByteArray = [u8; 0];
fn to_be_bytes(&self) -> Self::ByteArray {
[]
}
}
impl ToBeBytes for u8 {
type ByteArray = [u8; 1];

File diff suppressed because it is too large Load Diff

128
src/time/ascii.rs Normal file
View File

@ -0,0 +1,128 @@
//! Module to generate the ASCII timecodes specified in
//! [CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf) section 3.5 .
//! See [chrono::DateTime::format] for a usage example of the generated
//! [chrono::format::DelayedFormat] structs.
#[cfg(feature = "alloc")]
use chrono::format::{DelayedFormat, StrftimeItems};
use chrono::{DateTime, Utc};
/// Tuple of format string and formatted size for time code A.
///
/// Format: YYYY-MM-DDThh:mm:ss.ddd
///
/// Three digits are used for the decimal fraction
pub const FMT_STR_CODE_A_WITH_SIZE: (&str, usize) = ("%FT%T%.3f", 23);
/// Tuple of format string and formatted size for time code A.
///
/// Format: YYYY-MM-DDThh:mm:ss.dddZ
///
/// Three digits are used for the decimal fraction and a terminator is added at the end.
pub const FMT_STR_CODE_A_TERMINATED_WITH_SIZE: (&str, usize) = ("%FT%T%.3fZ", 24);
/// Tuple of format string and formatted size for time code A.
///
/// Format: YYYY-DDDThh:mm:ss.ddd
///
/// Three digits are used for the decimal fraction
pub const FMT_STR_CODE_B_WITH_SIZE: (&str, usize) = ("%Y-%jT%T%.3f", 21);
/// Tuple of format string and formatted size for time code A.
///
/// Format: YYYY-DDDThh:mm:ss.dddZ
///
/// Three digits are used for the decimal fraction and a terminator is added at the end.
pub const FMT_STR_CODE_B_TERMINATED_WITH_SIZE: (&str, usize) = ("%Y-%jT%T%.3fZ", 22);
/// Generates a time code formatter using the [FMT_STR_CODE_A_WITH_SIZE] format.
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn generate_time_code_a(date: &DateTime<Utc>) -> DelayedFormat<StrftimeItems<'static>> {
date.format(FMT_STR_CODE_A_WITH_SIZE.0)
}
/// Generates a time code formatter using the [FMT_STR_CODE_A_TERMINATED_WITH_SIZE] format.
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn generate_time_code_a_terminated(
date: &DateTime<Utc>,
) -> DelayedFormat<StrftimeItems<'static>> {
date.format(FMT_STR_CODE_A_TERMINATED_WITH_SIZE.0)
}
/// Generates a time code formatter using the [FMT_STR_CODE_B_WITH_SIZE] format.
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn generate_time_code_b(date: &DateTime<Utc>) -> DelayedFormat<StrftimeItems<'static>> {
date.format(FMT_STR_CODE_B_WITH_SIZE.0)
}
/// Generates a time code formatter using the [FMT_STR_CODE_B_TERMINATED_WITH_SIZE] format.
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn generate_time_code_b_terminated(
date: &DateTime<Utc>,
) -> DelayedFormat<StrftimeItems<'static>> {
date.format(FMT_STR_CODE_B_TERMINATED_WITH_SIZE.0)
}
#[cfg(test)]
mod tests {
use super::*;
use chrono::Utc;
use std::format;
#[test]
fn test_ascii_timestamp_a_unterminated() {
let date = Utc::now();
let stamp_formatter = generate_time_code_a(&date);
let stamp = format!("{}", stamp_formatter);
let t_sep = stamp.find("T");
assert!(t_sep.is_some());
assert_eq!(t_sep.unwrap(), 10);
assert_eq!(stamp.len(), FMT_STR_CODE_A_WITH_SIZE.1);
}
#[test]
fn test_ascii_timestamp_a_terminated() {
let date = Utc::now();
let stamp_formatter = generate_time_code_a_terminated(&date);
let stamp = format!("{}", stamp_formatter);
let t_sep = stamp.find("T");
assert!(t_sep.is_some());
assert_eq!(t_sep.unwrap(), 10);
let z_terminator = stamp.find("Z");
assert!(z_terminator.is_some());
assert_eq!(
z_terminator.unwrap(),
FMT_STR_CODE_A_TERMINATED_WITH_SIZE.1 - 1
);
assert_eq!(stamp.len(), FMT_STR_CODE_A_TERMINATED_WITH_SIZE.1);
}
#[test]
fn test_ascii_timestamp_b_unterminated() {
let date = Utc::now();
let stamp_formatter = generate_time_code_b(&date);
let stamp = format!("{}", stamp_formatter);
let t_sep = stamp.find("T");
assert!(t_sep.is_some());
assert_eq!(t_sep.unwrap(), 8);
assert_eq!(stamp.len(), FMT_STR_CODE_B_WITH_SIZE.1);
}
#[test]
fn test_ascii_timestamp_b_terminated() {
let date = Utc::now();
let stamp_formatter = generate_time_code_b_terminated(&date);
let stamp = format!("{}", stamp_formatter);
let t_sep = stamp.find("T");
assert!(t_sep.is_some());
assert_eq!(t_sep.unwrap(), 8);
let z_terminator = stamp.find("Z");
assert!(z_terminator.is_some());
assert_eq!(
z_terminator.unwrap(),
FMT_STR_CODE_B_TERMINATED_WITH_SIZE.1 - 1
);
assert_eq!(stamp.len(), FMT_STR_CODE_B_TERMINATED_WITH_SIZE.1);
}
}

956
src/time/cds.rs Normal file
View File

@ -0,0 +1,956 @@
//! Module to generate or read CCSDS Day Segmented (CDS) timestamps as specified in
//! [CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf) section 3.3 .
//!
//! The core data structure to do this is the [cds::TimeProvider] struct.
use super::*;
use crate::private::Sealed;
use core::fmt::Debug;
/// Base value for the preamble field for a time field parser to determine the time field type.
pub const P_FIELD_BASE: u8 = (CcsdsTimeCodes::Cds as u8) << 4;
pub const MIN_CDS_FIELD_LEN: usize = 7;
/// Generic trait implemented by token structs to specify the length of day field at type
/// level. This trait is only meant to be implemented in this crate and therefore sealed.
pub trait ProvidesDaysLength: Sealed {
type FieldType: Copy + Clone + TryFrom<i32>;
}
/// Type level token to be used as a generic parameter to [TimeProvider].
#[derive(Debug, PartialEq, Eq, Default)]
pub struct DaysLen16Bits {}
impl Sealed for DaysLen16Bits {}
impl ProvidesDaysLength for DaysLen16Bits {
type FieldType = u16;
}
/// Type level token to be used as a generic parameter to [TimeProvider].
#[derive(Debug, PartialEq, Eq, Default)]
pub struct DaysLen24Bits {}
impl Sealed for DaysLen24Bits {}
impl ProvidesDaysLength for DaysLen24Bits {
type FieldType = u32;
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum LengthOfDaySegment {
Short16Bits = 0,
Long24Bits = 1,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum SubmillisPrecision {
Absent,
Microseconds(u16),
Picoseconds(u32),
Reserved,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum CdsError {
/// CCSDS days value exceeds maximum allowed size or is negative
InvalidCcsdsDays(i64),
/// There are distinct constructors depending on the days field width detected in the preamble
/// field. This error will be returned if there is a missmatch.
InvalidCtorForDaysOfLenInPreamble(LengthOfDaySegment),
}
impl Display for CdsError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
CdsError::InvalidCcsdsDays(days) => {
write!(f, "invalid ccsds days {}", days)
}
CdsError::InvalidCtorForDaysOfLenInPreamble(length_of_day) => {
write!(
f,
"wrong constructor for length of day {:?} detected in preamble",
length_of_day
)
}
}
}
}
#[cfg(feature = "std")]
impl Error for CdsError {}
pub fn length_of_day_segment_from_pfield(pfield: u8) -> LengthOfDaySegment {
if (pfield >> 2) & 0b1 == 1 {
return LengthOfDaySegment::Long24Bits;
}
LengthOfDaySegment::Short16Bits
}
pub fn precision_from_pfield(pfield: u8) -> SubmillisPrecision {
match pfield & 0b11 {
0b01 => SubmillisPrecision::Microseconds(0),
0b10 => SubmillisPrecision::Picoseconds(0),
0b00 => SubmillisPrecision::Absent,
0b11 => SubmillisPrecision::Reserved,
_ => panic!("pfield to SubmillisPrecision failed"),
}
}
/// This object is the abstraction for the CCSDS Day Segmented Time Code (CDS).
///
/// It has the capability to generate and read timestamps as specified in the CCSDS 301.0-B-4
/// section 3.3 . The width of the days field is configured at compile time via the generic
/// [ProvidesDaysLength] trait which is implemented by [DaysLen16Bits] and [DaysLen24Bits].
///
/// Custom epochs are not supported yet.
/// Furthermore, the preamble field (p-field) is explicitly conveyed.
/// That means it will always be present when writing the time stamp to a raw buffer, and it
/// must be present when reading a CDS timestamp from a raw buffer.
///
/// # Example
///
/// ```
/// use spacepackets::time::cds::{TimeProvider, DaysLen16Bits};
/// use spacepackets::time::{TimeWriter, CcsdsTimeCodes, TimeReader, CcsdsTimeProvider};
///
/// let timestamp_now = TimeProvider::from_now_with_u16_days().unwrap();
/// let mut raw_stamp = [0; 7];
/// {
/// let written = timestamp_now.write_to_bytes(&mut raw_stamp).unwrap();
/// assert_eq!((raw_stamp[0] >> 4) & 0b111, CcsdsTimeCodes::Cds as u8);
/// assert_eq!(written, 7);
/// }
/// {
/// let read_result = TimeProvider::<DaysLen16Bits>::from_bytes(&raw_stamp);
/// assert!(read_result.is_ok());
/// let stamp_deserialized = read_result.unwrap();
/// assert_eq!(stamp_deserialized.len_as_bytes(), 7);
/// }
/// ```
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct TimeProvider<DaysLen: ProvidesDaysLength = DaysLen16Bits> {
pfield: u8,
ccsds_days: DaysLen::FieldType,
ms_of_day: u32,
submillis_precision: Option<SubmillisPrecision>,
unix_seconds: i64,
}
#[cfg(feature = "std")]
struct ConversionFromNow {
ccsds_days: i32,
ms_of_day: u64,
unix_days_seconds: u64,
submillis_prec: Option<SubmillisPrecision>,
}
#[cfg(feature = "std")]
impl ConversionFromNow {
fn new() -> Result<Self, SystemTimeError> {
Self::new_generic(None)
}
fn new_with_submillis_us_prec() -> Result<Self, SystemTimeError> {
Self::new_generic(Some(SubmillisPrecision::Microseconds(0)))
}
fn new_with_submillis_ps_prec() -> Result<Self, SystemTimeError> {
Self::new_generic(Some(SubmillisPrecision::Picoseconds(0)))
}
fn new_generic(mut prec: Option<SubmillisPrecision>) -> Result<Self, SystemTimeError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
let epoch = now.as_secs();
let secs_of_day = epoch % SECONDS_PER_DAY as u64;
let unix_days_seconds = epoch - secs_of_day;
if let Some(submilli_prec) = prec {
match submilli_prec {
SubmillisPrecision::Microseconds(_) => {
prec = Some(SubmillisPrecision::Microseconds(
(now.subsec_micros() % 1000) as u16,
));
}
SubmillisPrecision::Picoseconds(_) => {
prec = Some(SubmillisPrecision::Microseconds(
(now.subsec_nanos() * 1000) as u16,
));
}
_ => (),
}
}
Ok(Self {
ms_of_day: secs_of_day * 1000 + now.subsec_millis() as u64,
ccsds_days: unix_to_ccsds_days((unix_days_seconds / SECONDS_PER_DAY as u64) as i64)
as i32,
unix_days_seconds,
submillis_prec: prec,
})
}
}
impl<ProvidesDaysLen: ProvidesDaysLength> TimeProvider<ProvidesDaysLen> {
pub fn set_submillis_precision(&mut self, prec: SubmillisPrecision) {
self.pfield &= !(0b11);
if let SubmillisPrecision::Absent = prec {
self.submillis_precision = None;
return;
}
self.submillis_precision = Some(prec);
match prec {
SubmillisPrecision::Microseconds(_) => {
self.pfield |= 0b01;
}
SubmillisPrecision::Picoseconds(_) => {
self.pfield |= 0b10;
}
_ => (),
}
}
pub fn clear_submillis_precision(&mut self) {
self.pfield &= !(0b11);
self.submillis_precision = None;
}
pub fn ccsds_days(&self) -> ProvidesDaysLen::FieldType {
self.ccsds_days
}
pub fn submillis_precision(&self) -> Option<SubmillisPrecision> {
self.submillis_precision
}
pub fn ms_of_day(&self) -> u32 {
self.ms_of_day
}
fn generic_raw_read_checks(
buf: &[u8],
days_len: LengthOfDaySegment,
) -> Result<SubmillisPrecision, TimestampError> {
if buf.len() < MIN_CDS_FIELD_LEN {
return Err(TimestampError::ByteConversionError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
expected: MIN_CDS_FIELD_LEN,
found: buf.len(),
}),
));
}
let pfield = buf[0];
match CcsdsTimeCodes::try_from(pfield >> 4 & 0b111) {
Ok(cds_type) => match cds_type {
CcsdsTimeCodes::Cds => (),
_ => {
return Err(TimestampError::InvalidTimeCode(
CcsdsTimeCodes::Cds,
cds_type as u8,
))
}
},
_ => {
return Err(TimestampError::InvalidTimeCode(
CcsdsTimeCodes::Cds,
pfield >> 4 & 0b111,
))
}
};
if ((pfield >> 3) & 0b1) == 1 {
return Err(TimestampError::CustomEpochNotSupported);
}
let days_len_from_pfield = length_of_day_segment_from_pfield(pfield);
if days_len_from_pfield != days_len {
return Err(CdsError::InvalidCtorForDaysOfLenInPreamble(days_len_from_pfield).into());
}
let stamp_len = Self::calc_stamp_len(pfield);
if buf.len() < stamp_len {
return Err(TimestampError::ByteConversionError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
expected: stamp_len,
found: buf.len(),
}),
));
}
Ok(precision_from_pfield(pfield))
}
fn calc_stamp_len(pfield: u8) -> usize {
let mut init_len = 7;
if length_of_day_segment_from_pfield(pfield) == LengthOfDaySegment::Long24Bits {
init_len += 1
}
match pfield & 0b11 {
0b01 => {
init_len += 2;
}
0b10 => {
init_len += 4;
}
_ => (),
}
init_len
}
fn setup(&mut self, unix_days_seconds: i64, ms_of_day: u64) {
self.calc_unix_seconds(unix_days_seconds, ms_of_day);
}
fn calc_unix_seconds(&mut self, unix_days_seconds: i64, ms_of_day: u64) {
self.unix_seconds = unix_days_seconds;
let seconds_of_day = (ms_of_day / 1000) as i64;
if self.unix_seconds < 0 {
self.unix_seconds -= seconds_of_day;
} else {
self.unix_seconds += seconds_of_day;
}
}
fn calc_date_time(&self, ms_since_last_second: u32) -> Option<DateTime<Utc>> {
assert!(ms_since_last_second < 1000, "Invalid MS since last second");
let ns_since_last_sec = ms_since_last_second * 1e6 as u32;
if let LocalResult::Single(val) = Utc.timestamp_opt(self.unix_seconds, ns_since_last_sec) {
return Some(val);
}
None
}
fn length_check(&self, buf: &[u8], len_as_bytes: usize) -> Result<(), TimestampError> {
if buf.len() < len_as_bytes {
return Err(TimestampError::ByteConversionError(
ByteConversionError::ToSliceTooSmall(SizeMissmatch {
expected: len_as_bytes,
found: buf.len(),
}),
));
}
Ok(())
}
fn generic_new(
days_len: LengthOfDaySegment,
ccsds_days: ProvidesDaysLen::FieldType,
ms_of_day: u32,
) -> Result<Self, CdsError>
where
i64: From<ProvidesDaysLen::FieldType>,
{
let mut provider = Self {
pfield: Self::generate_p_field(days_len, None),
ccsds_days,
ms_of_day,
unix_seconds: 0,
submillis_precision: None,
};
let unix_days_seconds = ccsds_to_unix_days(ccsds_days.into()) * SECONDS_PER_DAY as i64;
provider.setup(unix_days_seconds, ms_of_day.into());
Ok(provider)
}
#[cfg(feature = "std")]
fn generic_from_now(
days_len: LengthOfDaySegment,
conversion_from_now: ConversionFromNow,
) -> Result<Self, StdTimestampError>
where
<ProvidesDaysLen::FieldType as TryFrom<i32>>::Error: Debug,
{
let ccsds_days: ProvidesDaysLen::FieldType =
conversion_from_now.ccsds_days.try_into().map_err(|_| {
StdTimestampError::TimestampError(
CdsError::InvalidCcsdsDays(conversion_from_now.ccsds_days.into()).into(),
)
})?;
let mut provider = Self {
pfield: Self::generate_p_field(days_len, conversion_from_now.submillis_prec),
ccsds_days,
ms_of_day: conversion_from_now.ms_of_day as u32,
unix_seconds: 0,
submillis_precision: conversion_from_now.submillis_prec,
};
provider.setup(
conversion_from_now.unix_days_seconds as i64,
conversion_from_now.ms_of_day,
);
Ok(provider)
}
#[cfg(feature = "std")]
fn generic_conversion_from_now(&self) -> Result<ConversionFromNow, SystemTimeError> {
Ok(match self.submillis_precision {
None => ConversionFromNow::new()?,
Some(prec) => match prec {
SubmillisPrecision::Microseconds(_) => {
ConversionFromNow::new_with_submillis_us_prec()?
}
SubmillisPrecision::Picoseconds(_) => {
ConversionFromNow::new_with_submillis_ps_prec()?
}
_ => ConversionFromNow::new()?,
},
})
}
fn generate_p_field(
day_seg_len: LengthOfDaySegment,
submillis_prec: Option<SubmillisPrecision>,
) -> u8 {
let mut pfield = P_FIELD_BASE | ((day_seg_len as u8) << 2);
if let Some(submillis_prec) = submillis_prec {
match submillis_prec {
SubmillisPrecision::Microseconds(_) => pfield |= 0b01,
SubmillisPrecision::Picoseconds(_) => pfield |= 0b10,
SubmillisPrecision::Reserved => pfield |= 0b11,
_ => (),
}
}
pfield
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn update_from_now(&mut self) -> Result<(), StdTimestampError>
where
<ProvidesDaysLen::FieldType as TryFrom<i32>>::Error: Debug,
{
let conversion_from_now = self.generic_conversion_from_now()?;
let ccsds_days: ProvidesDaysLen::FieldType =
conversion_from_now.ccsds_days.try_into().map_err(|_| {
StdTimestampError::TimestampError(
CdsError::InvalidCcsdsDays(conversion_from_now.ccsds_days as i64).into(),
)
})?;
self.ccsds_days = ccsds_days;
self.ms_of_day = conversion_from_now.ms_of_day as u32;
self.setup(
conversion_from_now.unix_days_seconds as i64,
conversion_from_now.ms_of_day,
);
Ok(())
}
}
impl TimeProvider<DaysLen24Bits> {
/// Generate a new timestamp provider with the days field width set to 24 bits
pub fn new_with_u24_days(ccsds_days: u32, ms_of_day: u32) -> Result<Self, CdsError> {
if ccsds_days > 2_u32.pow(24) {
return Err(CdsError::InvalidCcsdsDays(ccsds_days.into()));
}
Self::generic_new(LengthOfDaySegment::Long24Bits, ccsds_days, ms_of_day)
}
/// Generate a time stamp from the current time using the system clock.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now_with_u24_days() -> Result<Self, StdTimestampError> {
let conversion_from_now = ConversionFromNow::new()?;
Self::generic_from_now(LengthOfDaySegment::Long24Bits, conversion_from_now)
}
/// Like [Self::from_now_with_u24_days] but with microsecond sub-millisecond precision.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now_with_u24_days_and_us_prec() -> Result<Self, StdTimestampError> {
let conversion_from_now = ConversionFromNow::new_with_submillis_us_prec()?;
Self::generic_from_now(LengthOfDaySegment::Long24Bits, conversion_from_now)
}
/// Like [Self::from_now_with_u24_days] but with picoseconds sub-millisecond precision.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now_with_u24_days_ps_submillis_prec() -> Result<Self, StdTimestampError> {
let conversion_from_now = ConversionFromNow::new_with_submillis_ps_prec()?;
Self::generic_from_now(LengthOfDaySegment::Long24Bits, conversion_from_now)
}
fn from_bytes_24_bit_days(buf: &[u8]) -> Result<Self, TimestampError> {
let submillis_precision =
Self::generic_raw_read_checks(buf, LengthOfDaySegment::Long24Bits)?;
let mut temp_buf: [u8; 4] = [0; 4];
temp_buf[1..4].copy_from_slice(&buf[1..4]);
let cccsds_days: u32 = u32::from_be_bytes(temp_buf);
let ms_of_day: u32 = u32::from_be_bytes(buf[4..8].try_into().unwrap());
let mut provider = Self::new_with_u24_days(cccsds_days, ms_of_day)?;
match submillis_precision {
SubmillisPrecision::Microseconds(_) => {
provider.set_submillis_precision(SubmillisPrecision::Microseconds(
u16::from_be_bytes(buf[8..10].try_into().unwrap()),
))
}
SubmillisPrecision::Picoseconds(_) => provider.set_submillis_precision(
SubmillisPrecision::Picoseconds(u32::from_be_bytes(buf[8..12].try_into().unwrap())),
),
_ => (),
}
Ok(provider)
}
}
impl TimeProvider<DaysLen16Bits> {
/// Generate a new timestamp provider with the days field width set to 16 bits
pub fn new_with_u16_days(ccsds_days: u16, ms_of_day: u32) -> Self {
// This should never fail, type system ensures CCSDS can not be negative or too large
Self::generic_new(LengthOfDaySegment::Short16Bits, ccsds_days, ms_of_day).unwrap()
}
/// Generate a time stamp from the current time using the system clock.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now_with_u16_days() -> Result<Self, StdTimestampError> {
let conversion_from_now = ConversionFromNow::new()?;
Self::generic_from_now(LengthOfDaySegment::Short16Bits, conversion_from_now)
}
/// Like [Self::from_now_with_u16_days] but with microsecond sub-millisecond precision.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now_with_u16_days_and_us_prec() -> Result<Self, StdTimestampError> {
let conversion_from_now = ConversionFromNow::new_with_submillis_us_prec()?;
Self::generic_from_now(LengthOfDaySegment::Short16Bits, conversion_from_now)
}
/// Like [Self::from_now_with_u16_days] but with picosecond sub-millisecond precision.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now_with_u16_days_and_ps_prec() -> Result<Self, StdTimestampError> {
let conversion_from_now = ConversionFromNow::new_with_submillis_ps_prec()?;
Self::generic_from_now(LengthOfDaySegment::Short16Bits, conversion_from_now)
}
fn from_bytes_16_bit_days(buf: &[u8]) -> Result<Self, TimestampError> {
let submillis_precision =
Self::generic_raw_read_checks(buf, LengthOfDaySegment::Short16Bits)?;
let ccsds_days: u16 = u16::from_be_bytes(buf[1..3].try_into().unwrap());
let ms_of_day: u32 = u32::from_be_bytes(buf[3..7].try_into().unwrap());
let mut provider = Self::new_with_u16_days(ccsds_days, ms_of_day);
provider.pfield = buf[0];
match submillis_precision {
SubmillisPrecision::Microseconds(_) => provider.set_submillis_precision(
SubmillisPrecision::Microseconds(u16::from_be_bytes(buf[7..9].try_into().unwrap())),
),
SubmillisPrecision::Picoseconds(_) => provider.set_submillis_precision(
SubmillisPrecision::Picoseconds(u32::from_be_bytes(buf[7..11].try_into().unwrap())),
),
_ => (),
}
Ok(provider)
}
}
impl<ProvidesDaysLen: ProvidesDaysLength> CcsdsTimeProvider for TimeProvider<ProvidesDaysLen> {
fn len_as_bytes(&self) -> usize {
Self::calc_stamp_len(self.pfield)
}
fn p_field(&self) -> (usize, [u8; 2]) {
(1, [self.pfield, 0])
}
fn ccdsd_time_code(&self) -> CcsdsTimeCodes {
CcsdsTimeCodes::Cds
}
fn unix_seconds(&self) -> i64 {
self.unix_seconds
}
fn date_time(&self) -> Option<DateTime<Utc>> {
self.calc_date_time(self.ms_of_day % 1000)
}
}
impl TimeReader for TimeProvider<DaysLen16Bits> {
fn from_bytes(buf: &[u8]) -> Result<Self, TimestampError> {
Self::from_bytes_16_bit_days(buf)
}
}
impl TimeReader for TimeProvider<DaysLen24Bits> {
fn from_bytes(buf: &[u8]) -> Result<Self, TimestampError> {
Self::from_bytes_24_bit_days(buf)
}
}
impl TimeWriter for TimeProvider<DaysLen16Bits> {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, TimestampError> {
self.length_check(buf, self.len_as_bytes())?;
buf[0] = self.pfield;
buf[1..3].copy_from_slice(self.ccsds_days.to_be_bytes().as_slice());
buf[3..7].copy_from_slice(self.ms_of_day.to_be_bytes().as_slice());
if let Some(submillis_prec) = self.submillis_precision {
match submillis_prec {
SubmillisPrecision::Microseconds(ms) => {
buf[7..9].copy_from_slice(ms.to_be_bytes().as_slice());
}
SubmillisPrecision::Picoseconds(ps) => {
buf[7..11].copy_from_slice(ps.to_be_bytes().as_slice());
}
_ => (),
}
}
Ok(self.len_as_bytes())
}
}
impl TimeWriter for TimeProvider<DaysLen24Bits> {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, TimestampError> {
self.length_check(buf, self.len_as_bytes())?;
buf[0] = self.pfield;
let be_days = self.ccsds_days.to_be_bytes();
buf[1..4].copy_from_slice(&be_days[1..4]);
buf[4..8].copy_from_slice(self.ms_of_day.to_be_bytes().as_slice());
if let Some(submillis_prec) = self.submillis_precision {
match submillis_prec {
SubmillisPrecision::Microseconds(ms) => {
buf[8..10].copy_from_slice(ms.to_be_bytes().as_slice());
}
SubmillisPrecision::Picoseconds(ps) => {
buf[8..12].copy_from_slice(ps.to_be_bytes().as_slice());
}
_ => (),
}
}
Ok(self.len_as_bytes())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::time::TimestampError::{ByteConversionError, InvalidTimeCode};
use crate::ByteConversionError::{FromSliceTooSmall, ToSliceTooSmall};
use chrono::{Datelike, Timelike};
#[cfg(feature = "serde")]
use postcard::{from_bytes, to_allocvec};
use std::format;
#[test]
fn test_time_stamp_zero_args() {
let time_stamper = TimeProvider::new_with_u16_days(0, 0);
assert_eq!(
time_stamper.unix_seconds(),
(DAYS_CCSDS_TO_UNIX * SECONDS_PER_DAY as i32) as i64
);
assert_eq!(time_stamper.submillis_precision(), None);
assert_eq!(time_stamper.ccdsd_time_code(), CcsdsTimeCodes::Cds);
assert_eq!(
time_stamper.p_field(),
(1, [(CcsdsTimeCodes::Cds as u8) << 4, 0])
);
let date_time = time_stamper.date_time().unwrap();
assert_eq!(date_time.year(), 1958);
assert_eq!(date_time.month(), 1);
assert_eq!(date_time.day(), 1);
assert_eq!(date_time.hour(), 0);
assert_eq!(date_time.minute(), 0);
assert_eq!(date_time.second(), 0);
}
#[test]
fn test_time_stamp_unix_epoch() {
let time_stamper = TimeProvider::new_with_u16_days((-DAYS_CCSDS_TO_UNIX) as u16, 0);
assert_eq!(time_stamper.unix_seconds(), 0);
assert_eq!(time_stamper.submillis_precision(), None);
let date_time = time_stamper.date_time().unwrap();
assert_eq!(date_time.year(), 1970);
assert_eq!(date_time.month(), 1);
assert_eq!(date_time.day(), 1);
assert_eq!(date_time.hour(), 0);
assert_eq!(date_time.minute(), 0);
assert_eq!(date_time.second(), 0);
}
#[test]
fn test_large_days_field_write() {
let time_stamper = TimeProvider::new_with_u24_days(0x108020, 0);
assert!(time_stamper.is_ok());
let time_stamper = time_stamper.unwrap();
assert_eq!(time_stamper.len_as_bytes(), 8);
let mut buf = [0; 16];
let written = time_stamper.write_to_bytes(&mut buf);
assert!(written.is_ok());
let written = written.unwrap();
assert_eq!(written, 8);
assert_eq!(buf[1], 0x10);
assert_eq!(buf[2], 0x80);
assert_eq!(buf[3], 0x20);
let ms = u32::from_be_bytes(buf[4..8].try_into().unwrap());
assert_eq!(ms, 0);
assert_eq!((buf[0] >> 2) & 0b1, 1);
}
#[test]
fn test_large_days_field_read() {
let time_stamper = TimeProvider::new_with_u24_days(0x108020, 0);
assert!(time_stamper.is_ok());
let time_stamper = time_stamper.unwrap();
let mut buf = [0; 16];
let written = time_stamper.write_to_bytes(&mut buf);
assert!(written.is_ok());
let provider = TimeProvider::<DaysLen24Bits>::from_bytes(&buf);
assert!(provider.is_ok());
let provider = provider.unwrap();
assert_eq!(provider.ccsds_days(), 0x108020);
assert_eq!(provider.ms_of_day(), 0);
}
#[test]
fn test_large_days_field_read_invalid_ctor() {
let time_stamper = TimeProvider::new_with_u24_days(0x108020, 0);
assert!(time_stamper.is_ok());
let time_stamper = time_stamper.unwrap();
let mut buf = [0; 16];
let written = time_stamper.write_to_bytes(&mut buf);
assert!(written.is_ok());
let faulty_ctor = TimeProvider::<DaysLen16Bits>::from_bytes(&buf);
assert!(faulty_ctor.is_err());
let error = faulty_ctor.unwrap_err();
if let TimestampError::CdsError(cds::CdsError::InvalidCtorForDaysOfLenInPreamble(
len_of_day,
)) = error
{
assert_eq!(len_of_day, LengthOfDaySegment::Long24Bits);
} else {
panic!("Wrong error type");
}
}
#[test]
fn test_write() {
let mut buf = [0; 16];
let time_stamper_0 = TimeProvider::new_with_u16_days(0, 0);
let mut res = time_stamper_0.write_to_bytes(&mut buf);
assert!(res.is_ok());
assert_eq!(buf[0], (CcsdsTimeCodes::Cds as u8) << 4);
assert_eq!(
u16::from_be_bytes(buf[1..3].try_into().expect("Byte conversion failed")),
0
);
assert_eq!(
u32::from_be_bytes(buf[3..7].try_into().expect("Byte conversion failed")),
0
);
let time_stamper_1 = TimeProvider::new_with_u16_days(u16::MAX - 1, u32::MAX - 1);
res = time_stamper_1.write_to_bytes(&mut buf);
assert!(res.is_ok());
assert_eq!(buf[0], (CcsdsTimeCodes::Cds as u8) << 4);
assert_eq!(
u16::from_be_bytes(buf[1..3].try_into().expect("Byte conversion failed")),
u16::MAX - 1
);
assert_eq!(
u32::from_be_bytes(buf[3..7].try_into().expect("Byte conversion failed")),
u32::MAX - 1
);
}
#[test]
fn test_faulty_write_buf_too_small() {
let mut buf = [0; 7];
let time_stamper = TimeProvider::new_with_u16_days(u16::MAX - 1, u32::MAX - 1);
for i in 0..6 {
let res = time_stamper.write_to_bytes(&mut buf[0..i]);
assert!(res.is_err());
match res.unwrap_err() {
ByteConversionError(ToSliceTooSmall(missmatch)) => {
assert_eq!(missmatch.found, i);
assert_eq!(missmatch.expected, 7);
}
_ => panic!(
"{}",
format!("Invalid error {:?} detected", res.unwrap_err())
),
}
}
}
#[test]
fn test_faulty_read_buf_too_small() {
let buf = [0; 7];
for i in 0..6 {
let res = TimeProvider::<DaysLen16Bits>::from_bytes(&buf[0..i]);
assert!(res.is_err());
let err = res.unwrap_err();
match err {
ByteConversionError(e) => match e {
FromSliceTooSmall(missmatch) => {
assert_eq!(missmatch.found, i);
assert_eq!(missmatch.expected, 7);
}
_ => panic!("{}", format!("Invalid error {:?} detected", e)),
},
_ => {
panic!("Unexpected error {:?}", err);
}
}
}
}
#[test]
fn test_faulty_invalid_pfield() {
let mut buf = [0; 16];
let time_stamper_0 = TimeProvider::new_with_u16_days(0, 0);
let res = time_stamper_0.write_to_bytes(&mut buf);
assert!(res.is_ok());
buf[0] = 0;
let res = TimeProvider::<DaysLen16Bits>::from_bytes(&buf);
assert!(res.is_err());
let err = res.unwrap_err();
match err {
InvalidTimeCode(code, raw) => {
assert_eq!(code, CcsdsTimeCodes::Cds);
assert_eq!(raw, 0);
}
_ => {}
}
}
#[test]
fn test_reading() {
let mut buf = [0; 16];
let time_stamper = TimeProvider::new_with_u16_days(u16::MAX - 1, u32::MAX - 1);
let res = time_stamper.write_to_bytes(&mut buf);
assert!(res.is_ok());
assert_eq!(buf[0], (CcsdsTimeCodes::Cds as u8) << 4);
assert_eq!(
u16::from_be_bytes(buf[1..3].try_into().expect("Byte conversion failed")),
u16::MAX - 1
);
assert_eq!(
u32::from_be_bytes(buf[3..7].try_into().expect("Byte conversion failed")),
u32::MAX - 1
);
let read_stamp: TimeProvider<DaysLen16Bits> =
TimeProvider::from_bytes(&buf).expect("Reading timestamp failed");
assert_eq!(read_stamp.ccsds_days(), u16::MAX - 1);
assert_eq!(read_stamp.ms_of_day(), u32::MAX - 1);
}
#[test]
fn test_time_now() {
let timestamp_now = TimeProvider::from_now_with_u16_days().unwrap();
let compare_stamp = Utc::now();
let dt = timestamp_now.date_time().unwrap();
if compare_stamp.year() > dt.year() {
assert_eq!(compare_stamp.year() - dt.year(), 1);
} else {
assert_eq!(dt.year(), compare_stamp.year());
}
generic_dt_property_equality_check(dt.month(), compare_stamp.month(), 1, 12);
assert_eq!(dt.day(), compare_stamp.day());
if compare_stamp.day() < dt.day() {
assert!(dt.day() >= 28);
assert_eq!(compare_stamp.day(), 1);
} else if compare_stamp.day() > dt.day() {
assert_eq!(compare_stamp.day() - dt.day(), 1);
} else {
assert_eq!(compare_stamp.day(), dt.day());
}
generic_dt_property_equality_check(dt.hour(), compare_stamp.hour(), 0, 23);
generic_dt_property_equality_check(dt.minute(), compare_stamp.minute(), 0, 59);
}
#[test]
fn test_submillis_precision_micros() {
let mut time_stamper = TimeProvider::new_with_u16_days(0, 0);
time_stamper.set_submillis_precision(SubmillisPrecision::Microseconds(500));
assert!(time_stamper.submillis_precision().is_some());
if let SubmillisPrecision::Microseconds(micros) =
time_stamper.submillis_precision().unwrap()
{
assert_eq!(micros, 500);
} else {
panic!("Submillis precision was not set properly");
}
let mut write_buf: [u8; 16] = [0; 16];
let written = time_stamper
.write_to_bytes(&mut write_buf)
.expect("Writing timestamp failed");
assert_eq!(written, 9);
let cross_check: u16 = 500;
assert_eq!(write_buf[7..9], cross_check.to_be_bytes());
}
#[test]
fn test_submillis_precision_picos() {
let mut time_stamper = TimeProvider::new_with_u16_days(0, 0);
time_stamper.set_submillis_precision(SubmillisPrecision::Picoseconds(5e8 as u32));
assert!(time_stamper.submillis_precision().is_some());
if let SubmillisPrecision::Picoseconds(ps) = time_stamper.submillis_precision().unwrap() {
assert_eq!(ps, 5e8 as u32);
} else {
panic!("Submillis precision was not set properly");
}
let mut write_buf: [u8; 16] = [0; 16];
let written = time_stamper
.write_to_bytes(&mut write_buf)
.expect("Writing timestamp failed");
assert_eq!(written, 11);
let cross_check: u32 = 5e8 as u32;
assert_eq!(write_buf[7..11], cross_check.to_be_bytes());
}
#[test]
fn read_stamp_with_ps_submillis_precision() {
let mut time_stamper = TimeProvider::new_with_u16_days(0, 0);
time_stamper.set_submillis_precision(SubmillisPrecision::Picoseconds(5e8 as u32));
let mut write_buf: [u8; 16] = [0; 16];
let written = time_stamper
.write_to_bytes(&mut write_buf)
.expect("Writing timestamp failed");
assert_eq!(written, 11);
let stamp_deserialized = TimeProvider::<DaysLen16Bits>::from_bytes(&write_buf);
assert!(stamp_deserialized.is_ok());
let stamp_deserialized = stamp_deserialized.unwrap();
assert_eq!(stamp_deserialized.len_as_bytes(), 11);
assert!(stamp_deserialized.submillis_precision().is_some());
let submillis_rec = stamp_deserialized.submillis_precision().unwrap();
if let SubmillisPrecision::Picoseconds(ps) = submillis_rec {
assert_eq!(ps, 5e8 as u32);
} else {
panic!("Wrong precision field detected");
}
}
#[test]
fn read_stamp_with_us_submillis_precision() {
let mut time_stamper = TimeProvider::new_with_u16_days(0, 0);
time_stamper.set_submillis_precision(SubmillisPrecision::Microseconds(500));
let mut write_buf: [u8; 16] = [0; 16];
let written = time_stamper
.write_to_bytes(&mut write_buf)
.expect("Writing timestamp failed");
assert_eq!(written, 9);
let stamp_deserialized = TimeProvider::<DaysLen16Bits>::from_bytes(&write_buf);
assert!(stamp_deserialized.is_ok());
let stamp_deserialized = stamp_deserialized.unwrap();
assert_eq!(stamp_deserialized.len_as_bytes(), 9);
assert!(stamp_deserialized.submillis_precision().is_some());
let submillis_rec = stamp_deserialized.submillis_precision().unwrap();
if let SubmillisPrecision::Microseconds(us) = submillis_rec {
assert_eq!(us, 500);
} else {
panic!("Wrong precision field detected");
}
}
#[test]
#[cfg(feature = "serde")]
fn test_serialization() {
let stamp_now = TimeProvider::from_now_with_u16_days().expect("Error retrieving time");
let val = to_allocvec(&stamp_now).expect("Serializing timestamp failed");
assert!(val.len() > 0);
let stamp_deser: TimeProvider = from_bytes(&val).expect("Stamp deserialization failed");
assert_eq!(stamp_deser, stamp_now);
}
fn generic_dt_property_equality_check(first: u32, second: u32, start: u32, end: u32) {
if second < first {
assert_eq!(second, start);
assert_eq!(first, end);
} else if second > first {
assert_eq!(second - first, 1);
} else {
assert_eq!(first, second);
}
}
}

950
src/time/cuc.rs Normal file
View File

@ -0,0 +1,950 @@
//! Module to generate or read CCSDS Unsegmented (CUC) timestamps as specified in
//! [CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf) section 3.2 .
//!
//! The core data structure to do this is the [TimeProviderCcsdsEpoch] struct.
use super::*;
use core::fmt::Debug;
const MIN_CUC_LEN: usize = 2;
/// Base value for the preamble field for a time field parser to determine the time field type.
pub const P_FIELD_BASE: u8 = (CcsdsTimeCodes::CucCcsdsEpoch as u8) << 4;
/// Maximum length if the preamble field is not extended.
pub const MAX_CUC_LEN_SMALL_PREAMBLE: usize = 8;
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum FractionalResolution {
/// No fractional part, only second resolution
Seconds = 0,
/// 256 fractional parts, resulting in 1/255 ~= 4 ms fractional resolution
FourMs = 1,
/// 65535 fractional parts, resulting in 1/65535 ~= 15 us fractional resolution
FifteenUs = 2,
/// 16777215 fractional parts, resulting in 1/16777215 ~= 60 ns fractional resolution
SixtyNs = 3,
}
impl TryFrom<u8> for FractionalResolution {
type Error = ();
fn try_from(v: u8) -> Result<Self, Self::Error> {
match v {
0 => Ok(FractionalResolution::Seconds),
1 => Ok(FractionalResolution::FourMs),
2 => Ok(FractionalResolution::FifteenUs),
3 => Ok(FractionalResolution::SixtyNs),
_ => Err(()),
}
}
}
/// Please note that this function will panic if the fractional value is not smaller than
/// the maximum number of fractions allowed for the particular resolution.
/// (e.g. passing 270 when the resolution only allows 255 values).
pub fn convert_fractional_part_to_ns(fractional_part: FractionalPart) -> u64 {
let div = fractional_res_to_div(fractional_part.0);
assert!(fractional_part.1 < div);
10_u64.pow(9) * fractional_part.1 as u64 / div as u64
}
pub const fn fractional_res_to_div(res: FractionalResolution) -> u32 {
2_u32.pow(8 * res as u32) - 1
}
/// Calculate the fractional part for a given resolution and subsecond nanoseconds.
/// Please note that this function will panic if the passed nanoseconds exceeds 1 second
/// as a nanosecond (10 to the power of 9). Furthermore, it will return [None] if the
/// given resolution is [FractionalResolution::Seconds].
pub fn fractional_part_from_subsec_ns(
res: FractionalResolution,
ns: u64,
) -> Option<FractionalPart> {
if res == FractionalResolution::Seconds {
return None;
}
let sec_as_ns = 10_u64.pow(9);
if ns > sec_as_ns {
panic!("passed nanosecond value larger than 1 second");
}
let resolution = fractional_res_to_div(res) as u64;
// Use integer division because this can reduce code size of really small systems.
// First determine the nanoseconds for the smallest segment given the resolution.
// Then divide by that to find out the fractional part. For the calculation of the smallest
// fraction, we perform a ceiling division. This is because if we would use the default
// flooring division, we would divide by a smaller value, thereby allowing the calculation to
// invalid fractional parts which are too large. For the division of the nanoseconds by the
// smallest fraction, a flooring division is correct.
// The multiplication with 100000 is necessary to avoid precision loss during integer division.
// TODO: Floating point division might actually be faster option, but requires additional
// code on small embedded systems..
let fractional_part = ns * 100000 / ((sec_as_ns * 100000 + resolution) / resolution);
// Floating point division.
//let fractional_part = (ns as f64 / ((sec_as_ns as f64) / resolution as f64)).floor() as u32;
Some(FractionalPart(res, fractional_part as u32))
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum CucError {
InvalidCounterWidth(u8),
InvalidFractionResolution(FractionalResolution),
InvalidCounter(u8, u64),
InvalidFractions(FractionalResolution, u64),
}
impl Display for CucError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
CucError::InvalidCounterWidth(w) => {
write!(f, "invalid cuc counter byte width {}", w)
}
CucError::InvalidFractionResolution(w) => {
write!(f, "invalid cuc fractional part byte width {:?}", w)
}
CucError::InvalidCounter(w, c) => {
write!(f, "invalid cuc counter {} for width {}", c, w)
}
CucError::InvalidFractions(w, c) => {
write!(f, "invalid cuc fractional part {} for width {:?}", c, w)
}
}
}
}
#[cfg(feature = "std")]
impl Error for CucError {}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct WidthCounterPair(u8, u32);
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct FractionalPart(FractionalResolution, u32);
/// This object is the abstraction for the CCSDS Unsegmented Time Code (CUC) using the CCSDS epoch
/// and a small preamble field.
///
/// It has the capability to generate and read timestamps as specified in the CCSDS 301.0-B-4
/// section 3.2 . The preamble field only has one byte, which allows a time code representation
/// through the year 2094. The time is represented as a simple binary counter starting from the
/// fixed CCSDS epoch (1958-01-01 00:00:00). It is possible to provide subsecond accuracy using the
/// fractional field with various available [resolutions][FractionalResolution].
///
/// Having a preamble field of one byte limits the width of the counter
/// type (generally seconds) to 4 bytes and the width of the fractions type to 3 bytes. This limits
/// the maximum time stamp size to [MAX_CUC_LEN_SMALL_PREAMBLE] (8 bytes).
///
/// # Example
///
/// ```
/// use spacepackets::time::cuc::{FractionalResolution, TimeProviderCcsdsEpoch};
/// use spacepackets::time::{TimeWriter, CcsdsTimeCodes, TimeReader, CcsdsTimeProvider};
///
/// // Highest fractional resolution
/// let timestamp_now = TimeProviderCcsdsEpoch::from_now(FractionalResolution::SixtyNs).expect("creating cuc stamp failed");
/// let mut raw_stamp = [0; 16];
/// {
/// let written = timestamp_now.write_to_bytes(&mut raw_stamp).expect("writing timestamp failed");
/// assert_eq!((raw_stamp[0] >> 4) & 0b111, CcsdsTimeCodes::CucCcsdsEpoch as u8);
/// // 1 byte preamble + 4 byte counter + 3 byte fractional part
/// assert_eq!(written, 8);
/// }
/// {
/// let read_result = TimeProviderCcsdsEpoch::from_bytes(&raw_stamp);
/// assert!(read_result.is_ok());
/// let stamp_deserialized = read_result.unwrap();
/// assert_eq!(stamp_deserialized, timestamp_now);
/// }
/// ```
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct TimeProviderCcsdsEpoch {
pfield: u8,
counter: WidthCounterPair,
fractions: Option<FractionalPart>,
}
#[inline]
pub fn pfield_len(pfield: u8) -> usize {
if ((pfield >> 7) & 0b1) == 1 {
return 2;
}
1
}
impl TimeProviderCcsdsEpoch {
/// Create a time provider with a four byte counter and no fractional part.
pub fn new(counter: u32) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(WidthCounterPair(4, counter), None).unwrap()
}
/// Like [TimeProviderCcsdsEpoch::new] but allow to supply a fractional part as well.
pub fn new_with_fractions(counter: u32, fractions: FractionalPart) -> Result<Self, CucError> {
Self::new_generic(WidthCounterPair(4, counter), Some(fractions))
}
/// Fractions with a resolution of ~ 4 ms
pub fn new_with_coarse_fractions(counter: u32, subsec_fractions: u8) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(
WidthCounterPair(4, counter),
Some(FractionalPart(
FractionalResolution::FourMs,
subsec_fractions as u32,
)),
)
.unwrap()
}
/// Fractions with a resolution of ~ 16 us
pub fn new_with_medium_fractions(counter: u32, subsec_fractions: u16) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(
WidthCounterPair(4, counter),
Some(FractionalPart(
FractionalResolution::FifteenUs,
subsec_fractions as u32,
)),
)
.unwrap()
}
/// Fractions with a resolution of ~ 60 ns. The fractional part value is limited by the
/// 24 bits of the fractional field, so this function will fail with
/// [CucError::InvalidFractions] if the fractional value exceeds the value.
pub fn new_with_fine_fractions(counter: u32, subsec_fractions: u32) -> Result<Self, CucError> {
Self::new_generic(
WidthCounterPair(4, counter),
Some(FractionalPart(
FractionalResolution::SixtyNs,
subsec_fractions,
)),
)
}
/// This function will return the current time as a CUC timestamp.
/// The counter width will always be set to 4 bytes because the normal CCSDS epoch will overflow
/// when using less than that.
#[cfg(feature = "std")]
pub fn from_now(fraction_resolution: FractionalResolution) -> Result<Self, StdTimestampError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs());
if fraction_resolution == FractionalResolution::Seconds {
return Ok(Self::new(ccsds_epoch as u32));
}
let fractions =
fractional_part_from_subsec_ns(fraction_resolution, now.subsec_nanos() as u64);
Self::new_with_fractions(ccsds_epoch as u32, fractions.unwrap())
.map_err(|e| StdTimestampError::TimestampError(e.into()))
}
/// Updates the current time stamp from the current time. The fractional field width remains
/// the same and will be updated accordingly.
#[cfg(feature = "std")]
pub fn update_from_now(&mut self) -> Result<(), StdTimestampError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
self.counter.1 = unix_epoch_to_ccsds_epoch(now.as_secs()) as u32;
if self.fractions.is_some() {
self.fractions = fractional_part_from_subsec_ns(
self.fractions.unwrap().0,
now.subsec_nanos() as u64,
);
}
Ok(())
}
pub fn new_u16_counter(counter: u16) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(WidthCounterPair(2, counter as u32), None).unwrap()
}
pub fn width_counter_pair(&self) -> WidthCounterPair {
self.counter
}
pub fn width_fractions_pair(&self) -> Option<FractionalPart> {
self.fractions
}
pub fn set_fractions(&mut self, fractions: FractionalPart) -> Result<(), CucError> {
Self::verify_fractions_width(fractions.0)?;
Self::verify_fractions_value(fractions)?;
self.fractions = Some(fractions);
self.update_p_field_fractions();
Ok(())
}
/// Set a fractional resolution. Please note that this function will reset the fractional value
/// to 0 if the resolution changes.
pub fn set_fractional_resolution(&mut self, res: FractionalResolution) {
if res == FractionalResolution::Seconds {
self.fractions = None;
}
let mut update_fractions = true;
if let Some(existing_fractions) = self.fractions {
if existing_fractions.0 == res {
update_fractions = false;
}
};
if update_fractions {
self.fractions = Some(FractionalPart(res, 0));
}
}
pub fn new_generic(
counter: WidthCounterPair,
fractions: Option<FractionalPart>,
) -> Result<Self, CucError> {
Self::verify_counter_width(counter.0)?;
if counter.1 > (2u64.pow(counter.0 as u32 * 8) - 1) as u32 {
return Err(CucError::InvalidCounter(counter.0, counter.1 as u64));
}
if let Some(fractions) = fractions {
Self::verify_fractions_width(fractions.0)?;
Self::verify_fractions_value(fractions)?;
}
Ok(Self {
pfield: Self::build_p_field(counter.0, fractions.map(|v| v.0)),
counter,
fractions,
})
}
fn build_p_field(counter_width: u8, fractions_width: Option<FractionalResolution>) -> u8 {
let mut pfield = P_FIELD_BASE;
if !(1..=4).contains(&counter_width) {
// Okay to panic here, this function is private and all input values should
// have been sanitized
panic!("invalid counter width {} for cuc timestamp", counter_width);
}
pfield |= (counter_width - 1) << 2;
if let Some(fractions_width) = fractions_width {
if !(1..=3).contains(&(fractions_width as u8)) {
// Okay to panic here, this function is private and all input values should
// have been sanitized
panic!(
"invalid fractions width {:?} for cuc timestamp",
fractions_width
);
}
pfield |= fractions_width as u8;
}
pfield
}
fn update_p_field_fractions(&mut self) {
self.pfield &= !(0b11);
if let Some(fractions) = self.fractions {
self.pfield |= fractions.0 as u8;
}
}
#[inline]
pub fn len_cntr_from_pfield(pfield: u8) -> u8 {
((pfield >> 2) & 0b11) + 1
}
#[inline]
pub fn len_fractions_from_pfield(pfield: u8) -> u8 {
pfield & 0b11
}
/// This returns the length of the individual components of the CUC timestamp in addition
/// to the total size.
///
/// This function will return a tuple where the first value is the byte width of the
/// counter, the second value is the byte width of the fractional part, and the third
/// components is the total size.
pub fn len_components_and_total_from_pfield(pfield: u8) -> (u8, u8, usize) {
let base_len: usize = 1;
let cntr_len = Self::len_cntr_from_pfield(pfield);
let fractions_len = Self::len_fractions_from_pfield(pfield);
(
cntr_len,
fractions_len,
base_len + cntr_len as usize + fractions_len as usize,
)
}
pub fn len_packed_from_pfield(pfield: u8) -> usize {
let mut base_len: usize = 1;
base_len += Self::len_cntr_from_pfield(pfield) as usize;
base_len += Self::len_fractions_from_pfield(pfield) as usize;
base_len
}
/// Verifies the raw width parameter.
fn verify_counter_width(width: u8) -> Result<(), CucError> {
if width == 0 || width > 4 {
return Err(CucError::InvalidCounterWidth(width));
}
Ok(())
}
fn verify_fractions_width(width: FractionalResolution) -> Result<(), CucError> {
if width as u8 > 3 {
return Err(CucError::InvalidFractionResolution(width));
}
Ok(())
}
fn verify_fractions_value(val: FractionalPart) -> Result<(), CucError> {
if val.1 > 2u32.pow((val.0 as u32) * 8) - 1 {
return Err(CucError::InvalidFractions(val.0, val.1 as u64));
}
Ok(())
}
}
impl TimeReader for TimeProviderCcsdsEpoch {
fn from_bytes(buf: &[u8]) -> Result<Self, TimestampError>
where
Self: Sized,
{
if buf.len() < MIN_CUC_LEN {
return Err(TimestampError::ByteConversionError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
expected: MIN_CUC_LEN,
found: buf.len(),
}),
));
}
match ccsds_time_code_from_p_field(buf[0]) {
Ok(code) => {
if code != CcsdsTimeCodes::CucCcsdsEpoch {
return Err(TimestampError::InvalidTimeCode(
CcsdsTimeCodes::CucCcsdsEpoch,
code as u8,
));
}
}
Err(raw) => {
return Err(TimestampError::InvalidTimeCode(
CcsdsTimeCodes::CucCcsdsEpoch,
raw,
))
}
}
let (cntr_len, fractions_len, total_len) =
Self::len_components_and_total_from_pfield(buf[0]);
if buf.len() < total_len {
return Err(TimestampError::ByteConversionError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
expected: total_len,
found: buf.len(),
}),
));
}
let mut current_idx = 1;
let counter = match cntr_len {
1 => buf[current_idx] as u32,
2 => u16::from_be_bytes(buf[current_idx..current_idx + 2].try_into().unwrap()) as u32,
3 => {
let mut tmp_buf: [u8; 4] = [0; 4];
tmp_buf[1..4].copy_from_slice(&buf[current_idx..current_idx + 3]);
u32::from_be_bytes(tmp_buf)
}
4 => u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap()),
_ => panic!("unreachable match arm"),
};
current_idx += cntr_len as usize;
let mut fractions = None;
if fractions_len > 0 {
match fractions_len {
1 => {
fractions = Some(FractionalPart(
fractions_len.try_into().unwrap(),
buf[current_idx] as u32,
))
}
2 => {
fractions = Some(FractionalPart(
fractions_len.try_into().unwrap(),
u16::from_be_bytes(buf[current_idx..current_idx + 2].try_into().unwrap())
as u32,
))
}
3 => {
let mut tmp_buf: [u8; 4] = [0; 4];
tmp_buf[1..4].copy_from_slice(&buf[current_idx..current_idx + 3]);
fractions = Some(FractionalPart(
fractions_len.try_into().unwrap(),
u32::from_be_bytes(tmp_buf),
))
}
_ => panic!("unreachable match arm"),
}
}
let provider = Self::new_generic(WidthCounterPair(cntr_len, counter), fractions)?;
Ok(provider)
}
}
impl TimeWriter for TimeProviderCcsdsEpoch {
fn write_to_bytes(&self, bytes: &mut [u8]) -> Result<usize, TimestampError> {
// Cross check the sizes of the counters against byte widths in the ctor
if bytes.len() < self.len_as_bytes() {
return Err(TimestampError::ByteConversionError(
ByteConversionError::ToSliceTooSmall(SizeMissmatch {
found: bytes.len(),
expected: self.len_as_bytes(),
}),
));
}
bytes[0] = self.pfield;
let mut current_idx: usize = 1;
match self.counter.0 {
1 => {
bytes[current_idx] = self.counter.1 as u8;
}
2 => {
bytes[current_idx..current_idx + 2]
.copy_from_slice(&(self.counter.1 as u16).to_be_bytes());
}
3 => {
bytes[current_idx..current_idx + 3]
.copy_from_slice(&self.counter.1.to_be_bytes()[1..4]);
}
4 => {
bytes[current_idx..current_idx + 4].copy_from_slice(&self.counter.1.to_be_bytes());
}
// Should never happen
_ => panic!("invalid counter width value"),
}
current_idx += self.counter.0 as usize;
if let Some(fractions) = self.fractions {
match fractions.0 {
FractionalResolution::FourMs => bytes[current_idx] = fractions.1 as u8,
FractionalResolution::FifteenUs => bytes[current_idx..current_idx + 2]
.copy_from_slice(&(fractions.1 as u16).to_be_bytes()),
FractionalResolution::SixtyNs => bytes[current_idx..current_idx + 3]
.copy_from_slice(&fractions.1.to_be_bytes()[1..4]),
// Should also never happen
_ => panic!("invalid fractions value"),
}
current_idx += fractions.0 as usize;
}
Ok(current_idx)
}
}
impl CcsdsTimeProvider for TimeProviderCcsdsEpoch {
fn len_as_bytes(&self) -> usize {
Self::len_packed_from_pfield(self.pfield)
}
fn p_field(&self) -> (usize, [u8; 2]) {
(1, [self.pfield, 0])
}
fn ccdsd_time_code(&self) -> CcsdsTimeCodes {
CcsdsTimeCodes::CucCcsdsEpoch
}
/// Please note that this function only works as intended if the time counter resolution
/// is one second.
fn unix_seconds(&self) -> i64 {
ccsds_epoch_to_unix_epoch(self.counter.1 as u64) as i64
}
fn date_time(&self) -> Option<DateTime<Utc>> {
let unix_seconds = self.unix_seconds();
let ns = if let Some(fractional_part) = self.fractions {
convert_fractional_part_to_ns(fractional_part)
} else {
0
};
if let LocalResult::Single(res) = Utc.timestamp_opt(unix_seconds, ns as u32) {
return Some(res);
}
None
}
}
#[cfg(test)]
mod tests {
use super::*;
use chrono::{Datelike, Timelike};
#[allow(unused_imports)]
use std::println;
#[test]
fn test_basic_zero_epoch() {
let zero_cuc = TimeProviderCcsdsEpoch::new(0);
assert_eq!(zero_cuc.len_as_bytes(), 5);
assert_eq!(zero_cuc.ccdsd_time_code(), CcsdsTimeCodes::CucCcsdsEpoch);
let counter = zero_cuc.width_counter_pair();
assert_eq!(counter.0, 4);
assert_eq!(counter.1, 0);
let fractions = zero_cuc.width_fractions_pair();
assert!(fractions.is_none());
let dt = zero_cuc.date_time();
assert!(dt.is_some());
let dt = dt.unwrap();
assert_eq!(dt.year(), 1958);
assert_eq!(dt.month(), 1);
assert_eq!(dt.day(), 1);
assert_eq!(dt.hour(), 0);
assert_eq!(dt.minute(), 0);
assert_eq!(dt.second(), 0);
}
#[test]
fn test_write_no_fractions() {
let mut buf: [u8; 16] = [0; 16];
let zero_cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(4, 0x20102030), None);
assert!(zero_cuc.is_ok());
let zero_cuc = zero_cuc.unwrap();
let res = zero_cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
assert_eq!(zero_cuc.len_as_bytes(), 5);
assert_eq!(pfield_len(buf[0]), 1);
let written = res.unwrap();
assert_eq!(written, 5);
assert_eq!((buf[0] >> 7) & 0b1, 0);
let time_code = ccsds_time_code_from_p_field(buf[0]);
assert!(time_code.is_ok());
assert_eq!(time_code.unwrap(), CcsdsTimeCodes::CucCcsdsEpoch);
assert_eq!((buf[0] >> 2) & 0b11, 0b11);
assert_eq!(buf[0] & 0b11, 0);
let raw_counter = u32::from_be_bytes(buf[1..5].try_into().unwrap());
assert_eq!(raw_counter, 0x20102030);
assert_eq!(buf[5], 0);
}
#[test]
fn test_datetime_now() {
let now = Utc::now();
let cuc_now = TimeProviderCcsdsEpoch::from_now(FractionalResolution::SixtyNs);
assert!(cuc_now.is_ok());
let cuc_now = cuc_now.unwrap();
let dt_opt = cuc_now.date_time();
assert!(dt_opt.is_some());
let dt = dt_opt.unwrap();
let diff = dt - now;
assert!(diff.num_milliseconds() < 1000);
println!("datetime from cuc: {}", dt);
println!("datetime now: {}", now);
}
#[test]
fn test_read_no_fractions() {
let mut buf: [u8; 16] = [0; 16];
let zero_cuc =
TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(4, 0x20102030), None).unwrap();
zero_cuc.write_to_bytes(&mut buf).unwrap();
let cuc_read_back =
TimeProviderCcsdsEpoch::from_bytes(&buf).expect("reading cuc timestamp failed");
assert_eq!(cuc_read_back, zero_cuc);
assert_eq!(cuc_read_back.width_counter_pair().1, 0x20102030);
assert_eq!(cuc_read_back.width_fractions_pair(), None);
}
#[test]
fn invalid_read_len() {
let mut buf: [u8; 16] = [0; 16];
for i in 0..2 {
let res = TimeProviderCcsdsEpoch::from_bytes(&buf[0..i]);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::ByteConversionError(ByteConversionError::FromSliceTooSmall(e)) =
err
{
assert_eq!(e.found, i);
assert_eq!(e.expected, 2);
}
}
let large_stamp = TimeProviderCcsdsEpoch::new_with_fine_fractions(22, 300).unwrap();
large_stamp.write_to_bytes(&mut buf).unwrap();
for i in 2..large_stamp.len_as_bytes() - 1 {
let res = TimeProviderCcsdsEpoch::from_bytes(&buf[0..i]);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::ByteConversionError(ByteConversionError::FromSliceTooSmall(e)) =
err
{
assert_eq!(e.found, i);
assert_eq!(e.expected, large_stamp.len_as_bytes());
}
}
}
#[test]
fn write_and_read_tiny_stamp() {
let mut buf = [0; 2];
let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(1, 200), None);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
assert_eq!(cuc.len_as_bytes(), 2);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 2);
assert_eq!(buf[1], 200);
let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(cuc_read_back.is_ok());
let cuc_read_back = cuc_read_back.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn write_slightly_larger_stamp() {
let mut buf = [0; 4];
let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(2, 40000), None);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
assert_eq!(cuc.len_as_bytes(), 3);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 3);
assert_eq!(u16::from_be_bytes(buf[1..3].try_into().unwrap()), 40000);
let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(cuc_read_back.is_ok());
let cuc_read_back = cuc_read_back.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn invalid_buf_len_for_read() {}
#[test]
fn write_read_three_byte_cntr_stamp() {
let mut buf = [0; 4];
let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(3, 2_u32.pow(24) - 2), None);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
assert_eq!(cuc.len_as_bytes(), 4);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 4);
let mut temp_buf = [0; 4];
temp_buf[1..4].copy_from_slice(&buf[1..4]);
assert_eq!(u32::from_be_bytes(temp_buf), 2_u32.pow(24) - 2);
let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(cuc_read_back.is_ok());
let cuc_read_back = cuc_read_back.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn test_write_invalid_buf() {
let mut buf: [u8; 16] = [0; 16];
let res = TimeProviderCcsdsEpoch::new_with_fine_fractions(0, 0);
let cuc = res.unwrap();
for i in 0..cuc.len_as_bytes() - 1 {
let err = cuc.write_to_bytes(&mut buf[0..i]);
assert!(err.is_err());
let err = err.unwrap_err();
if let TimestampError::ByteConversionError(ByteConversionError::ToSliceTooSmall(e)) =
err
{
assert_eq!(e.expected, cuc.len_as_bytes());
assert_eq!(e.found, i);
} else {
panic!("unexpected error: {}", err);
}
}
}
#[test]
fn invalid_ccsds_stamp_type() {
let mut buf: [u8; 16] = [0; 16];
buf[0] |= (CcsdsTimeCodes::CucAgencyEpoch as u8) << 4;
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::InvalidTimeCode(code, raw) = err {
assert_eq!(code, CcsdsTimeCodes::CucCcsdsEpoch);
assert_eq!(raw, CcsdsTimeCodes::CucAgencyEpoch as u8);
} else {
panic!("unexpected error: {}", err);
}
}
#[test]
fn test_write_with_coarse_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc = TimeProviderCcsdsEpoch::new_with_coarse_fractions(0x30201060, 120);
assert!(cuc.fractions.is_some());
assert_eq!(cuc.fractions.unwrap().1, 120);
assert_eq!(cuc.fractions.unwrap().0, FractionalResolution::FourMs);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 6);
assert_eq!(buf[5], 120);
assert_eq!(buf[6], 0);
assert_eq!(
u32::from_be_bytes(buf[1..5].try_into().unwrap()),
0x30201060
);
}
#[test]
fn test_read_with_coarse_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc = TimeProviderCcsdsEpoch::new_with_coarse_fractions(0x30201060, 120);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_ok());
let read_back = res.unwrap();
assert_eq!(read_back, cuc);
}
#[test]
fn test_write_with_medium_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc = TimeProviderCcsdsEpoch::new_with_medium_fractions(0x30303030, 30000);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 7);
assert_eq!(u16::from_be_bytes(buf[5..7].try_into().unwrap()), 30000);
assert_eq!(buf[7], 0);
}
#[test]
fn test_read_with_medium_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc = TimeProviderCcsdsEpoch::new_with_medium_fractions(0x30303030, 30000);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_ok());
let cuc_read_back = res.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn test_write_with_fine_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc =
TimeProviderCcsdsEpoch::new_with_fine_fractions(0x30303030, u16::MAX as u32 + 60000);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
let res = cuc.write_to_bytes(&mut buf);
let written = res.unwrap();
assert_eq!(written, 8);
let mut dummy_buf: [u8; 4] = [0; 4];
dummy_buf[1..4].copy_from_slice(&buf[5..8]);
assert_eq!(u32::from_be_bytes(dummy_buf), u16::MAX as u32 + 60000);
assert_eq!(buf[8], 0);
}
#[test]
fn test_read_with_fine_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc =
TimeProviderCcsdsEpoch::new_with_fine_fractions(0x30303030, u16::MAX as u32 + 60000);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_ok());
let cuc_read_back = res.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn test_fractional_converter() {
let ns = convert_fractional_part_to_ns(FractionalPart(FractionalResolution::FourMs, 2));
// The formula for this is 2/255 * 10e9 = 7.843.137.
assert_eq!(ns, 7843137);
// This is the largest value we should be able to pass without this function panicking.
let ns = convert_fractional_part_to_ns(FractionalPart(
FractionalResolution::SixtyNs,
2_u32.pow(24) - 2,
));
assert_eq!(ns, 999999940);
}
#[test]
#[should_panic]
fn test_fractional_converter_invalid_input() {
convert_fractional_part_to_ns(FractionalPart(FractionalResolution::FourMs, 256));
}
#[test]
#[should_panic]
fn test_fractional_converter_invalid_input_2() {
convert_fractional_part_to_ns(FractionalPart(
FractionalResolution::SixtyNs,
2_u32.pow(32) - 1,
));
}
#[test]
fn fractional_part_formula() {
let fractional_part =
fractional_part_from_subsec_ns(FractionalResolution::FourMs, 7843138).unwrap();
assert_eq!(fractional_part.1, 2);
}
#[test]
fn fractional_part_formula_2() {
let fractional_part =
fractional_part_from_subsec_ns(FractionalResolution::FourMs, 12000000).unwrap();
assert_eq!(fractional_part.1, 3);
}
#[test]
fn fractional_part_formula_3() {
let one_fraction_with_width_two_in_ns =
10_u64.pow(9) as f64 / (2_u32.pow(8 * 2) - 1) as f64;
assert_eq!(one_fraction_with_width_two_in_ns.ceil(), 15260.0);
let hundred_fractions_and_some =
(100.0 * one_fraction_with_width_two_in_ns).floor() as u64 + 7000;
let fractional_part = fractional_part_from_subsec_ns(
FractionalResolution::FifteenUs,
hundred_fractions_and_some,
)
.unwrap();
assert_eq!(fractional_part.1, 100);
// Using exactly 101.0 can yield values which will later be rounded down to 100
let hundred_and_one_fractions =
(101.001 * one_fraction_with_width_two_in_ns).floor() as u64;
let fractional_part = fractional_part_from_subsec_ns(
FractionalResolution::FifteenUs,
hundred_and_one_fractions,
)
.unwrap();
assert_eq!(fractional_part.1, 101);
}
#[test]
fn update_fractions() {
let mut stamp = TimeProviderCcsdsEpoch::new(2000);
let res = stamp.set_fractions(FractionalPart(FractionalResolution::SixtyNs, 5000));
assert!(res.is_ok());
assert!(stamp.fractions.is_some());
let fractions = stamp.fractions.unwrap();
assert_eq!(fractions.0, FractionalResolution::SixtyNs);
assert_eq!(fractions.1, 5000);
}
#[test]
fn set_fract_resolution() {
let mut stamp = TimeProviderCcsdsEpoch::new(2000);
stamp.set_fractional_resolution(FractionalResolution::SixtyNs);
assert!(stamp.fractions.is_some());
let fractions = stamp.fractions.unwrap();
assert_eq!(fractions.0, FractionalResolution::SixtyNs);
assert_eq!(fractions.1, 0);
let res = stamp.update_from_now();
assert!(res.is_ok());
}
#[test]
fn assert_largest_fractions() {
let fractions =
fractional_part_from_subsec_ns(FractionalResolution::SixtyNs, 10u64.pow(9) - 1)
.unwrap();
// The value can not be larger than representable by 3 bytes
// Assert that the maximum resolution can be reached
assert_eq!(fractions.1, 2_u32.pow(3 * 8) - 2);
}
}

243
src/time/mod.rs Normal file
View File

@ -0,0 +1,243 @@
//! CCSDS Time Code Formats according to [CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
use crate::{ByteConversionError, SizeMissmatch};
use chrono::{DateTime, LocalResult, TimeZone, Utc};
use core::fmt::{Display, Formatter};
#[allow(unused_imports)]
#[cfg(not(feature = "std"))]
use num_traits::float::FloatCore;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::error::Error;
#[cfg(feature = "std")]
use std::time::{SystemTime, SystemTimeError};
pub mod ascii;
pub mod cds;
pub mod cuc;
pub const DAYS_CCSDS_TO_UNIX: i32 = -4383;
pub const SECONDS_PER_DAY: u32 = 86400;
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum CcsdsTimeCodes {
CucCcsdsEpoch = 0b001,
CucAgencyEpoch = 0b010,
Cds = 0b100,
Ccs = 0b101,
AgencyDefined = 0b110,
}
impl TryFrom<u8> for CcsdsTimeCodes {
type Error = ();
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
x if x == CcsdsTimeCodes::CucCcsdsEpoch as u8 => Ok(CcsdsTimeCodes::CucCcsdsEpoch),
x if x == CcsdsTimeCodes::CucAgencyEpoch as u8 => Ok(CcsdsTimeCodes::CucAgencyEpoch),
x if x == CcsdsTimeCodes::Cds as u8 => Ok(CcsdsTimeCodes::Cds),
x if x == CcsdsTimeCodes::Ccs as u8 => Ok(CcsdsTimeCodes::Ccs),
x if x == CcsdsTimeCodes::AgencyDefined as u8 => Ok(CcsdsTimeCodes::AgencyDefined),
_ => Err(()),
}
}
}
/// Retrieve the CCSDS time code from the p-field. If no valid time code identifier is found, the
/// value of the raw time code identification field is returned.
pub fn ccsds_time_code_from_p_field(pfield: u8) -> Result<CcsdsTimeCodes, u8> {
let raw_bits = (pfield >> 4) & 0b111;
CcsdsTimeCodes::try_from(raw_bits).map_err(|_| raw_bits)
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum TimestampError {
/// Contains tuple where first value is the expected time code and the second
/// value is the found raw value
InvalidTimeCode(CcsdsTimeCodes, u8),
ByteConversionError(ByteConversionError),
CdsError(cds::CdsError),
CucError(cuc::CucError),
CustomEpochNotSupported,
}
impl From<cds::CdsError> for TimestampError {
fn from(e: cds::CdsError) -> Self {
TimestampError::CdsError(e)
}
}
impl From<cuc::CucError> for TimestampError {
fn from(e: cuc::CucError) -> Self {
TimestampError::CucError(e)
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
#[derive(Debug, Clone)]
pub enum StdTimestampError {
SystemTimeError(SystemTimeError),
TimestampError(TimestampError),
}
#[cfg(feature = "std")]
impl From<TimestampError> for StdTimestampError {
fn from(v: TimestampError) -> Self {
Self::TimestampError(v)
}
}
#[cfg(feature = "std")]
impl From<SystemTimeError> for StdTimestampError {
fn from(v: SystemTimeError) -> Self {
Self::SystemTimeError(v)
}
}
impl Display for TimestampError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
TimestampError::InvalidTimeCode(time_code, raw_val) => {
write!(
f,
"invalid raw time code value {} for time code {:?}",
raw_val, time_code
)
}
TimestampError::CdsError(e) => {
write!(f, "cds error {}", e)
}
TimestampError::CucError(e) => {
write!(f, "cuc error {}", e)
}
TimestampError::ByteConversionError(e) => {
write!(f, "byte conversion error {}", e)
}
TimestampError::CustomEpochNotSupported => {
write!(f, "custom epochs are not supported")
}
}
}
}
#[cfg(feature = "std")]
impl Error for TimestampError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
TimestampError::ByteConversionError(e) => Some(e),
TimestampError::CdsError(e) => Some(e),
TimestampError::CucError(e) => Some(e),
_ => None,
}
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn seconds_since_epoch() -> f64 {
SystemTime::now()
.duration_since(SystemTime::UNIX_EPOCH)
.expect("System time generation failed")
.as_secs_f64()
}
/// Convert UNIX days to CCSDS days
///
/// - CCSDS epoch: 1958 January 1
/// - UNIX Epoch: 1970 January 1
pub const fn unix_to_ccsds_days(unix_days: i64) -> i64 {
unix_days - DAYS_CCSDS_TO_UNIX as i64
}
/// Convert CCSDS days to UNIX days
///
/// - CCSDS epoch: 1958 January 1
/// - UNIX Epoch: 1970 January 1
pub const fn ccsds_to_unix_days(ccsds_days: i64) -> i64 {
ccsds_days + DAYS_CCSDS_TO_UNIX as i64
}
/// Similar to [unix_to_ccsds_days] but converts the epoch instead, which is the number of elpased
/// seconds since the CCSDS and UNIX epoch times.
pub const fn unix_epoch_to_ccsds_epoch(unix_epoch: u64) -> u64 {
(unix_epoch as i64 - (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)) as u64
}
pub const fn ccsds_epoch_to_unix_epoch(ccsds_epoch: u64) -> u64 {
(ccsds_epoch as i64 + (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)) as u64
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn ms_of_day_using_sysclock() -> u32 {
ms_of_day(seconds_since_epoch())
}
pub fn ms_of_day(seconds_since_epoch: f64) -> u32 {
let fraction_ms = seconds_since_epoch - seconds_since_epoch.floor();
let ms_of_day: u32 = (((seconds_since_epoch.floor() as u32 % SECONDS_PER_DAY) * 1000) as f64
+ fraction_ms)
.floor() as u32;
ms_of_day
}
pub trait TimeWriter {
/// Generic function to convert write a timestamp into a raw buffer.
/// Returns the number of written bytes on success.
fn write_to_bytes(&self, bytes: &mut [u8]) -> Result<usize, TimestampError>;
}
pub trait TimeReader {
fn from_bytes(buf: &[u8]) -> Result<Self, TimestampError>
where
Self: Sized;
}
/// Trait for generic CCSDS time providers.
pub trait CcsdsTimeProvider {
fn len_as_bytes(&self) -> usize;
/// Returns the pfield of the time provider. The pfield can have one or two bytes depending
/// on the extension bit (first bit). The time provider should returns a tuple where the first
/// entry denotes the length of the pfield and the second entry is the value of the pfield
/// in big endian format.
fn p_field(&self) -> (usize, [u8; 2]);
fn ccdsd_time_code(&self) -> CcsdsTimeCodes;
fn unix_seconds(&self) -> i64;
fn date_time(&self) -> Option<DateTime<Utc>>;
}
#[cfg(all(test, feature = "std"))]
mod tests {
use super::*;
#[test]
fn test_days_conversion() {
assert_eq!(unix_to_ccsds_days(DAYS_CCSDS_TO_UNIX.into()), 0);
assert_eq!(ccsds_to_unix_days(0), DAYS_CCSDS_TO_UNIX.into());
}
#[test]
fn test_get_current_time() {
let sec_floats = seconds_since_epoch();
assert!(sec_floats > 0.0);
}
#[test]
fn test_ccsds_epoch() {
let now = SystemTime::now()
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap();
let unix_epoch = now.as_secs();
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs());
assert!(ccsds_epoch > unix_epoch);
assert_eq!((ccsds_epoch - unix_epoch) % SECONDS_PER_DAY as u64, 0);
let days_diff = (ccsds_epoch - unix_epoch) / SECONDS_PER_DAY as u64;
assert_eq!(days_diff, -DAYS_CCSDS_TO_UNIX as u64);
}
}