spacepackets/README.md
Robin Mueller 3045a27d8c
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
just add support for everything
2024-03-29 13:42:02 +01:00

68 lines
3.3 KiB
Markdown

[![Crates.io](https://img.shields.io/crates/v/spacepackets)](https://crates.io/crates/spacepackets)
[![docs.rs](https://img.shields.io/docsrs/spacepackets)](https://docs.rs/spacepackets)
[![ci](https://github.com/us-irs/spacepackets-rs/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/us-irs/spacepackets-rs/actions/workflows/ci.yml)
[![coverage](https://shields.io/endpoint?url=https://absatsw.irs.uni-stuttgart.de/projects/spacepackets/coverage-rs/latest/coverage.json)](https://absatsw.irs.uni-stuttgart.de/projects/spacepackets/coverage-rs/latest/index.html)
ECSS and CCSDS Spacepackets
======
This package contains generic implementations for various CCSDS
(Consultative Committee for Space Data Systems) and ECSS
(European Cooperation for Space Standardization) packet standards.
Currently, this includes the following components:
- Space Packet implementation according to
[CCSDS Blue Book 133.0-B-2](https://public.ccsds.org/Pubs/133x0b2e1.pdf)
- CCSDS File Delivery Protocol (CFDP) packet implementations according to
[CCSDS Blue Book 727.0-B-5](https://public.ccsds.org/Pubs/727x0b5.pdf)
- PUS Telecommand and PUS Telemetry implementation according to the
[ECSS-E-ST-70-41C standard](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
- CUC (CCSDS Unsegmented Time Code) implementation according to
[CCSDS 301.0-B-4 3.2](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
- CDS (CCSDS Day Segmented Time Code) implementation according to
[CCSDS 301.0-B-4 3.3](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
- Some helper types to support ASCII timecodes as specified in
[CCSDS 301.0-B-4 3.5](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
# Features
`spacepackets` supports various runtime environments and is also suitable for `no_std` environments.
It also offers optional support for [`serde`](https://serde.rs/). This allows serializing and
deserializing them with an appropriate `serde` provider like
[`postcard`](https://github.com/jamesmunns/postcard).
## Default features
- [`std`](https://doc.rust-lang.org/std/): Enables functionality relying on the standard library.
- [`alloc`](https://doc.rust-lang.org/alloc/): Enables features which operate on containers
like [`alloc::vec::Vec`](https://doc.rust-lang.org/beta/alloc/vec/struct.Vec.html).
Enabled by the `std` feature.
## Optional Features
- [`serde`](https://serde.rs/): Adds `serde` support for most types by adding `Serialize` and `Deserialize` `derive`s
- [`chrono`](https://crates.io/crates/chrono): Add basic support for the `chrono` time library.
- [`timelib`](https://crates.io/crates/time): Add basic support for the `time` time library.
- [`defmt`](https://defmt.ferrous-systems.com/): Add support for the `defmt` by adding the
`defmt::Format` derive on many objects.
# Examples
You can check the [documentation](https://docs.rs/spacepackets) of individual modules for various
usage examples.
# Coverage
Coverage was generated using [`grcov`](https://github.com/mozilla/grcov). If you have not done so
already, install the `llvm-tools-preview`:
```sh
rustup component add llvm-tools-preview
cargo install grcov --locked
```
After that, you can simply run `coverage.py` to test the project with coverage. You can optionally
supply the `--open` flag to open the coverage report in your webbrowser.