Files
spacepackets/src/ecss/tc.rs
2025-09-10 17:36:39 +02:00

1667 lines
54 KiB
Rust

//! This module contains all components required to create a ECSS PUS C telecommand packets according
//! to [ECSS-E-ST-70-41C](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
//!
//! # Examples
//!
//! ```rust
//! use spacepackets::SpHeader;
//! use spacepackets::ecss::tc::{PusTcCreator, PusTcReader, PusTcSecondaryHeader, CreatorConfig};
//! use arbitrary_int::u11;
//!
//! // Create a ping telecommand with no user application data
//! let pus_tc = PusTcCreator::new_no_app_data(
//! SpHeader::new_from_apid(u11::new(0x02)),
//! PusTcSecondaryHeader::new_simple(17, 1),
//! CreatorConfig::default()
//! );
//! println!("{:?}", pus_tc);
//! assert_eq!(pus_tc.service(), 17);
//! assert_eq!(pus_tc.subservice(), 1);
//! assert_eq!(pus_tc.apid().value(), 0x02);
//!
//! // Serialize TC into a raw buffer
//! let mut test_buf: [u8; 32] = [0; 32];
//! let size = pus_tc
//! .write_to_bytes(test_buf.as_mut_slice())
//! .expect("Error writing TC to buffer");
//! assert_eq!(size, 13);
//! println!("{:?}", &test_buf[0..size]);
//!
//! // Deserialize from the raw byte representation
//! let pus_tc_deserialized = PusTcReader::new(&test_buf).expect("Deserialization failed");
//! assert_eq!(pus_tc.service(), 17);
//! assert_eq!(pus_tc.subservice(), 1);
//! assert_eq!(pus_tc.apid().value(), 0x02);
//!
//! // Alternative builder API
//! let pus_tc_by_builder = PusTcCreator::builder()
//! .with_service(17)
//! .with_subservice(1)
//! .with_apid(u11::new(0x02))
//! .build();
//! assert_eq!(pus_tc_by_builder, pus_tc);
//! ```
use crate::crc::{CRC_CCITT_FALSE, CRC_CCITT_FALSE_NO_TABLE};
pub use crate::ecss::CreatorConfig;
use crate::ecss::{
crc_from_raw_data, sp_header_impls, user_data_from_raw,
verify_crc16_ccitt_false_from_raw_to_pus_error, PusError, PusPacket, PusVersion,
WritablePusPacket,
};
use crate::{ByteConversionError, CcsdsPacket, PacketType, SequenceFlags, CCSDS_HEADER_LEN};
use crate::{PacketId, PacketSequenceControl, SpHeader};
use arbitrary_int::{u11, u14, u3, u4};
use core::mem::size_of;
use delegate::delegate;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zerocopy::{FromBytes, IntoBytes};
// Is necessary for some reason, possibly bug.
#[cfg(feature = "defmt")]
use arbitrary_int::traits::Integer;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use super::verify_crc16_ccitt_false_from_raw_to_pus_error_no_table;
/// PUS C secondary header length is fixed
pub const PUC_TC_SECONDARY_HEADER_LEN: usize = size_of::<zc::PusTcSecondaryHeader>();
pub const PUS_TC_MIN_LEN_WITHOUT_APP_DATA: usize = CCSDS_HEADER_LEN + PUC_TC_SECONDARY_HEADER_LEN;
const PUS_VERSION: PusVersion = PusVersion::PusC;
/// Marker trait for PUS telecommand structures.
pub trait IsPusTelecommand {}
#[bitbybit::bitfield(u4, default = 0b0000, debug, defmt_bitfields(feature = "defmt"))]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(PartialEq, Eq)]
pub struct AckFlags {
#[bit(3, rw)]
acceptance: bool,
#[bit(2, rw)]
start: bool,
#[bit(1, rw)]
progress: bool,
#[bit(0, rw)]
completion: bool,
}
pub const ACK_ALL: AckFlags = AckFlags::builder()
.with_acceptance(true)
.with_start(true)
.with_progress(true)
.with_completion(true)
.build();
impl AckFlags {
pub const ALL: Self = ACK_ALL;
}
pub trait GenericPusTcSecondaryHeader {
fn pus_version(&self) -> Result<PusVersion, u4>;
fn ack_flags(&self) -> AckFlags;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn source_id(&self) -> u16;
}
pub mod zc {
use crate::ecss::tc::{AckFlags, GenericPusTcSecondaryHeader};
use crate::ecss::{PusError, PusVersion};
use arbitrary_int::traits::Integer;
use arbitrary_int::u4;
use zerocopy::{FromBytes, Immutable, IntoBytes, NetworkEndian, Unaligned, U16};
#[derive(FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
pub struct PusTcSecondaryHeader {
version_ack: u8,
service: u8,
subservice: u8,
source_id: U16<NetworkEndian>,
}
impl TryFrom<crate::ecss::tc::PusTcSecondaryHeader> for PusTcSecondaryHeader {
type Error = PusError;
fn try_from(value: crate::ecss::tc::PusTcSecondaryHeader) -> Result<Self, Self::Error> {
if value.version != PusVersion::PusC {
return Err(PusError::VersionNotSupported(value.version.raw_value()));
}
Ok(PusTcSecondaryHeader {
version_ack: ((value.version as u8) << 4) | value.ack_flags.raw_value().as_u8(),
service: value.service,
subservice: value.subservice,
source_id: U16::from(value.source_id),
})
}
}
impl GenericPusTcSecondaryHeader for PusTcSecondaryHeader {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4> {
PusVersion::try_from(u4::new((self.version_ack >> 4) & 0b1111))
}
#[inline]
fn ack_flags(&self) -> AckFlags {
AckFlags::new_with_raw_value(u4::new(self.version_ack & 0b1111))
}
#[inline]
fn service(&self) -> u8 {
self.service
}
#[inline]
fn subservice(&self) -> u8 {
self.subservice
}
#[inline]
fn source_id(&self) -> u16 {
self.source_id.get()
}
}
}
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct PusTcSecondaryHeader {
pub service: u8,
pub subservice: u8,
pub source_id: u16,
pub ack_flags: AckFlags,
pub version: PusVersion,
}
impl GenericPusTcSecondaryHeader for PusTcSecondaryHeader {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4> {
Ok(self.version)
}
#[inline]
fn ack_flags(&self) -> AckFlags {
self.ack_flags
}
#[inline]
fn service(&self) -> u8 {
self.service
}
#[inline]
fn subservice(&self) -> u8 {
self.subservice
}
#[inline]
fn source_id(&self) -> u16 {
self.source_id
}
}
impl TryFrom<zc::PusTcSecondaryHeader> for PusTcSecondaryHeader {
type Error = ();
fn try_from(value: zc::PusTcSecondaryHeader) -> Result<Self, Self::Error> {
Ok(PusTcSecondaryHeader {
service: value.service(),
subservice: value.subservice(),
source_id: value.source_id(),
ack_flags: value.ack_flags(),
version: PUS_VERSION,
})
}
}
impl PusTcSecondaryHeader {
pub const HEADER_LEN: usize = PUC_TC_SECONDARY_HEADER_LEN;
#[inline]
pub fn new_simple(service: u8, subservice: u8) -> Self {
PusTcSecondaryHeader {
service,
subservice,
ack_flags: ACK_ALL,
source_id: 0,
version: PusVersion::PusC,
}
}
#[inline]
pub fn new(service: u8, subservice: u8, ack_flags: AckFlags, source_id: u16) -> Self {
PusTcSecondaryHeader {
service,
subservice,
ack_flags,
source_id,
version: PusVersion::PusC,
}
}
}
/// This class can be used to create PUS C telecommand packet. It is the primary data structure to
/// generate the raw byte representation of a PUS telecommand.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the
/// [serde] feature is used, which allows to send around TC packets in a raw byte format using a
/// serde provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct PusTcCreator<'app_data> {
sp_header: SpHeader,
pub sec_header: PusTcSecondaryHeader,
app_data: &'app_data [u8],
has_checksum: bool,
}
impl<'app_data> PusTcCreator<'app_data> {
/// Generates a new struct instance.
///
/// # Arguments
///
/// * `sp_header` - Space packet header information. The correct packet type and the secondary
/// header flag are set correctly by the constructor.
/// * `sec_header` - Information contained in the data field header, including the service
/// and subservice type
/// * `app_data` - Custom application data
/// * `packet_config` - Common configuration options for TC packet creation
#[inline]
pub fn new(
mut sp_header: SpHeader,
sec_header: PusTcSecondaryHeader,
app_data: &'app_data [u8],
packet_config: CreatorConfig,
) -> Self {
sp_header.set_packet_type(PacketType::Tc);
sp_header.set_sec_header_flag();
let mut pus_tc = Self {
sp_header,
app_data,
sec_header,
has_checksum: packet_config.has_checksum,
};
if packet_config.set_ccsds_len {
pus_tc.update_ccsds_data_len();
}
pus_tc
}
/// Simplified version of the [Self::new] function which allows to only specify service
/// and subservice instead of the full PUS TC secondary header.
#[inline]
pub fn new_simple(
sph: SpHeader,
service: u8,
subservice: u8,
app_data: &'app_data [u8],
packet_config: CreatorConfig,
) -> Self {
Self::new(
sph,
PusTcSecondaryHeader::new(service, subservice, ACK_ALL, 0),
app_data,
packet_config,
)
}
#[inline]
pub fn new_no_app_data(
sp_header: SpHeader,
sec_header: PusTcSecondaryHeader,
packet_config: CreatorConfig,
) -> Self {
Self::new(sp_header, sec_header, &[], packet_config)
}
pub fn builder<'a>() -> PusTcBuilder<'a> {
PusTcBuilder::default()
}
#[inline]
pub fn sp_header(&self) -> &SpHeader {
&self.sp_header
}
#[inline]
pub fn sp_header_mut(&mut self) -> &mut SpHeader {
&mut self.sp_header
}
#[inline]
pub fn service(&self) -> u8 {
self.sec_header.service
}
#[inline]
pub fn subservice(&self) -> u8 {
self.sec_header.subservice
}
#[inline]
pub fn apid(&self) -> u11 {
self.sp_header.packet_id.apid
}
#[inline]
pub fn set_ack_flags(&mut self, ack_flags: AckFlags) {
self.sec_header.ack_flags = ack_flags;
}
#[inline]
pub fn set_source_id(&mut self, source_id: u16) {
self.sec_header.source_id = source_id;
}
sp_header_impls!();
/// Calculate the CCSDS space packet data length field and sets it
/// This is called automatically if the `set_ccsds_len` argument in the [Self::new] call was
/// used.
/// If this was not done or the application data is set or changed after construction,
/// this function needs to be called to ensure that the data length field of the CCSDS header
/// is set correctly.
#[inline]
pub fn update_ccsds_data_len(&mut self) {
self.sp_header.data_len =
self.len_written() as u16 - size_of::<crate::zc::SpHeader>() as u16 - 1;
}
/// This function calculates and returns the CRC16 for the current packet.
pub fn calc_own_crc16(&self) -> u16 {
let mut digest = CRC_CCITT_FALSE.digest();
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
digest.update(sph_zc.as_bytes());
let pus_tc_header = zc::PusTcSecondaryHeader::try_from(self.sec_header).unwrap();
digest.update(pus_tc_header.as_bytes());
digest.update(self.app_data);
digest.finalize()
}
/// This function calculates and returns the CRC16 for the current packet.
pub fn calc_own_crc16_no_table(&self) -> u16 {
let mut digest = CRC_CCITT_FALSE_NO_TABLE.digest();
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
digest.update(sph_zc.as_bytes());
let pus_tc_header = zc::PusTcSecondaryHeader::try_from(self.sec_header).unwrap();
digest.update(pus_tc_header.as_bytes());
digest.update(self.app_data);
digest.finalize()
}
#[inline]
pub fn has_checksum(&self) -> bool {
self.has_checksum
}
#[cfg(feature = "alloc")]
pub fn append_to_vec(&self, vec: &mut Vec<u8>) -> usize {
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
let mut appended_len = PUS_TC_MIN_LEN_WITHOUT_APP_DATA;
appended_len += self.app_data.len();
let start_idx = vec.len();
vec.extend_from_slice(sph_zc.as_bytes());
// The PUS version is hardcoded to PUS C
let pus_tc_header = zc::PusTcSecondaryHeader::try_from(self.sec_header).unwrap();
vec.extend_from_slice(pus_tc_header.as_bytes());
vec.extend_from_slice(self.app_data);
if self.has_checksum() {
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(&vec[start_idx..start_idx + appended_len]);
vec.extend_from_slice(&digest.finalize().to_be_bytes());
appended_len += 2;
}
appended_len
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes(&self, slice: &mut [u8]) -> Result<usize, ByteConversionError> {
let writer_unfinalized = self.common_write(slice)?;
Ok(writer_unfinalized.finalize())
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes_crc_no_table(
&self,
slice: &mut [u8],
) -> Result<usize, ByteConversionError> {
let writer_unfinalized = self.common_write(slice)?;
Ok(writer_unfinalized.finalize_checksum_no_table())
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes_no_crc(&self, slice: &mut [u8]) -> Result<usize, ByteConversionError> {
let writer_unfinalized = self.common_write(slice)?;
Ok(writer_unfinalized.finalize_no_checksum())
}
fn common_write<'a>(
&self,
slice: &'a mut [u8],
) -> Result<PusTcCreatorWithReservedAppData<'a>, ByteConversionError> {
if self.len_written() > slice.len() {
return Err(ByteConversionError::ToSliceTooSmall {
found: slice.len(),
expected: self.len_written(),
});
}
let mut writer_unfinalized = PusTcCreatorWithReservedAppData::write_to_bytes_partially(
slice,
self.sp_header,
self.sec_header,
self.app_data.len(),
self.has_checksum,
)?;
writer_unfinalized
.app_data_mut()
.copy_from_slice(self.app_data);
Ok(writer_unfinalized)
}
}
impl WritablePusPacket for PusTcCreator<'_> {
#[inline]
fn len_written(&self) -> usize {
let mut len = PUS_TC_MIN_LEN_WITHOUT_APP_DATA + self.app_data.len();
if self.has_checksum() {
len += 2;
}
len
}
#[inline]
fn has_checksum(&self) -> bool {
self.has_checksum()
}
/// Write the raw PUS byte representation to a provided buffer.
fn write_to_bytes_no_checksum(&self, slice: &mut [u8]) -> Result<usize, PusError> {
Ok(Self::write_to_bytes_no_crc(self, slice)?)
}
fn write_to_bytes(&self, slice: &mut [u8]) -> Result<usize, PusError> {
Ok(Self::write_to_bytes(self, slice)?)
}
fn write_to_bytes_checksum_no_table(&self, slice: &mut [u8]) -> Result<usize, PusError> {
Ok(Self::write_to_bytes_crc_no_table(self, slice)?)
}
}
impl CcsdsPacket for PusTcCreator<'_> {
delegate!(to self.sp_header {
#[inline]
fn ccsds_version(&self) -> u3;
#[inline]
fn packet_id(&self) -> crate::PacketId;
#[inline]
fn psc(&self) -> crate::PacketSequenceControl;
#[inline]
fn data_len(&self) -> u16;
});
}
impl PusPacket for PusTcCreator<'_> {
delegate!(to self.sec_header {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4>;
#[inline]
fn service(&self) -> u8;
#[inline]
fn subservice(&self) -> u8;
});
#[inline]
fn user_data(&self) -> &[u8] {
self.app_data
}
#[inline]
fn checksum(&self) -> Option<u16> {
if !self.has_checksum {
return None;
}
Some(self.calc_own_crc16())
}
fn has_checksum(&self) -> bool {
self.has_checksum
}
}
impl GenericPusTcSecondaryHeader for PusTcCreator<'_> {
delegate!(to self.sec_header {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4>;
#[inline]
fn service(&self) -> u8;
#[inline]
fn subservice(&self) -> u8;
#[inline]
fn source_id(&self) -> u16;
#[inline]
fn ack_flags(&self) -> AckFlags;
});
}
impl IsPusTelecommand for PusTcCreator<'_> {}
/// A specialized variant of [PusTcCreator] designed for efficiency when handling large source
/// data.
///
/// Unlike [PusTcCreator], this type does not require the user to provide the application data
/// as a separate slice. Instead, it allows writing the application data directly into the provided
/// serialization buffer. This eliminates the need for an intermediate buffer and the associated
/// memory copy, improving performance, particularly when working with large payloads.
///
/// **Important:** The total length of the source data must be known and specified in advance
/// to ensure correct serialization behavior.
///
/// Note that this abstraction intentionally omits certain trait implementations that are available
/// on [PusTcCreator], as they are not applicable in this optimized usage pattern.
pub struct PusTcCreatorWithReservedAppData<'buf> {
buf: &'buf mut [u8],
app_data_offset: usize,
full_len: usize,
has_checksum: bool,
}
impl<'buf> PusTcCreatorWithReservedAppData<'buf> {
/// Generates a new instance with reserved space for the user application data.
///
/// # Arguments
///
/// * `sp_header` - Space packet header information. The correct packet type and the secondary
/// header flag are set correctly by the constructor.
/// * `sec_header` - Information contained in the secondary header, including the service
/// and subservice type
/// * `app_data_len` - Custom application data length
#[inline]
pub fn new(
buf: &'buf mut [u8],
mut sp_header: SpHeader,
sec_header: PusTcSecondaryHeader,
app_data_len: usize,
has_checksum: bool,
) -> Result<Self, ByteConversionError> {
sp_header.set_packet_type(PacketType::Tc);
sp_header.set_sec_header_flag();
let mut len_written = PUS_TC_MIN_LEN_WITHOUT_APP_DATA + app_data_len;
if has_checksum {
len_written += 2;
}
if len_written > buf.len() {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: len_written,
});
}
sp_header.data_len = len_written as u16 - size_of::<crate::zc::SpHeader>() as u16 - 1;
Self::write_to_bytes_partially(buf, sp_header, sec_header, app_data_len, has_checksum)
}
fn write_to_bytes_partially(
buf: &'buf mut [u8],
sp_header: SpHeader,
sec_header: PusTcSecondaryHeader,
app_data_len: usize,
has_checksum: bool,
) -> Result<Self, ByteConversionError> {
let mut curr_idx = 0;
sp_header.write_to_be_bytes(&mut buf[0..CCSDS_HEADER_LEN])?;
curr_idx += CCSDS_HEADER_LEN;
let sec_header_len = size_of::<zc::PusTcSecondaryHeader>();
let sec_header_zc = zc::PusTcSecondaryHeader::try_from(sec_header).unwrap();
// Unwrap okay, this can not fail.
sec_header_zc
.write_to(&mut buf[curr_idx..curr_idx + sec_header_len])
.unwrap();
curr_idx += sec_header_len;
let app_data_offset = curr_idx;
curr_idx += app_data_len;
if has_checksum {
curr_idx += 2;
}
Ok(Self {
buf,
app_data_offset,
full_len: curr_idx,
has_checksum,
})
}
#[inline]
pub const fn len_written(&self) -> usize {
self.full_len
}
/// Mutable access to the application data buffer.
#[inline]
pub fn app_data_mut(&mut self) -> &mut [u8] {
let end_index = if self.has_checksum {
self.full_len - 2
} else {
self.full_len
};
&mut self.buf[self.app_data_offset..end_index]
}
/// Access to the source data buffer.
#[inline]
pub fn app_data(&self) -> &[u8] {
let end_index = if self.has_checksum {
self.full_len - 2
} else {
self.full_len
};
&self.buf[self.app_data_offset..end_index]
}
#[inline]
pub fn app_data_len(&self) -> usize {
let mut len = self.full_len - self.app_data_offset;
if self.has_checksum {
len -= 2;
}
len
}
/// Finalize the TC packet by calculating and writing the CRC16 if checksum generation is
/// enabled.
///
/// Returns the full packet length.
pub fn finalize(self) -> usize {
let written_len = self.len_written();
if self.has_checksum {
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(&self.buf[0..written_len - 2]);
self.buf[self.full_len - 2..written_len]
.copy_from_slice(&digest.finalize().to_be_bytes());
}
written_len
}
/// Finalize the TC packet by calculating and writing the CRC16 using a table-less
/// implementation if checksum genration is enabled.
///
/// Returns the full packet length.
pub fn finalize_checksum_no_table(self) -> usize {
let written_len = self.len_written();
if self.has_checksum {
let mut digest = CRC_CCITT_FALSE_NO_TABLE.digest();
digest.update(&self.buf[0..written_len - 2]);
self.buf[self.full_len - 2..written_len]
.copy_from_slice(&digest.finalize().to_be_bytes());
}
written_len
}
/// Finalize the TC packet without writing the CRC16 checksum.
///
/// Returns the length WITHOUT the CRC16 checksum.
#[inline]
pub fn finalize_no_checksum(self) -> usize {
if self.has_checksum {
self.full_len - 2
} else {
self.full_len
}
}
}
#[derive(Debug)]
pub struct PusTcBuilder<'a> {
sp_header: SpHeader,
sec_header: PusTcSecondaryHeader,
app_data: &'a [u8],
has_checksum: bool,
}
impl PusTcBuilder<'_> {
pub fn new() -> Self {
Self {
sp_header: SpHeader::new(
PacketId::new(PacketType::Tc, true, u11::new(0)),
PacketSequenceControl::new(SequenceFlags::Unsegmented, u14::new(0)),
0,
),
sec_header: PusTcSecondaryHeader::new(0, 0, ACK_ALL, 0),
app_data: &[],
has_checksum: true,
}
}
#[inline]
pub fn with_packet_id(mut self, mut packet_id: PacketId) -> Self {
packet_id.packet_type = PacketType::Tc;
self.sp_header.packet_id = packet_id;
self
}
#[inline]
pub fn with_packet_sequence_control(mut self, psc: PacketSequenceControl) -> Self {
self.sp_header.psc = psc;
self
}
#[inline]
pub fn with_sequence_count(mut self, seq_count: u14) -> Self {
self.sp_header.psc.seq_count = seq_count;
self
}
#[inline]
pub fn with_service(mut self, service: u8) -> Self {
self.sec_header.service = service;
self
}
#[inline]
pub fn with_subservice(mut self, service: u8) -> Self {
self.sec_header.subservice = service;
self
}
#[inline]
pub fn with_source_id(mut self, source_id: u16) -> Self {
self.sec_header.source_id = source_id;
self
}
#[inline]
pub fn with_ack_flags(mut self, ack_flags: AckFlags) -> Self {
self.sec_header.ack_flags = ack_flags;
self
}
#[inline]
pub fn with_apid(mut self, apid: u11) -> Self {
self.sp_header.packet_id.set_apid(apid);
self
}
#[inline]
pub fn with_checksum(mut self, has_checksum: bool) -> Self {
self.has_checksum = has_checksum;
self
}
}
impl Default for PusTcBuilder<'_> {
fn default() -> Self {
Self::new()
}
}
impl<'a> PusTcBuilder<'a> {
pub fn build(self) -> PusTcCreator<'a> {
PusTcCreator::new(
self.sp_header,
self.sec_header,
self.app_data,
CreatorConfig {
has_checksum: self.has_checksum,
set_ccsds_len: true,
},
)
}
pub fn with_app_data(mut self, app_data: &'a [u8]) -> Self {
self.app_data = app_data;
self
}
}
/// This class can be used to read a PUS TC telecommand from raw memory.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the
/// [serde] feature is used, which allows to send around TC packets in a raw byte format using a
/// serde provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
///
/// # Lifetimes
///
/// * `'raw_data` - Lifetime of the provided raw slice.
#[derive(Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct PusTcReader<'raw_data> {
#[cfg_attr(feature = "serde", serde(skip))]
raw_data: &'raw_data [u8],
sp_header: SpHeader,
sec_header: PusTcSecondaryHeader,
app_data: &'raw_data [u8],
crc16: Option<u16>,
}
impl<'raw_data> PusTcReader<'raw_data> {
/// Create a [PusTcReader] instance from a raw slice. The given packet should have a
/// a CRC16-CCITT checksum which is also verified.
///
/// On success, it returns a tuple containing the instance and the found byte length of the
/// packet. This function also expects a CRC16 checksum and will verify it.
pub fn new(slice: &'raw_data [u8]) -> Result<Self, PusError> {
let pus_tc = Self::new_no_checksum_verification(slice, true)?;
// Unwrap for CRC16 okay, should always have some value.
verify_crc16_ccitt_false_from_raw_to_pus_error(pus_tc.raw_data(), pus_tc.crc16().unwrap())?;
Ok(pus_tc)
}
/// Similar to [PusTcReader::new], but uses a table-less CRC16 algorithm which can reduce
/// binary size and memory usage.
pub fn new_checksum_no_table(slice: &'raw_data [u8]) -> Result<Self, PusError> {
let pus_tc = Self::new_no_checksum_verification(slice, true)?;
// Unwrap for CRC16 okay, should always have some value.
verify_crc16_ccitt_false_from_raw_to_pus_error_no_table(
pus_tc.raw_data(),
pus_tc.crc16().unwrap(),
)?;
Ok(pus_tc)
}
/// Read a PUS TC from a raw slice where no checksum is expected.
pub fn new_no_checksum(slice: &'raw_data [u8]) -> Result<Self, PusError> {
Self::new_no_checksum_verification(slice, false)
}
/// Create a new [Self] instance without verifying the checksum, even if the packet has one.
pub fn new_no_checksum_verification(
slice: &'raw_data [u8],
has_checksum: bool,
) -> Result<Self, PusError> {
let raw_data_len = slice.len();
if raw_data_len < PUS_TC_MIN_LEN_WITHOUT_APP_DATA {
return Err(ByteConversionError::FromSliceTooSmall {
found: raw_data_len,
expected: PUS_TC_MIN_LEN_WITHOUT_APP_DATA,
}
.into());
}
let mut current_idx = 0;
let (sp_header, _) = SpHeader::from_be_bytes(&slice[0..CCSDS_HEADER_LEN])?;
current_idx += CCSDS_HEADER_LEN;
let total_len = sp_header.packet_len();
if raw_data_len < total_len {
return Err(ByteConversionError::FromSliceTooSmall {
found: raw_data_len,
expected: total_len,
}
.into());
}
if total_len < PUS_TC_MIN_LEN_WITHOUT_APP_DATA {
return Err(ByteConversionError::FromSliceTooSmall {
found: total_len,
expected: PUS_TC_MIN_LEN_WITHOUT_APP_DATA,
}
.into());
}
// Unwrap okay, this can not fail.
let sec_header = zc::PusTcSecondaryHeader::read_from_bytes(
&slice[current_idx..current_idx + core::mem::size_of::<zc::PusTcSecondaryHeader>()],
)
.unwrap();
current_idx += PUC_TC_SECONDARY_HEADER_LEN;
let raw_data = &slice[0..total_len];
let mut crc16 = None;
if has_checksum {
crc16 = Some(crc_from_raw_data(&slice[total_len - 2..total_len])?);
}
Ok(Self {
sp_header,
sec_header: PusTcSecondaryHeader::try_from(sec_header).unwrap(),
raw_data,
app_data: user_data_from_raw(current_idx, total_len, slice, has_checksum)?,
crc16,
})
}
#[inline]
pub fn app_data(&self) -> &[u8] {
self.user_data()
}
#[inline]
pub fn raw_data(&self) -> &[u8] {
self.raw_data
}
#[inline]
pub fn len_packed(&self) -> usize {
self.sp_header.packet_len()
}
#[inline]
pub fn sp_header(&self) -> &SpHeader {
&self.sp_header
}
#[inline]
pub fn crc16(&self) -> Option<u16> {
self.crc16
}
}
impl PartialEq for PusTcReader<'_> {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.raw_data == other.raw_data
}
}
impl CcsdsPacket for PusTcReader<'_> {
delegate!(to self.sp_header {
#[inline]
fn ccsds_version(&self) -> u3;
#[inline]
fn packet_id(&self) -> crate::PacketId;
#[inline]
fn psc(&self) -> crate::PacketSequenceControl;
#[inline]
fn data_len(&self) -> u16;
});
}
impl PusPacket for PusTcReader<'_> {
delegate!(to self.sec_header {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4>;
#[inline]
fn service(&self) -> u8;
#[inline]
fn subservice(&self) -> u8;
});
fn has_checksum(&self) -> bool {
self.crc16.is_some()
}
#[inline]
fn user_data(&self) -> &[u8] {
self.app_data
}
#[inline]
fn checksum(&self) -> Option<u16> {
self.crc16
}
}
impl GenericPusTcSecondaryHeader for PusTcReader<'_> {
delegate!(to self.sec_header {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4>;
#[inline]
fn service(&self) -> u8;
#[inline]
fn subservice(&self) -> u8;
#[inline]
fn source_id(&self) -> u16;
#[inline]
fn ack_flags(&self) -> AckFlags;
});
}
impl IsPusTelecommand for PusTcReader<'_> {}
impl PartialEq<PusTcCreator<'_>> for PusTcReader<'_> {
fn eq(&self, other: &PusTcCreator) -> bool {
self.sp_header == other.sp_header
&& self.sec_header == other.sec_header
&& self.app_data == other.app_data
}
}
impl PartialEq<PusTcReader<'_>> for PusTcCreator<'_> {
fn eq(&self, other: &PusTcReader) -> bool {
self.sp_header == other.sp_header
&& self.sec_header == other.sec_header
&& self.app_data == other.app_data
}
}
#[cfg(all(test, feature = "std"))]
mod tests {
use super::*;
use crate::ecss::PusVersion::PusC;
use crate::ecss::{PusError, PusPacket, WritablePusPacket};
use crate::{ByteConversionError, SpHeader};
use crate::{CcsdsPacket, SequenceFlags};
use alloc::string::ToString;
use alloc::vec::Vec;
use arbitrary_int::traits::Integer;
#[cfg(feature = "serde")]
use postcard::{from_bytes, to_allocvec};
fn base_ping_tc_full_ctor() -> PusTcCreator<'static> {
let sph = SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), 0);
let tc_header = PusTcSecondaryHeader::new_simple(17, 1);
PusTcCreator::new_no_app_data(sph, tc_header, CreatorConfig::default())
}
fn base_ping_tc_full_ctor_no_checksum() -> PusTcCreator<'static> {
let sph = SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), 0);
let tc_header = PusTcSecondaryHeader::new_simple(17, 1);
PusTcCreator::new_no_app_data(
sph,
tc_header,
CreatorConfig {
set_ccsds_len: true,
has_checksum: false,
},
)
}
fn base_ping_tc_simple_ctor() -> PusTcCreator<'static> {
let sph = SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), 0);
PusTcCreator::new_simple(sph, 17, 1, &[], CreatorConfig::default())
}
fn base_ping_tc_with_builder(alt_api: bool) -> PusTcCreator<'static> {
if alt_api {
return PusTcCreator::builder()
.with_service(17)
.with_subservice(1)
.with_apid(u11::new(0x02))
.with_sequence_count(u14::new(0x34))
.build();
}
PusTcBuilder::new()
.with_service(17)
.with_subservice(1)
.with_apid(u11::new(0x02))
.with_sequence_count(u14::new(0x34))
.build()
}
fn base_ping_tc_simple_ctor_no_checksum() -> PusTcCreator<'static> {
let sph = SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), 0);
PusTcCreator::new_simple(
sph,
17,
1,
&[],
CreatorConfig {
set_ccsds_len: true,
has_checksum: false,
},
)
}
fn base_ping_tc_simple_ctor_with_app_data(
app_data: &'static [u8],
has_checksum: bool,
) -> PusTcCreator<'static> {
let sph = SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), 0);
PusTcCreator::new_simple(
sph,
17,
1,
app_data,
CreatorConfig {
set_ccsds_len: true,
has_checksum,
},
)
}
#[test]
fn test_tc_fields() {
let pus_tc = base_ping_tc_full_ctor();
verify_test_tc(&pus_tc, false, true, 13);
}
#[test]
fn test_tc_fields_no_checksum() {
let pus_tc = base_ping_tc_full_ctor_no_checksum();
verify_test_tc(&pus_tc, false, false, 11);
}
#[test]
fn test_serialization() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 13);
assert_eq!(
pus_tc.checksum().unwrap(),
u16::from_be_bytes(test_buf[size - 2..size].try_into().unwrap())
);
}
#[test]
fn test_serialization_no_checksum() {
let pus_tc = base_ping_tc_simple_ctor_no_checksum();
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 11);
assert_eq!(0, u16::from_be_bytes(test_buf[11..13].try_into().unwrap()));
verify_test_tc(&pus_tc, false, false, 11);
}
#[test]
fn test_serialization_with_trait_1() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = WritablePusPacket::write_to_bytes(&pus_tc, test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 13);
assert_eq!(
pus_tc.checksum().unwrap(),
u16::from_be_bytes(test_buf[size - 2..size].try_into().unwrap())
);
}
#[test]
fn test_serialization_with_trait_2() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size =
WritablePusPacket::write_to_bytes_checksum_no_table(&pus_tc, test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 13);
assert_eq!(
pus_tc.checksum().unwrap(),
u16::from_be_bytes(test_buf[size - 2..size].try_into().unwrap())
);
}
#[test]
fn test_serialization_crc_no_table() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes_crc_no_table(test_buf.as_mut_slice())
.expect("error writing tc to buffer");
assert_eq!(size, 13);
assert_eq!(
pus_tc.checksum().unwrap(),
u16::from_be_bytes(test_buf[size - 2..size].try_into().unwrap())
);
}
#[test]
fn test_serialization_no_checksum_generation() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes_no_crc(test_buf.as_mut_slice())
.expect("error writing tc to buffer");
assert_eq!(size, 11);
assert_eq!(test_buf[11], 0);
assert_eq!(test_buf[12], 0);
}
#[test]
fn test_serialization_no_checksum_with_trait() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = WritablePusPacket::write_to_bytes_no_checksum(&pus_tc, test_buf.as_mut_slice())
.expect("error writing tc to buffer");
assert_eq!(size, 11);
assert_eq!(test_buf[11], 0);
assert_eq!(test_buf[12], 0);
}
#[test]
fn test_deserialization() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 13);
let tc_from_raw =
PusTcReader::new(&test_buf).expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(tc_from_raw.packet_len(), 13);
verify_test_tc_with_reader(&tc_from_raw, false, 13);
assert!(tc_from_raw.user_data().is_empty());
verify_test_tc_raw(&test_buf);
verify_crc_no_app_data(&test_buf);
}
#[test]
fn test_deserialization_alt_ctor() {
let sph = SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), 0);
let tc_header = PusTcSecondaryHeader::new_simple(17, 1);
let mut test_buf: [u8; 32] = [0; 32];
let mut pus_tc =
PusTcCreatorWithReservedAppData::new(&mut test_buf, sph, tc_header, 0, true).unwrap();
assert_eq!(pus_tc.len_written(), 13);
assert_eq!(pus_tc.app_data_len(), 0);
assert_eq!(pus_tc.app_data(), &[]);
assert_eq!(pus_tc.app_data_mut(), &[]);
let size = pus_tc.finalize();
assert_eq!(size, 13);
let tc_from_raw =
PusTcReader::new(&test_buf).expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(tc_from_raw.packet_len(), 13);
verify_test_tc_with_reader(&tc_from_raw, false, 13);
assert!(tc_from_raw.user_data().is_empty());
verify_test_tc_raw(&test_buf);
verify_crc_no_app_data(&test_buf);
}
#[test]
fn test_deserialization_no_table() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 13);
let tc_from_raw = PusTcReader::new_checksum_no_table(&test_buf)
.expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(tc_from_raw.packet_len(), 13);
verify_test_tc_with_reader(&tc_from_raw, false, 13);
assert!(tc_from_raw.user_data().is_empty());
verify_test_tc_raw(&test_buf);
verify_crc_no_app_data(&test_buf);
}
#[test]
fn test_writing_into_vec() {
let pus_tc = base_ping_tc_simple_ctor();
let tc_vec = pus_tc.to_vec().expect("Error writing TC to buffer");
assert_eq!(tc_vec.len(), 13);
let tc_from_raw = PusTcReader::new(tc_vec.as_slice())
.expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(tc_from_raw.packet_len(), 13);
verify_test_tc_with_reader(&tc_from_raw, false, 13);
assert!(tc_from_raw.user_data().is_empty());
verify_test_tc_raw(&tc_vec);
verify_crc_no_app_data(&tc_vec);
}
#[test]
fn test_update_func() {
let sph = SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), 0);
let mut tc = PusTcCreator::new_simple(
sph,
17,
1,
&[],
CreatorConfig {
set_ccsds_len: false,
has_checksum: true,
},
);
assert_eq!(tc.data_len(), 0);
tc.update_ccsds_data_len();
assert_eq!(tc.data_len(), 6);
}
#[test]
fn test_deserialization_with_app_data() {
let pus_tc = base_ping_tc_simple_ctor_with_app_data(&[1, 2, 3], true);
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 16);
let tc_from_raw =
PusTcReader::new(&test_buf).expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(tc_from_raw.packet_len(), 16);
verify_test_tc_with_reader(&tc_from_raw, true, 16);
let user_data = tc_from_raw.user_data();
assert_eq!(tc_from_raw.user_data(), tc_from_raw.app_data());
assert_eq!(tc_from_raw.raw_data(), &test_buf[..size]);
assert_eq!(
tc_from_raw.checksum().unwrap(),
u16::from_be_bytes(test_buf[size - 2..size].try_into().unwrap())
);
assert_eq!(user_data[0], 1);
assert_eq!(user_data[1], 2);
assert_eq!(user_data[2], 3);
}
#[test]
fn test_deserialization_with_app_data_no_checksum() {
let pus_tc = base_ping_tc_simple_ctor_with_app_data(&[1, 2, 3], false);
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 14);
let tc_from_raw = PusTcReader::new_no_checksum(&test_buf)
.expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(tc_from_raw.packet_len(), 14);
verify_test_tc_with_reader(&tc_from_raw, true, 14);
let user_data = tc_from_raw.user_data();
assert_eq!(tc_from_raw.user_data(), tc_from_raw.app_data());
assert_eq!(tc_from_raw.raw_data(), &test_buf[..size]);
assert_eq!(
0,
u16::from_be_bytes(test_buf[size..size + 2].try_into().unwrap())
);
assert_eq!(user_data[0], 1);
assert_eq!(user_data[1], 2);
assert_eq!(user_data[2], 3);
}
#[test]
fn test_reader_eq() {
let pus_tc = base_ping_tc_simple_ctor_with_app_data(&[1, 2, 3], true);
let mut test_buf: [u8; 32] = [0; 32];
pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
let tc_from_raw_0 =
PusTcReader::new(&test_buf).expect("Creating PUS TC struct from raw buffer failed");
let tc_from_raw_1 =
PusTcReader::new(&test_buf).expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(tc_from_raw_0, tc_from_raw_1);
}
#[test]
fn test_vec_ser_deser() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_vec = Vec::new();
let size = pus_tc.append_to_vec(&mut test_vec);
assert_eq!(size, 13);
verify_test_tc_raw(&test_vec.as_slice());
verify_crc_no_app_data(&test_vec.as_slice());
}
#[test]
fn test_incorrect_crc() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
test_buf[12] = 0;
test_buf[11] = 0;
let res = PusTcReader::new(&test_buf);
assert!(res.is_err());
let err = res.unwrap_err();
if let PusError::ChecksumFailure(crc) = err {
assert_eq!(crc, 0);
assert_eq!(
err.to_string(),
"checksum verification for crc16 0x0000 failed"
);
} else {
panic!("unexpected error {err}");
}
}
#[test]
fn test_manual_crc_calculation() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
pus_tc.calc_own_crc16();
pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
verify_test_tc_raw(&test_buf);
verify_crc_no_app_data(&test_buf);
}
#[test]
fn test_with_application_data_vec() {
let pus_tc = base_ping_tc_simple_ctor_with_app_data(&[1, 2, 3], true);
verify_test_tc(&pus_tc, true, true, 16);
let mut test_vec = Vec::new();
let size = pus_tc.append_to_vec(&mut test_vec);
assert_eq!(test_vec[11], 1);
assert_eq!(test_vec[12], 2);
assert_eq!(test_vec[13], 3);
assert_eq!(size, 16);
}
#[test]
fn test_write_buf_too_small() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf = [0; 12];
let res = pus_tc.write_to_bytes(test_buf.as_mut_slice());
assert!(res.is_err());
let err = res.unwrap_err();
assert_eq!(
err,
ByteConversionError::ToSliceTooSmall {
found: 12,
expected: 13
}
);
assert_eq!(
err.to_string(),
"target slice with size 12 is too small, expected size of at least 13"
);
}
#[test]
fn test_with_application_data_buf() {
let pus_tc = base_ping_tc_simple_ctor_with_app_data(&[1, 2, 3], true);
verify_test_tc(&pus_tc, true, true, 16);
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(test_buf[11], 1);
assert_eq!(test_buf[12], 2);
assert_eq!(test_buf[13], 3);
assert_eq!(size, 16);
}
#[test]
fn test_custom_setters() {
let mut pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
pus_tc.set_apid(u11::new(0x7ff));
pus_tc.set_seq_count(u14::new(0x3fff));
pus_tc.set_ack_flags(AckFlags::new_with_raw_value(u4::new(0b11)));
pus_tc.set_source_id(0xffff);
pus_tc.set_seq_flags(SequenceFlags::Unsegmented);
assert_eq!(pus_tc.source_id().value(), 0xffff);
assert_eq!(pus_tc.seq_count().value(), 0x3fff);
assert_eq!(pus_tc.ack_flags().raw_value().value(), 0b11);
assert_eq!(pus_tc.apid().value(), 0x7ff);
assert_eq!(pus_tc.sequence_flags(), SequenceFlags::Unsegmented);
pus_tc.calc_own_crc16();
pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(test_buf[0], 0x1f);
assert_eq!(test_buf[1], 0xff);
assert_eq!(test_buf[2], 0xff);
assert_eq!(test_buf[3], 0xff);
assert_eq!(test_buf[6], 0x23);
// Source ID 0
assert_eq!(test_buf[9], 0xff);
assert_eq!(test_buf[10], 0xff);
}
fn verify_test_tc(
tc: &PusTcCreator,
has_user_data: bool,
has_checksum: bool,
exp_full_len: usize,
) {
verify_test_tc_generic(tc);
if !has_user_data {
assert!(tc.user_data().is_empty());
}
let mut comp_header =
SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), exp_full_len as u16 - 7);
comp_header.set_sec_header_flag();
assert_eq!(tc.has_checksum(), has_checksum);
assert_eq!(tc.checksum().is_some(), has_checksum);
assert_eq!(PusPacket::has_checksum(tc), has_checksum);
assert_eq!(WritablePusPacket::has_checksum(tc), has_checksum);
assert_eq!(*tc.sp_header(), comp_header);
}
fn verify_test_tc_with_reader(tc: &PusTcReader, has_user_data: bool, exp_full_len: usize) {
verify_test_tc_generic(tc);
if !has_user_data {
assert!(tc.user_data().is_empty());
}
assert_eq!(tc.len_packed(), exp_full_len);
let mut comp_header =
SpHeader::new_for_unseg_tc(u11::new(0x02), u14::new(0x34), exp_full_len as u16 - 7);
comp_header.set_sec_header_flag();
assert_eq!(*tc.sp_header(), comp_header);
}
fn verify_test_tc_generic(tc: &(impl PusPacket + GenericPusTcSecondaryHeader)) {
assert_eq!(PusPacket::service(tc), 17);
assert_eq!(GenericPusTcSecondaryHeader::service(tc), 17);
assert_eq!(PusPacket::subservice(tc), 1);
assert_eq!(GenericPusTcSecondaryHeader::subservice(tc), 1);
assert!(tc.sec_header_flag());
assert_eq!(PusPacket::pus_version(tc).unwrap(), PusC);
assert_eq!(tc.seq_count().value(), 0x34);
assert_eq!(tc.source_id().value(), 0);
assert_eq!(tc.apid().value(), 0x02);
assert_eq!(tc.ack_flags(), ACK_ALL);
assert_eq!(PusPacket::pus_version(tc).unwrap(), PusVersion::PusC);
assert_eq!(
GenericPusTcSecondaryHeader::pus_version(tc).unwrap(),
PusVersion::PusC
);
}
fn verify_test_tc_raw(slice: &impl AsRef<[u8]>) {
// Reference comparison implementation:
// https://github.com/us-irs/py-spacepackets/blob/v0.13.0/tests/ecss/test_pus_tc.py
let slice = slice.as_ref();
// 0x1801 is the generic
assert_eq!(slice[0], 0x18);
// APID is 0x01
assert_eq!(slice[1], 0x02);
// Unsegmented packets
assert_eq!(slice[2], 0xc0);
// Sequence count 0x34
assert_eq!(slice[3], 0x34);
assert_eq!(slice[4], 0x00);
// Space data length of 6 equals total packet length of 13
assert_eq!(slice[5], 0x06);
// PUS Version C 0b0010 and ACK flags 0b1111
assert_eq!(slice[6], 0x2f);
// Service 17
assert_eq!(slice[7], 0x11);
// Subservice 1
assert_eq!(slice[8], 0x01);
// Source ID 0
assert_eq!(slice[9], 0x00);
assert_eq!(slice[10], 0x00);
}
fn verify_crc_no_app_data(slice: &impl AsRef<[u8]>) {
// Reference comparison implementation:
// https://github.com/us-irs/py-spacepackets/blob/v0.13.0/tests/ecss/test_pus_tc.py
let slice = slice.as_ref();
assert_eq!(slice[11], 0xee);
assert_eq!(slice[12], 0x63);
}
#[test]
fn partial_eq_pus_tc() {
// new vs new simple
let pus_tc_1 = base_ping_tc_simple_ctor();
let pus_tc_2 = base_ping_tc_full_ctor();
assert_eq!(pus_tc_1, pus_tc_2);
}
#[test]
fn partial_eq_serialized_vs_derialized() {
let pus_tc = base_ping_tc_simple_ctor();
let mut buf = [0; 32];
pus_tc.write_to_bytes(&mut buf).unwrap();
assert_eq!(pus_tc, PusTcReader::new(&buf).unwrap());
assert_eq!(PusTcReader::new(&buf).unwrap(), pus_tc);
}
#[test]
fn test_reader_buf_too_small() {
let app_data = &[1, 2, 3, 4];
let pus_tc = base_ping_tc_simple_ctor_with_app_data(app_data, true);
let mut buf = [0; 32];
let written_len = pus_tc.write_to_bytes(&mut buf).unwrap();
let error = PusTcReader::new(&buf[0..PUS_TC_MIN_LEN_WITHOUT_APP_DATA + 1]);
assert!(error.is_err());
let error = error.unwrap_err();
if let PusError::ByteConversion(ByteConversionError::FromSliceTooSmall {
found,
expected,
}) = error
{
assert_eq!(found, PUS_TC_MIN_LEN_WITHOUT_APP_DATA + 1);
assert_eq!(expected, written_len);
} else {
panic!("unexpected error {error}")
}
}
#[test]
fn test_reader_input_too_small() {
let buf: [u8; 5] = [0; 5];
let error = PusTcReader::new(&buf);
assert!(error.is_err());
let error = error.unwrap_err();
if let PusError::ByteConversion(ByteConversionError::FromSliceTooSmall {
found,
expected,
}) = error
{
assert_eq!(found, 5);
assert_eq!(expected, PUS_TC_MIN_LEN_WITHOUT_APP_DATA);
} else {
panic!("unexpected error {error}")
}
}
#[test]
#[cfg(feature = "serde")]
fn test_serialization_tc_serde() {
let pus_tc = base_ping_tc_simple_ctor();
let output = to_allocvec(&pus_tc).unwrap();
let output_converted_back: PusTcCreator = from_bytes(&output).unwrap();
assert_eq!(output_converted_back, pus_tc);
}
#[test]
fn test_builder() {
assert_eq!(base_ping_tc_with_builder(false), base_ping_tc_simple_ctor());
}
#[test]
fn test_builder_2() {
assert_eq!(base_ping_tc_with_builder(true), base_ping_tc_simple_ctor());
}
#[test]
fn test_builder_3() {
let tc = PusTcBuilder::new()
.with_packet_id(PacketId::new_for_tc(true, u11::new(0x02)))
.with_packet_sequence_control(PacketSequenceControl::new(
SequenceFlags::Unsegmented,
u14::new(0x34),
))
.with_service(17)
.with_subservice(1)
.with_ack_flags(AckFlags::new_with_raw_value(u4::new(0b1010)))
.with_source_id(0x2f2f)
.with_checksum(false)
.build();
assert_eq!(tc.seq_count().value(), 0x34);
assert_eq!(tc.sequence_flags(), SequenceFlags::Unsegmented);
assert_eq!(tc.apid().value(), 0x02);
assert_eq!(tc.packet_type(), PacketType::Tc);
assert_eq!(tc.service(), 17);
assert_eq!(tc.subservice(), 1);
}
}