spacepackets/src/time/cuc.rs

1126 lines
42 KiB
Rust

//! Module to generate or read CCSDS Unsegmented (CUC) timestamps as specified in
//! [CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf) section 3.2 .
//!
//! The core data structure to do this is the [TimeProviderCcsdsEpoch] struct.
use super::*;
use chrono::Datelike;
use core::fmt::Debug;
use core::ops::{Add, AddAssign};
use core::time::Duration;
const MIN_CUC_LEN: usize = 2;
/// Base value for the preamble field for a time field parser to determine the time field type.
pub const P_FIELD_BASE: u8 = (CcsdsTimeCodes::CucCcsdsEpoch as u8) << 4;
/// Maximum length if the preamble field is not extended.
pub const MAX_CUC_LEN_SMALL_PREAMBLE: usize = 8;
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum FractionalResolution {
/// No fractional part, only second resolution
Seconds = 0,
/// 256 fractional parts, resulting in 1/255 ~= 4 ms fractional resolution
FourMs = 1,
/// 65535 fractional parts, resulting in 1/65535 ~= 15 us fractional resolution
FifteenUs = 2,
/// 16777215 fractional parts, resulting in 1/16777215 ~= 60 ns fractional resolution
SixtyNs = 3,
}
impl TryFrom<u8> for FractionalResolution {
type Error = ();
fn try_from(v: u8) -> Result<Self, Self::Error> {
match v {
0 => Ok(FractionalResolution::Seconds),
1 => Ok(FractionalResolution::FourMs),
2 => Ok(FractionalResolution::FifteenUs),
3 => Ok(FractionalResolution::SixtyNs),
_ => Err(()),
}
}
}
/// Please note that this function will panic if the fractional value is not smaller than
/// the maximum number of fractions allowed for the particular resolution.
/// (e.g. passing 270 when the resolution only allows 255 values).
#[inline]
pub fn convert_fractional_part_to_ns(fractional_part: FractionalPart) -> u64 {
let div = fractional_res_to_div(fractional_part.0);
assert!(fractional_part.1 < div);
10_u64.pow(9) * fractional_part.1 as u64 / div as u64
}
#[inline(always)]
pub const fn fractional_res_to_div(res: FractionalResolution) -> u32 {
2_u32.pow(8 * res as u32) - 1
}
/// Calculate the fractional part for a given resolution and subsecond nanoseconds.
/// Please note that this function will panic if the passed nanoseconds exceeds 1 second
/// as a nanosecond (10 to the power of 9). Furthermore, it will return [None] if the
/// given resolution is [FractionalResolution::Seconds].
pub fn fractional_part_from_subsec_ns(
res: FractionalResolution,
ns: u64,
) -> Option<FractionalPart> {
if res == FractionalResolution::Seconds {
return None;
}
let sec_as_ns = 10_u64.pow(9);
if ns > sec_as_ns {
panic!("passed nanosecond value larger than 1 second");
}
let resolution = fractional_res_to_div(res) as u64;
// Use integer division because this can reduce code size of really small systems.
// First determine the nanoseconds for the smallest segment given the resolution.
// Then divide by that to find out the fractional part. For the calculation of the smallest
// fraction, we perform a ceiling division. This is because if we would use the default
// flooring division, we would divide by a smaller value, thereby allowing the calculation to
// invalid fractional parts which are too large. For the division of the nanoseconds by the
// smallest fraction, a flooring division is correct.
// The multiplication with 100000 is necessary to avoid precision loss during integer division.
// TODO: Floating point division might actually be faster option, but requires additional
// code on small embedded systems..
let fractional_part = ns * 100000 / ((sec_as_ns * 100000 + resolution) / resolution);
// Floating point division.
//let fractional_part = (ns as f64 / ((sec_as_ns as f64) / resolution as f64)).floor() as u32;
Some(FractionalPart(res, fractional_part as u32))
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum CucError {
InvalidCounterWidth(u8),
InvalidFractionResolution(FractionalResolution),
/// Invalid counter supplied.
InvalidCounter(u8, u64),
InvalidFractions(FractionalResolution, u64),
}
impl Display for CucError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
CucError::InvalidCounterWidth(w) => {
write!(f, "invalid cuc counter byte width {w}")
}
CucError::InvalidFractionResolution(w) => {
write!(f, "invalid cuc fractional part byte width {w:?}")
}
CucError::InvalidCounter(w, c) => {
write!(f, "invalid cuc counter {c} for width {w}")
}
CucError::InvalidFractions(w, c) => {
write!(f, "invalid cuc fractional part {c} for width {w:?}")
}
}
}
}
#[cfg(feature = "std")]
impl Error for CucError {}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct WidthCounterPair(u8, u32);
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct FractionalPart(FractionalResolution, u32);
/// This object is the abstraction for the CCSDS Unsegmented Time Code (CUC) using the CCSDS epoch
/// and a small preamble field.
///
/// It has the capability to generate and read timestamps as specified in the CCSDS 301.0-B-4
/// section 3.2 . The preamble field only has one byte, which allows a time code representation
/// through the year 2094. The time is represented as a simple binary counter starting from the
/// fixed CCSDS epoch (1958-01-01T00:00:00+00:00). It is possible to provide subsecond accuracy
/// using the fractional field with various available [resolutions][FractionalResolution].
///
/// Having a preamble field of one byte limits the width of the counter
/// type (generally seconds) to 4 bytes and the width of the fractions type to 3 bytes. This limits
/// the maximum time stamp size to [MAX_CUC_LEN_SMALL_PREAMBLE] (8 bytes).
///
/// # Example
///
/// ```
/// use spacepackets::time::cuc::{FractionalResolution, TimeProviderCcsdsEpoch};
/// use spacepackets::time::{TimeWriter, CcsdsTimeCodes, TimeReader, CcsdsTimeProvider};
///
/// // Highest fractional resolution
/// let timestamp_now = TimeProviderCcsdsEpoch::from_now(FractionalResolution::SixtyNs).expect("creating cuc stamp failed");
/// let mut raw_stamp = [0; 16];
/// {
/// let written = timestamp_now.write_to_bytes(&mut raw_stamp).expect("writing timestamp failed");
/// assert_eq!((raw_stamp[0] >> 4) & 0b111, CcsdsTimeCodes::CucCcsdsEpoch as u8);
/// // 1 byte preamble + 4 byte counter + 3 byte fractional part
/// assert_eq!(written, 8);
/// }
/// {
/// let read_result = TimeProviderCcsdsEpoch::from_bytes(&raw_stamp);
/// assert!(read_result.is_ok());
/// let stamp_deserialized = read_result.unwrap();
/// assert_eq!(stamp_deserialized, timestamp_now);
/// }
/// ```
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct TimeProviderCcsdsEpoch {
pfield: u8,
counter: WidthCounterPair,
fractions: Option<FractionalPart>,
}
#[inline]
pub fn pfield_len(pfield: u8) -> usize {
if ((pfield >> 7) & 0b1) == 1 {
return 2;
}
1
}
impl TimeProviderCcsdsEpoch {
/// Create a time provider with a four byte counter and no fractional part.
pub fn new(counter: u32) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(WidthCounterPair(4, counter), None).unwrap()
}
/// Like [TimeProviderCcsdsEpoch::new] but allow to supply a fractional part as well.
pub fn new_with_fractions(counter: u32, fractions: FractionalPart) -> Result<Self, CucError> {
Self::new_generic(WidthCounterPair(4, counter), Some(fractions))
}
/// Fractions with a resolution of ~ 4 ms
pub fn new_with_coarse_fractions(counter: u32, subsec_fractions: u8) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(
WidthCounterPair(4, counter),
Some(FractionalPart(
FractionalResolution::FourMs,
subsec_fractions as u32,
)),
)
.unwrap()
}
/// Fractions with a resolution of ~ 16 us
pub fn new_with_medium_fractions(counter: u32, subsec_fractions: u16) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(
WidthCounterPair(4, counter),
Some(FractionalPart(
FractionalResolution::FifteenUs,
subsec_fractions as u32,
)),
)
.unwrap()
}
/// Fractions with a resolution of ~ 60 ns. The fractional part value is limited by the
/// 24 bits of the fractional field, so this function will fail with
/// [CucError::InvalidFractions] if the fractional value exceeds the value.
pub fn new_with_fine_fractions(counter: u32, subsec_fractions: u32) -> Result<Self, CucError> {
Self::new_generic(
WidthCounterPair(4, counter),
Some(FractionalPart(
FractionalResolution::SixtyNs,
subsec_fractions,
)),
)
}
/// This function will return the current time as a CUC timestamp.
/// The counter width will always be set to 4 bytes because the normal CCSDS epoch will overflow
/// when using less than that.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now(fraction_resolution: FractionalResolution) -> Result<Self, StdTimestampError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs() as i64);
if fraction_resolution == FractionalResolution::Seconds {
return Ok(Self::new(ccsds_epoch as u32));
}
let fractions =
fractional_part_from_subsec_ns(fraction_resolution, now.subsec_nanos() as u64);
Self::new_with_fractions(ccsds_epoch as u32, fractions.unwrap())
.map_err(|e| StdTimestampError::TimestampError(e.into()))
}
/// Updates the current time stamp from the current time. The fractional field width remains
/// the same and will be updated accordingly.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn update_from_now(&mut self) -> Result<(), StdTimestampError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
self.counter.1 = unix_epoch_to_ccsds_epoch(now.as_secs() as i64) as u32;
if self.fractions.is_some() {
self.fractions = fractional_part_from_subsec_ns(
self.fractions.unwrap().0,
now.subsec_nanos() as u64,
);
}
Ok(())
}
pub fn from_date_time(
dt: &DateTime<Utc>,
res: FractionalResolution,
) -> Result<Self, TimestampError> {
// Year before CCSDS epoch is invalid.
if dt.year() < 1958 {
return Err(TimestampError::DateBeforeCcsdsEpoch(*dt));
}
Self::new_generic(
WidthCounterPair(4, dt.timestamp() as u32),
fractional_part_from_subsec_ns(res, dt.timestamp_subsec_nanos() as u64),
)
.map_err(|e| e.into())
}
pub fn from_unix_stamp(
unix_stamp: &UnixTimestamp,
res: FractionalResolution,
) -> Result<Self, TimestampError> {
let ccsds_epoch = unix_epoch_to_ccsds_epoch(unix_stamp.unix_seconds);
// Negative CCSDS epoch is invalid.
if ccsds_epoch < 0 {
return Err(TimestampError::DateBeforeCcsdsEpoch(
unix_stamp.as_date_time().unwrap(),
));
}
if ccsds_epoch > u32::MAX as i64 {
return Err(CucError::InvalidCounter(4, ccsds_epoch as u64).into());
}
let mut fractions = None;
if let Some(subsec_millis) = unix_stamp.subsecond_millis {
fractions = fractional_part_from_subsec_ns(res, subsec_millis as u64 * 10_u64.pow(6));
}
Self::new_generic(WidthCounterPair(4, ccsds_epoch as u32), fractions).map_err(|e| e.into())
}
pub fn new_u16_counter(counter: u16) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(WidthCounterPair(2, counter as u32), None).unwrap()
}
pub fn width_counter_pair(&self) -> WidthCounterPair {
self.counter
}
pub fn width_fractions_pair(&self) -> Option<FractionalPart> {
self.fractions
}
pub fn set_fractions(&mut self, fractions: FractionalPart) -> Result<(), CucError> {
Self::verify_fractions_width(fractions.0)?;
Self::verify_fractions_value(fractions)?;
self.fractions = Some(fractions);
self.update_p_field_fractions();
Ok(())
}
/// Set a fractional resolution. Please note that this function will reset the fractional value
/// to 0 if the resolution changes.
pub fn set_fractional_resolution(&mut self, res: FractionalResolution) {
if res == FractionalResolution::Seconds {
self.fractions = None;
}
let mut update_fractions = true;
if let Some(existing_fractions) = self.fractions {
if existing_fractions.0 == res {
update_fractions = false;
}
};
if update_fractions {
self.fractions = Some(FractionalPart(res, 0));
}
}
pub fn new_generic(
counter: WidthCounterPair,
fractions: Option<FractionalPart>,
) -> Result<Self, CucError> {
Self::verify_counter_width(counter.0)?;
if counter.1 > (2u64.pow(counter.0 as u32 * 8) - 1) as u32 {
return Err(CucError::InvalidCounter(counter.0, counter.1 as u64));
}
if let Some(fractions) = fractions {
Self::verify_fractions_width(fractions.0)?;
Self::verify_fractions_value(fractions)?;
}
Ok(Self {
pfield: Self::build_p_field(counter.0, fractions.map(|v| v.0)),
counter,
fractions,
})
}
fn build_p_field(counter_width: u8, fractions_width: Option<FractionalResolution>) -> u8 {
let mut pfield = P_FIELD_BASE;
if !(1..=4).contains(&counter_width) {
// Okay to panic here, this function is private and all input values should
// have been sanitized
panic!("invalid counter width {} for cuc timestamp", counter_width);
}
pfield |= (counter_width - 1) << 2;
if let Some(fractions_width) = fractions_width {
if !(1..=3).contains(&(fractions_width as u8)) {
// Okay to panic here, this function is private and all input values should
// have been sanitized
panic!(
"invalid fractions width {:?} for cuc timestamp",
fractions_width
);
}
pfield |= fractions_width as u8;
}
pfield
}
fn update_p_field_fractions(&mut self) {
self.pfield &= !(0b11);
if let Some(fractions) = self.fractions {
self.pfield |= fractions.0 as u8;
}
}
#[inline]
pub fn len_cntr_from_pfield(pfield: u8) -> u8 {
((pfield >> 2) & 0b11) + 1
}
#[inline]
pub fn len_fractions_from_pfield(pfield: u8) -> u8 {
pfield & 0b11
}
#[inline]
fn unix_seconds(&self) -> i64 {
ccsds_epoch_to_unix_epoch(self.counter.1 as i64)
}
/// This returns the length of the individual components of the CUC timestamp in addition
/// to the total size.
///
/// This function will return a tuple where the first value is the byte width of the
/// counter, the second value is the byte width of the fractional part, and the third
/// components is the total size.
pub fn len_components_and_total_from_pfield(pfield: u8) -> (u8, u8, usize) {
let base_len: usize = 1;
let cntr_len = Self::len_cntr_from_pfield(pfield);
let fractions_len = Self::len_fractions_from_pfield(pfield);
(
cntr_len,
fractions_len,
base_len + cntr_len as usize + fractions_len as usize,
)
}
pub fn len_packed_from_pfield(pfield: u8) -> usize {
let mut base_len: usize = 1;
base_len += Self::len_cntr_from_pfield(pfield) as usize;
base_len += Self::len_fractions_from_pfield(pfield) as usize;
base_len
}
/// Verifies the raw width parameter.
fn verify_counter_width(width: u8) -> Result<(), CucError> {
if width == 0 || width > 4 {
return Err(CucError::InvalidCounterWidth(width));
}
Ok(())
}
fn verify_fractions_width(width: FractionalResolution) -> Result<(), CucError> {
if width as u8 > 3 {
return Err(CucError::InvalidFractionResolution(width));
}
Ok(())
}
fn verify_fractions_value(val: FractionalPart) -> Result<(), CucError> {
if val.1 > 2u32.pow((val.0 as u32) * 8) - 1 {
return Err(CucError::InvalidFractions(val.0, val.1 as u64));
}
Ok(())
}
}
impl TimeReader for TimeProviderCcsdsEpoch {
fn from_bytes(buf: &[u8]) -> Result<Self, TimestampError>
where
Self: Sized,
{
if buf.len() < MIN_CUC_LEN {
return Err(TimestampError::ByteConversionError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
expected: MIN_CUC_LEN,
found: buf.len(),
}),
));
}
match ccsds_time_code_from_p_field(buf[0]) {
Ok(code) => {
if code != CcsdsTimeCodes::CucCcsdsEpoch {
return Err(TimestampError::InvalidTimeCode(
CcsdsTimeCodes::CucCcsdsEpoch,
code as u8,
));
}
}
Err(raw) => {
return Err(TimestampError::InvalidTimeCode(
CcsdsTimeCodes::CucCcsdsEpoch,
raw,
))
}
}
let (cntr_len, fractions_len, total_len) =
Self::len_components_and_total_from_pfield(buf[0]);
if buf.len() < total_len {
return Err(TimestampError::ByteConversionError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
expected: total_len,
found: buf.len(),
}),
));
}
let mut current_idx = 1;
let counter = match cntr_len {
1 => buf[current_idx] as u32,
2 => u16::from_be_bytes(buf[current_idx..current_idx + 2].try_into().unwrap()) as u32,
3 => {
let mut tmp_buf: [u8; 4] = [0; 4];
tmp_buf[1..4].copy_from_slice(&buf[current_idx..current_idx + 3]);
u32::from_be_bytes(tmp_buf)
}
4 => u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap()),
_ => panic!("unreachable match arm"),
};
current_idx += cntr_len as usize;
let mut fractions = None;
if fractions_len > 0 {
match fractions_len {
1 => {
fractions = Some(FractionalPart(
fractions_len.try_into().unwrap(),
buf[current_idx] as u32,
))
}
2 => {
fractions = Some(FractionalPart(
fractions_len.try_into().unwrap(),
u16::from_be_bytes(buf[current_idx..current_idx + 2].try_into().unwrap())
as u32,
))
}
3 => {
let mut tmp_buf: [u8; 4] = [0; 4];
tmp_buf[1..4].copy_from_slice(&buf[current_idx..current_idx + 3]);
fractions = Some(FractionalPart(
fractions_len.try_into().unwrap(),
u32::from_be_bytes(tmp_buf),
))
}
_ => panic!("unreachable match arm"),
}
}
let provider = Self::new_generic(WidthCounterPair(cntr_len, counter), fractions)?;
Ok(provider)
}
}
impl TimeWriter for TimeProviderCcsdsEpoch {
fn write_to_bytes(&self, bytes: &mut [u8]) -> Result<usize, TimestampError> {
// Cross check the sizes of the counters against byte widths in the ctor
if bytes.len() < self.len_as_bytes() {
return Err(TimestampError::ByteConversionError(
ByteConversionError::ToSliceTooSmall(SizeMissmatch {
found: bytes.len(),
expected: self.len_as_bytes(),
}),
));
}
bytes[0] = self.pfield;
let mut current_idx: usize = 1;
match self.counter.0 {
1 => {
bytes[current_idx] = self.counter.1 as u8;
}
2 => {
bytes[current_idx..current_idx + 2]
.copy_from_slice(&(self.counter.1 as u16).to_be_bytes());
}
3 => {
bytes[current_idx..current_idx + 3]
.copy_from_slice(&self.counter.1.to_be_bytes()[1..4]);
}
4 => {
bytes[current_idx..current_idx + 4].copy_from_slice(&self.counter.1.to_be_bytes());
}
// Should never happen
_ => panic!("invalid counter width value"),
}
current_idx += self.counter.0 as usize;
if let Some(fractions) = self.fractions {
match fractions.0 {
FractionalResolution::FourMs => bytes[current_idx] = fractions.1 as u8,
FractionalResolution::FifteenUs => bytes[current_idx..current_idx + 2]
.copy_from_slice(&(fractions.1 as u16).to_be_bytes()),
FractionalResolution::SixtyNs => bytes[current_idx..current_idx + 3]
.copy_from_slice(&fractions.1.to_be_bytes()[1..4]),
// Should also never happen
_ => panic!("invalid fractions value"),
}
current_idx += fractions.0 as usize;
}
Ok(current_idx)
}
}
impl CcsdsTimeProvider for TimeProviderCcsdsEpoch {
fn len_as_bytes(&self) -> usize {
Self::len_packed_from_pfield(self.pfield)
}
fn p_field(&self) -> (usize, [u8; 2]) {
(1, [self.pfield, 0])
}
fn ccdsd_time_code(&self) -> CcsdsTimeCodes {
CcsdsTimeCodes::CucCcsdsEpoch
}
fn unix_seconds(&self) -> i64 {
self.unix_seconds()
}
fn subsecond_millis(&self) -> Option<u16> {
if let Some(fractions) = self.fractions {
if fractions.0 == FractionalResolution::Seconds {
return None;
}
// Rounding down here is the correct approach.
return Some((convert_fractional_part_to_ns(fractions) / 10_u32.pow(6) as u64) as u16);
}
None
}
fn date_time(&self) -> Option<DateTime<Utc>> {
let unix_seconds = self.unix_seconds();
let ns = if let Some(fractional_part) = self.fractions {
convert_fractional_part_to_ns(fractional_part)
} else {
0
};
if let LocalResult::Single(res) = Utc.timestamp_opt(unix_seconds, ns as u32) {
return Some(res);
}
None
}
}
fn get_provider_values_after_duration_addition(
provider: &TimeProviderCcsdsEpoch,
duration: Duration,
) -> (u32, Option<FractionalPart>) {
let mut new_counter = provider.counter.1;
let subsec_nanos = duration.subsec_nanos();
let mut increment_counter = |amount: u32| {
let mut sum: u64 = 0;
let mut counter_inc_handler = |max_val: u64| {
sum = new_counter as u64 + amount as u64;
if sum >= max_val {
new_counter = (sum % max_val) as u32;
return;
}
new_counter = sum as u32;
};
match provider.counter.0 {
1 => counter_inc_handler(u8::MAX as u64),
2 => counter_inc_handler(u16::MAX as u64),
3 => counter_inc_handler((2_u32.pow(24) - 1) as u64),
4 => counter_inc_handler(u32::MAX as u64),
_ => {
// Should never happen
panic!("invalid counter width")
}
}
};
let fractional_part = if let Some(fractional_part) = &provider.fractions {
let fractional_increment =
fractional_part_from_subsec_ns(fractional_part.0, subsec_nanos as u64).unwrap();
let mut increment_fractions = |resolution| {
let mut new_fractions = fractional_part.1 + fractional_increment.1;
let max_fractions = fractional_res_to_div(resolution);
if new_fractions > max_fractions {
increment_counter(1);
new_fractions -= max_fractions;
}
Some(FractionalPart(resolution, new_fractions))
};
match fractional_increment.0 {
FractionalResolution::Seconds => None,
_ => increment_fractions(fractional_increment.0),
}
} else {
None
};
increment_counter(duration.as_secs() as u32);
(new_counter, fractional_part)
}
impl AddAssign<Duration> for TimeProviderCcsdsEpoch {
fn add_assign(&mut self, duration: Duration) {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(self, duration);
self.counter.1 = new_counter;
if self.fractions.is_some() {
self.fractions = new_fractional_part;
}
}
}
impl Add<Duration> for TimeProviderCcsdsEpoch {
type Output = Self;
fn add(self, duration: Duration) -> Self::Output {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(&self, duration);
if let Some(fractional_part) = new_fractional_part {
// The generated fractional part should always be valid, so its okay to unwrap here.
return Self::new_with_fractions(new_counter, fractional_part).unwrap();
}
Self::new(new_counter)
}
}
impl Add<Duration> for &TimeProviderCcsdsEpoch {
type Output = TimeProviderCcsdsEpoch;
fn add(self, duration: Duration) -> Self::Output {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(self, duration);
if let Some(fractional_part) = new_fractional_part {
// The generated fractional part should always be valid, so its okay to unwrap here.
return Self::Output::new_with_fractions(new_counter, fractional_part).unwrap();
}
Self::Output::new(new_counter)
}
}
#[cfg(test)]
mod tests {
use super::*;
use chrono::{Datelike, Timelike};
#[allow(unused_imports)]
use std::println;
#[test]
fn test_basic_zero_epoch() {
let zero_cuc = TimeProviderCcsdsEpoch::new(0);
assert_eq!(zero_cuc.len_as_bytes(), 5);
assert_eq!(zero_cuc.ccdsd_time_code(), CcsdsTimeCodes::CucCcsdsEpoch);
let counter = zero_cuc.width_counter_pair();
assert_eq!(counter.0, 4);
assert_eq!(counter.1, 0);
let fractions = zero_cuc.width_fractions_pair();
assert!(fractions.is_none());
let dt = zero_cuc.date_time();
assert!(dt.is_some());
let dt = dt.unwrap();
assert_eq!(dt.year(), 1958);
assert_eq!(dt.month(), 1);
assert_eq!(dt.day(), 1);
assert_eq!(dt.hour(), 0);
assert_eq!(dt.minute(), 0);
assert_eq!(dt.second(), 0);
}
#[test]
fn test_write_no_fractions() {
let mut buf: [u8; 16] = [0; 16];
let zero_cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(4, 0x20102030), None);
assert!(zero_cuc.is_ok());
let zero_cuc = zero_cuc.unwrap();
let res = zero_cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
assert!(zero_cuc.subsecond_millis().is_none());
assert_eq!(zero_cuc.len_as_bytes(), 5);
assert_eq!(pfield_len(buf[0]), 1);
let written = res.unwrap();
assert_eq!(written, 5);
assert_eq!((buf[0] >> 7) & 0b1, 0);
let time_code = ccsds_time_code_from_p_field(buf[0]);
assert!(time_code.is_ok());
assert_eq!(time_code.unwrap(), CcsdsTimeCodes::CucCcsdsEpoch);
assert_eq!((buf[0] >> 2) & 0b11, 0b11);
assert_eq!(buf[0] & 0b11, 0);
let raw_counter = u32::from_be_bytes(buf[1..5].try_into().unwrap());
assert_eq!(raw_counter, 0x20102030);
assert_eq!(buf[5], 0);
}
#[test]
fn test_datetime_now() {
let now = Utc::now();
let cuc_now = TimeProviderCcsdsEpoch::from_now(FractionalResolution::SixtyNs);
assert!(cuc_now.is_ok());
let cuc_now = cuc_now.unwrap();
let dt_opt = cuc_now.date_time();
assert!(dt_opt.is_some());
let dt = dt_opt.unwrap();
let diff = dt - now;
assert!(diff.num_milliseconds() < 1000);
println!("datetime from cuc: {}", dt);
println!("datetime now: {}", now);
}
#[test]
fn test_read_no_fractions() {
let mut buf: [u8; 16] = [0; 16];
let zero_cuc =
TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(4, 0x20102030), None).unwrap();
zero_cuc.write_to_bytes(&mut buf).unwrap();
let cuc_read_back =
TimeProviderCcsdsEpoch::from_bytes(&buf).expect("reading cuc timestamp failed");
assert_eq!(cuc_read_back, zero_cuc);
assert_eq!(cuc_read_back.width_counter_pair().1, 0x20102030);
assert_eq!(cuc_read_back.width_fractions_pair(), None);
}
#[test]
fn invalid_read_len() {
let mut buf: [u8; 16] = [0; 16];
for i in 0..2 {
let res = TimeProviderCcsdsEpoch::from_bytes(&buf[0..i]);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::ByteConversionError(ByteConversionError::FromSliceTooSmall(e)) =
err
{
assert_eq!(e.found, i);
assert_eq!(e.expected, 2);
}
}
let large_stamp = TimeProviderCcsdsEpoch::new_with_fine_fractions(22, 300).unwrap();
large_stamp.write_to_bytes(&mut buf).unwrap();
for i in 2..large_stamp.len_as_bytes() - 1 {
let res = TimeProviderCcsdsEpoch::from_bytes(&buf[0..i]);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::ByteConversionError(ByteConversionError::FromSliceTooSmall(e)) =
err
{
assert_eq!(e.found, i);
assert_eq!(e.expected, large_stamp.len_as_bytes());
}
}
}
#[test]
fn write_and_read_tiny_stamp() {
let mut buf = [0; 2];
let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(1, 200), None);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
assert_eq!(cuc.len_as_bytes(), 2);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 2);
assert_eq!(buf[1], 200);
let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(cuc_read_back.is_ok());
let cuc_read_back = cuc_read_back.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn write_slightly_larger_stamp() {
let mut buf = [0; 4];
let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(2, 40000), None);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
assert_eq!(cuc.len_as_bytes(), 3);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 3);
assert_eq!(u16::from_be_bytes(buf[1..3].try_into().unwrap()), 40000);
let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(cuc_read_back.is_ok());
let cuc_read_back = cuc_read_back.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn invalid_buf_len_for_read() {}
#[test]
fn write_read_three_byte_cntr_stamp() {
let mut buf = [0; 4];
let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(3, 2_u32.pow(24) - 2), None);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
assert_eq!(cuc.len_as_bytes(), 4);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 4);
let mut temp_buf = [0; 4];
temp_buf[1..4].copy_from_slice(&buf[1..4]);
assert_eq!(u32::from_be_bytes(temp_buf), 2_u32.pow(24) - 2);
let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(cuc_read_back.is_ok());
let cuc_read_back = cuc_read_back.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn test_write_invalid_buf() {
let mut buf: [u8; 16] = [0; 16];
let res = TimeProviderCcsdsEpoch::new_with_fine_fractions(0, 0);
let cuc = res.unwrap();
for i in 0..cuc.len_as_bytes() - 1 {
let err = cuc.write_to_bytes(&mut buf[0..i]);
assert!(err.is_err());
let err = err.unwrap_err();
if let TimestampError::ByteConversionError(ByteConversionError::ToSliceTooSmall(e)) =
err
{
assert_eq!(e.expected, cuc.len_as_bytes());
assert_eq!(e.found, i);
} else {
panic!("unexpected error: {}", err);
}
}
}
#[test]
fn invalid_ccsds_stamp_type() {
let mut buf: [u8; 16] = [0; 16];
buf[0] |= (CcsdsTimeCodes::CucAgencyEpoch as u8) << 4;
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::InvalidTimeCode(code, raw) = err {
assert_eq!(code, CcsdsTimeCodes::CucCcsdsEpoch);
assert_eq!(raw, CcsdsTimeCodes::CucAgencyEpoch as u8);
} else {
panic!("unexpected error: {}", err);
}
}
#[test]
fn test_write_with_coarse_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc = TimeProviderCcsdsEpoch::new_with_coarse_fractions(0x30201060, 120);
assert!(cuc.fractions.is_some());
assert_eq!(cuc.fractions.unwrap().1, 120);
assert_eq!(cuc.fractions.unwrap().0, FractionalResolution::FourMs);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 6);
assert_eq!(buf[5], 120);
assert_eq!(buf[6], 0);
assert_eq!(
u32::from_be_bytes(buf[1..5].try_into().unwrap()),
0x30201060
);
}
#[test]
fn test_read_with_coarse_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc = TimeProviderCcsdsEpoch::new_with_coarse_fractions(0x30201060, 120);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_ok());
let read_back = res.unwrap();
assert_eq!(read_back, cuc);
}
#[test]
fn test_write_with_medium_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc = TimeProviderCcsdsEpoch::new_with_medium_fractions(0x30303030, 30000);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 7);
assert_eq!(u16::from_be_bytes(buf[5..7].try_into().unwrap()), 30000);
assert_eq!(buf[7], 0);
}
#[test]
fn test_read_with_medium_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc = TimeProviderCcsdsEpoch::new_with_medium_fractions(0x30303030, 30000);
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_ok());
let cuc_read_back = res.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn test_write_with_fine_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc =
TimeProviderCcsdsEpoch::new_with_fine_fractions(0x30303030, u16::MAX as u32 + 60000);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
let res = cuc.write_to_bytes(&mut buf);
let written = res.unwrap();
assert_eq!(written, 8);
let mut dummy_buf: [u8; 4] = [0; 4];
dummy_buf[1..4].copy_from_slice(&buf[5..8]);
assert_eq!(u32::from_be_bytes(dummy_buf), u16::MAX as u32 + 60000);
assert_eq!(buf[8], 0);
}
#[test]
fn test_read_with_fine_fractions() {
let mut buf: [u8; 16] = [0; 16];
let cuc =
TimeProviderCcsdsEpoch::new_with_fine_fractions(0x30303030, u16::MAX as u32 + 60000);
assert!(cuc.is_ok());
let cuc = cuc.unwrap();
let res = cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_ok());
let cuc_read_back = res.unwrap();
assert_eq!(cuc_read_back, cuc);
}
#[test]
fn test_fractional_converter() {
let ns = convert_fractional_part_to_ns(FractionalPart(FractionalResolution::FourMs, 2));
// The formula for this is 2/255 * 10e9 = 7.843.137.
assert_eq!(ns, 7843137);
// This is the largest value we should be able to pass without this function panicking.
let ns = convert_fractional_part_to_ns(FractionalPart(
FractionalResolution::SixtyNs,
2_u32.pow(24) - 2,
));
assert_eq!(ns, 999999940);
}
#[test]
#[should_panic]
fn test_fractional_converter_invalid_input() {
convert_fractional_part_to_ns(FractionalPart(FractionalResolution::FourMs, 256));
}
#[test]
#[should_panic]
fn test_fractional_converter_invalid_input_2() {
convert_fractional_part_to_ns(FractionalPart(
FractionalResolution::SixtyNs,
2_u32.pow(32) - 1,
));
}
#[test]
fn fractional_part_formula() {
let fractional_part =
fractional_part_from_subsec_ns(FractionalResolution::FourMs, 7843138).unwrap();
assert_eq!(fractional_part.1, 2);
}
#[test]
fn fractional_part_formula_2() {
let fractional_part =
fractional_part_from_subsec_ns(FractionalResolution::FourMs, 12000000).unwrap();
assert_eq!(fractional_part.1, 3);
}
#[test]
fn fractional_part_formula_3() {
let one_fraction_with_width_two_in_ns =
10_u64.pow(9) as f64 / (2_u32.pow(8 * 2) - 1) as f64;
assert_eq!(one_fraction_with_width_two_in_ns.ceil(), 15260.0);
let hundred_fractions_and_some =
(100.0 * one_fraction_with_width_two_in_ns).floor() as u64 + 7000;
let fractional_part = fractional_part_from_subsec_ns(
FractionalResolution::FifteenUs,
hundred_fractions_and_some,
)
.unwrap();
assert_eq!(fractional_part.1, 100);
// Using exactly 101.0 can yield values which will later be rounded down to 100
let hundred_and_one_fractions =
(101.001 * one_fraction_with_width_two_in_ns).floor() as u64;
let fractional_part = fractional_part_from_subsec_ns(
FractionalResolution::FifteenUs,
hundred_and_one_fractions,
)
.unwrap();
assert_eq!(fractional_part.1, 101);
}
#[test]
fn update_fractions() {
let mut stamp = TimeProviderCcsdsEpoch::new(2000);
let res = stamp.set_fractions(FractionalPart(FractionalResolution::SixtyNs, 5000));
assert!(res.is_ok());
assert!(stamp.fractions.is_some());
let fractions = stamp.fractions.unwrap();
assert_eq!(fractions.0, FractionalResolution::SixtyNs);
assert_eq!(fractions.1, 5000);
}
#[test]
fn set_fract_resolution() {
let mut stamp = TimeProviderCcsdsEpoch::new(2000);
stamp.set_fractional_resolution(FractionalResolution::SixtyNs);
assert!(stamp.fractions.is_some());
let fractions = stamp.fractions.unwrap();
assert_eq!(fractions.0, FractionalResolution::SixtyNs);
assert_eq!(fractions.1, 0);
let res = stamp.update_from_now();
assert!(res.is_ok());
}
#[test]
fn assert_largest_fractions() {
let fractions =
fractional_part_from_subsec_ns(FractionalResolution::SixtyNs, 10u64.pow(9) - 1)
.unwrap();
// The value can not be larger than representable by 3 bytes
// Assert that the maximum resolution can be reached
assert_eq!(fractions.1, 2_u32.pow(3 * 8) - 2);
}
#[test]
fn add_duration_basic() {
let mut cuc_stamp = TimeProviderCcsdsEpoch::new(200);
cuc_stamp.set_fractional_resolution(FractionalResolution::FifteenUs);
let duration = Duration::from_millis(2500);
cuc_stamp += duration;
assert_eq!(cuc_stamp.width_counter_pair().1, 202);
let fractions = cuc_stamp.width_fractions_pair().unwrap().1;
let expected_val =
(0.5 * fractional_res_to_div(FractionalResolution::FifteenUs) as f64).floor() as u32;
assert_eq!(fractions, expected_val);
let cuc_stamp2 = cuc_stamp + Duration::from_millis(501);
// What I would roughly expect
assert_eq!(cuc_stamp2.counter.1, 203);
assert!(cuc_stamp2.fractions.unwrap().1 < 100);
assert!(cuc_stamp2.subsecond_millis().unwrap() <= 1);
}
#[test]
fn add_duration_overflow() {
let mut cuc_stamp =
TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(1, 255), None).unwrap();
let duration = Duration::from_secs(10);
cuc_stamp += duration;
assert_eq!(cuc_stamp.counter.1, 10);
}
}