eive-obsw/mission/controller/acs/control/SafeCtrl.cpp

162 lines
7.5 KiB
C++
Raw Normal View History

2022-09-20 13:46:42 +02:00
#include "SafeCtrl.h"
2022-10-20 11:07:45 +02:00
2022-09-27 11:06:11 +02:00
#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
2023-03-21 17:19:27 +01:00
#include <fsfw/globalfunctions/sign.h>
2022-10-20 11:07:45 +02:00
#include <math.h>
2022-09-27 11:06:11 +02:00
2022-10-20 11:07:45 +02:00
#include "../util/MathOperations.h"
2022-09-20 13:46:42 +02:00
2023-02-28 09:18:44 +01:00
SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameters_; }
2022-09-20 13:46:42 +02:00
2022-10-20 11:07:45 +02:00
SafeCtrl::~SafeCtrl() {}
2022-09-20 13:46:42 +02:00
2023-03-24 11:35:46 +01:00
ReturnValue_t SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const ReturnValue_t mekfValid,
const bool satRotRateValid, const bool sunDirValid) {
if (not magFieldValid) {
return SAFECTRL_NO_MAG_FIELD_FOR_CONTROL;
} else if (mekfValid) {
return SAFECTRL_USE_MEKF;
} else if (satRotRateValid and sunDirValid) {
return SAFECTRL_USE_NONMEKF;
} else if (satRotRateValid and not sunDirValid) {
return SAFECTRL_USE_DAMPING;
} else {
return SAFECTRL_NO_SENSORS_FOR_CONTROL;
}
}
2023-03-24 14:51:33 +01:00
void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB,
const double *sunDirModelI, const double *quatBI, const double *sunDirRefB,
const double *satRotRateRefB, double *magMomB, double &errorAngle) {
// convert magFieldB from uT to T
double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
2022-10-20 11:07:45 +02:00
2023-03-24 14:51:33 +01:00
// convert sunDirModel to body rf
double sunDirB[3] = {0, 0, 0};
QuaternionOperations::multiplyVector(quatBI, sunDirModelI, sunDirB);
2022-10-20 11:07:45 +02:00
2023-03-24 14:51:33 +01:00
// calculate angle alpha between sunDirRef and sunDir
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
errorAngle = acos(dotSun);
2022-10-20 11:07:45 +02:00
2023-03-24 14:51:33 +01:00
// split rotational rate into parallel and orthogonal parts
double satRotRateParallelB[3] = {0, 0, 0}, satRotRateOrthogonalB[3] = {0, 0, 0};
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
2022-10-20 11:07:45 +02:00
2023-03-24 14:51:33 +01:00
// calculate torque for parallel rotational rate
double cmdParallel[3] = {0, 0, 0};
if (errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin) {
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
VectorOperations<double>::mulScalar(
cmdParallel, acsParameters->safeModeControllerParameters.k_parallelMekf, cmdParallel, 3);
}
2022-10-20 11:07:45 +02:00
2023-03-24 14:51:33 +01:00
// calculate torque for orthogonal rotational rate
double cmdOrtho[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(satRotRateOrthogonalB,
-acsParameters->safeModeControllerParameters.k_orthoMekf,
cmdOrtho, 3);
// calculate torque for alignment
double cmdAlign[3] = {0, 0, 0}, crossAlign[3] = {0, 0, 0},
alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiplyScalar(*acsParameters->inertiaEIVE.inertiaMatrix,
acsParameters->safeModeControllerParameters.k_alignMekf,
*alignFactor, 3, 3);
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
MatrixOperations<double>::multiply(*alignFactor, crossAlign, cmdAlign, 3, 3, 1);
2022-10-20 11:07:45 +02:00
2023-03-24 14:51:33 +01:00
// sum of all torques
double cmdTorque[3] = {0, 0, 0};
for (uint8_t i = 0; i < 3; i++) {
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
}
2022-10-20 11:07:45 +02:00
2023-03-24 14:51:33 +01:00
// calculate magnetic moment to command
2022-10-20 11:07:45 +02:00
double torqueMgt[3] = {0, 0, 0};
2023-03-24 14:51:33 +01:00
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
2022-10-20 11:07:45 +02:00
double normMag = VectorOperations<double>::norm(magFieldB, 3);
2023-03-24 14:51:33 +01:00
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
2022-09-20 13:46:42 +02:00
}
2023-03-24 14:51:33 +01:00
void SafeCtrl::safeNonMekf(const double *magFieldB, const double *satRotRateB,
const double *sunDirB, const double *sunDirRefB,
const double *satRotRateRefB, double *magMomB, double &errorAngle) {
2023-03-24 11:35:46 +01:00
// convert magFieldB from uT to T
2023-03-22 08:59:29 +01:00
double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
2023-03-21 17:19:27 +01:00
2023-03-24 11:35:46 +01:00
// calculate angle alpha between sunDirRef and sunDir
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
errorAngle = acos(dotSun);
// split rotational rate into parallel and orthogonal parts
double satRotRateParallelB[3] = {0, 0, 0}, satRotRateOrthogonalB[3] = {0, 0, 0};
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
// calculate torque for parallel rotational rate
double cmdParallel[3] = {0, 0, 0};
if (errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin) {
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
2023-03-21 17:19:27 +01:00
VectorOperations<double>::mulScalar(
2023-03-24 14:51:33 +01:00
cmdParallel, acsParameters->safeModeControllerParameters.k_parallelMekf, cmdParallel, 3);
2022-10-20 11:07:45 +02:00
}
2023-03-24 11:35:46 +01:00
// calculate torque for orthogonal rotational rate
double cmdOrtho[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(satRotRateOrthogonalB,
2023-03-24 14:51:33 +01:00
-acsParameters->safeModeControllerParameters.k_orthoMekf,
2023-03-24 11:35:46 +01:00
cmdOrtho, 3);
// calculate torque for alignment
double cmdAlign[3] = {0, 0, 0}, crossAlign[3] = {0, 0, 0},
alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiplyScalar(*acsParameters->inertiaEIVE.inertiaMatrix,
2023-03-24 14:51:33 +01:00
acsParameters->safeModeControllerParameters.k_alignMekf,
2023-03-24 11:35:46 +01:00
*alignFactor, 3, 3);
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
2023-03-24 14:51:33 +01:00
MatrixOperations<double>::multiply(*alignFactor, crossAlign, cmdAlign, 3, 3, 1);
2023-03-24 11:35:46 +01:00
// sum of all torques
double cmdTorque[3] = {0, 0, 0};
2023-03-21 17:19:27 +01:00
for (uint8_t i = 0; i < 3; i++) {
2023-03-24 11:35:46 +01:00
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
2023-03-21 17:19:27 +01:00
}
2023-03-22 08:59:29 +01:00
2023-03-24 14:51:33 +01:00
// calculate magnetic moment to command
2023-03-22 08:59:29 +01:00
double torqueMgt[3] = {0, 0, 0};
2023-03-24 11:35:46 +01:00
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
2023-03-22 08:59:29 +01:00
double normMag = VectorOperations<double>::norm(magFieldB, 3);
2023-03-24 11:35:46 +01:00
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
2023-03-21 17:19:27 +01:00
}
2023-03-24 14:51:33 +01:00
void SafeCtrl::safeRateDamping(const double *magFieldB, const double *satRotRateB,
const double *satRotRateRefB, double *magMomB, double &errorAngle) {
// convert magFieldB from uT to T
double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
// calculate torque for rate damping
double cmdTorque[3] = {0, 0, 0}, diffSatRotRate[3] = {0, 0, 0};
VectorOperations<double>::subtract(satRotRateRefB, satRotRateB, diffSatRotRate, 3);
VectorOperations<double>::mulScalar(
satRotRateB, acsParameters->safeModeControllerParameters.k_rateDamping, cmdTorque, 3);
// calculate magnetic moment to command
double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3);
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
errorAngle = NAN;
}