Merge branch 'make-robin-happy-about-timestuff' into higher-acs-modes-only-str
This commit is contained in:
commit
65f907448c
10
CHANGELOG.md
10
CHANGELOG.md
@ -69,6 +69,16 @@ will consitute of a breaking change warranting a new major release:
|
||||
during which the SUS was not working as well as the maximum amount of invalid messages.
|
||||
- Updated battery internal resistance to new value
|
||||
|
||||
## Changed
|
||||
|
||||
- `Power Controller` now uses monotonic clock for calculating time difference
|
||||
- `ACS Controller` now uses monotonic clock for calculating time difference and the normal clock
|
||||
for model calculations. The `timeDelta` is now calculated in the controller instead of
|
||||
everywhere where it is needed.
|
||||
- `ACS Controller` now has the function `performAttitudeControl` which is called prior to passing
|
||||
on to the relevant mode functions. It handles all telemetry relevant functions, which were
|
||||
always called, regardless of the mode.
|
||||
|
||||
# [v7.1.0] 2023-10-11
|
||||
|
||||
- Bumped `eive-tmtc` to v5.8.0.
|
||||
|
@ -136,25 +136,7 @@ void AcsController::performControlOperation() {
|
||||
}
|
||||
case InternalState::READY: {
|
||||
if (mode != MODE_OFF) {
|
||||
switch (mode) {
|
||||
case acs::SAFE:
|
||||
switch (submode) {
|
||||
case SUBMODE_NONE:
|
||||
performSafe();
|
||||
break;
|
||||
case acs::DETUMBLE:
|
||||
performDetumble();
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case acs::PTG_IDLE:
|
||||
case acs::PTG_TARGET:
|
||||
case acs::PTG_TARGET_GS:
|
||||
case acs::PTG_NADIR:
|
||||
case acs::PTG_INERTIAL:
|
||||
performPointingCtrl();
|
||||
break;
|
||||
}
|
||||
performAttitudeControl();
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -163,39 +145,96 @@ void AcsController::performControlOperation() {
|
||||
}
|
||||
}
|
||||
|
||||
void AcsController::performSafe() {
|
||||
timeval now;
|
||||
Clock::getClock_timeval(&now);
|
||||
void AcsController::performAttitudeControl() {
|
||||
Clock::getClock_timeval(&timeAbsolute);
|
||||
Clock::getClockMonotonic(&timeRelative);
|
||||
|
||||
ReturnValue_t result = navigation.useSpg4(now, &gpsDataProcessed);
|
||||
if (timeRelative.tv_sec != 0 and oldTimeRelative.tv_sec != 0) {
|
||||
timeDelta = timevalOperations::toDouble(timeRelative - oldTimeRelative);
|
||||
}
|
||||
oldTimeRelative = timeRelative;
|
||||
|
||||
ReturnValue_t result = navigation.useSpg4(timeAbsolute, &gpsDataProcessed);
|
||||
if (result == Sgp4Propagator::TLE_TOO_OLD and not tleTooOldFlag) {
|
||||
triggerEvent(acs::TLE_TOO_OLD);
|
||||
tleTooOldFlag = true;
|
||||
} else if (result != Sgp4Propagator::TLE_TOO_OLD) {
|
||||
tleTooOldFlag = false;
|
||||
}
|
||||
sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed,
|
||||
&gyrDataProcessed, &gpsDataProcessed, &acsParameters);
|
||||
|
||||
sensorProcessing.process(timeAbsolute, timeDelta, &sensorValues, &mgmDataProcessed,
|
||||
&susDataProcessed, &gyrDataProcessed, &gpsDataProcessed, &acsParameters);
|
||||
fusedRotationEstimation.estimateFusedRotationRateSafe(&susDataProcessed, &mgmDataProcessed,
|
||||
&gyrDataProcessed, &fusedRotRateData);
|
||||
result = navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed,
|
||||
&susDataProcessed, &mekfData, &acsParameters);
|
||||
if (result != MultiplicativeKalmanFilter::MEKF_RUNNING &&
|
||||
result != MultiplicativeKalmanFilter::MEKF_INITIALIZED) {
|
||||
if (not mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_INVALID_INFO, (uint32_t)mekfData.mekfStatus.value);
|
||||
mekfInvalidFlag = true;
|
||||
}
|
||||
if (result == MultiplicativeKalmanFilter::MEKF_NOT_FINITE && !mekfLost) {
|
||||
triggerEvent(acs::MEKF_AUTOMATIC_RESET);
|
||||
navigation.resetMekf(&mekfData);
|
||||
mekfLost = true;
|
||||
}
|
||||
} else if (mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_RECOVERY);
|
||||
mekfInvalidFlag = false;
|
||||
}
|
||||
|
||||
switch (mode) {
|
||||
case acs::SAFE:
|
||||
if (result != MultiplicativeKalmanFilter::MEKF_RUNNING and
|
||||
result != MultiplicativeKalmanFilter::MEKF_INITIALIZED) {
|
||||
if (not mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_INVALID_INFO, (uint32_t)mekfData.mekfStatus.value);
|
||||
mekfInvalidFlag = true;
|
||||
}
|
||||
if (result == MultiplicativeKalmanFilter::MEKF_NOT_FINITE and not mekfLost) {
|
||||
triggerEvent(acs::MEKF_AUTOMATIC_RESET);
|
||||
navigation.resetMekf(&mekfData);
|
||||
mekfLost = true;
|
||||
}
|
||||
} else if (mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_RECOVERY);
|
||||
mekfInvalidFlag = false;
|
||||
}
|
||||
switch (submode) {
|
||||
case SUBMODE_NONE:
|
||||
performSafe();
|
||||
break;
|
||||
case acs::DETUMBLE:
|
||||
performDetumble();
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case acs::PTG_IDLE:
|
||||
case acs::PTG_TARGET:
|
||||
case acs::PTG_TARGET_GS:
|
||||
case acs::PTG_NADIR:
|
||||
case acs::PTG_INERTIAL:
|
||||
if (result != MultiplicativeKalmanFilter::MEKF_RUNNING and
|
||||
result != MultiplicativeKalmanFilter::MEKF_INITIALIZED) {
|
||||
mekfInvalidCounter++;
|
||||
if (not mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_INVALID_INFO, (uint32_t)mekfData.mekfStatus.value);
|
||||
mekfInvalidFlag = true;
|
||||
}
|
||||
if (result == MultiplicativeKalmanFilter::MEKF_NOT_FINITE and not mekfLost) {
|
||||
triggerEvent(acs::MEKF_AUTOMATIC_RESET);
|
||||
navigation.resetMekf(&mekfData);
|
||||
mekfLost = true;
|
||||
}
|
||||
if (mekfInvalidCounter > acsParameters.onBoardParams.mekfViolationTimer) {
|
||||
// Trigger this so STR FDIR can set the device faulty.
|
||||
EventManagerIF::triggerEvent(objects::STAR_TRACKER, acs::MEKF_INVALID_MODE_VIOLATION, 0,
|
||||
0);
|
||||
mekfInvalidCounter = 0;
|
||||
}
|
||||
commandActuators(0, 0, 0, acsParameters.magnetorquerParameter.torqueDuration,
|
||||
cmdSpeedRws[0], cmdSpeedRws[1], cmdSpeedRws[2], cmdSpeedRws[3],
|
||||
acsParameters.rwHandlingParameters.rampTime);
|
||||
return;
|
||||
} else {
|
||||
if (mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_RECOVERY);
|
||||
mekfInvalidFlag = false;
|
||||
}
|
||||
mekfInvalidCounter = 0;
|
||||
}
|
||||
performPointingCtrl();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void AcsController::performSafe() {
|
||||
// get desired satellite rate, sun direction to align to and inertia
|
||||
double sunTargetDir[3] = {0, 0, 0};
|
||||
guidance.getTargetParamsSafe(sunTargetDir);
|
||||
@ -296,37 +335,6 @@ void AcsController::performSafe() {
|
||||
}
|
||||
|
||||
void AcsController::performDetumble() {
|
||||
timeval now;
|
||||
Clock::getClock_timeval(&now);
|
||||
|
||||
ReturnValue_t result = navigation.useSpg4(now, &gpsDataProcessed);
|
||||
if (result == Sgp4Propagator::TLE_TOO_OLD and not tleTooOldFlag) {
|
||||
triggerEvent(acs::TLE_TOO_OLD);
|
||||
tleTooOldFlag = true;
|
||||
} else {
|
||||
tleTooOldFlag = false;
|
||||
}
|
||||
sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed,
|
||||
&gyrDataProcessed, &gpsDataProcessed, &acsParameters);
|
||||
fusedRotationEstimation.estimateFusedRotationRateSafe(&susDataProcessed, &mgmDataProcessed,
|
||||
&gyrDataProcessed, &fusedRotRateData);
|
||||
result = navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed,
|
||||
&susDataProcessed, &mekfData, &acsParameters);
|
||||
if (result != MultiplicativeKalmanFilter::MEKF_RUNNING &&
|
||||
result != MultiplicativeKalmanFilter::MEKF_INITIALIZED) {
|
||||
if (not mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_INVALID_INFO, (uint32_t)mekfData.mekfStatus.value);
|
||||
mekfInvalidFlag = true;
|
||||
}
|
||||
if (result == MultiplicativeKalmanFilter::MEKF_NOT_FINITE && !mekfLost) {
|
||||
triggerEvent(acs::MEKF_AUTOMATIC_RESET);
|
||||
navigation.resetMekf(&mekfData);
|
||||
mekfLost = true;
|
||||
}
|
||||
} else if (mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_RECOVERY);
|
||||
mekfInvalidFlag = false;
|
||||
}
|
||||
acs::SafeModeStrategy safeCtrlStrat = detumble.detumbleStrategy(
|
||||
mgmDataProcessed.mgmVecTot.isValid(), gyrDataProcessed.gyrVecTot.isValid(),
|
||||
mgmDataProcessed.mgmVecTotDerivative.isValid(),
|
||||
@ -389,51 +397,9 @@ void AcsController::performDetumble() {
|
||||
}
|
||||
|
||||
void AcsController::performPointingCtrl() {
|
||||
timeval now;
|
||||
Clock::getClock_timeval(&now);
|
||||
|
||||
ReturnValue_t result = navigation.useSpg4(now, &gpsDataProcessed);
|
||||
if (result == Sgp4Propagator::TLE_TOO_OLD and not tleTooOldFlag) {
|
||||
triggerEvent(acs::TLE_TOO_OLD);
|
||||
tleTooOldFlag = true;
|
||||
} else {
|
||||
tleTooOldFlag = false;
|
||||
}
|
||||
sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed,
|
||||
&gyrDataProcessed, &gpsDataProcessed, &acsParameters);
|
||||
result = navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed,
|
||||
&susDataProcessed, &mekfData, &acsParameters);
|
||||
if (result != MultiplicativeKalmanFilter::MEKF_RUNNING &&
|
||||
result != MultiplicativeKalmanFilter::MEKF_INITIALIZED) {
|
||||
mekfInvalidCounter++;
|
||||
if (not mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_INVALID_INFO, (uint32_t)mekfData.mekfStatus.value);
|
||||
mekfInvalidFlag = true;
|
||||
}
|
||||
if (result == MultiplicativeKalmanFilter::MEKF_NOT_FINITE && !mekfLost) {
|
||||
triggerEvent(acs::MEKF_AUTOMATIC_RESET);
|
||||
navigation.resetMekf(&mekfData);
|
||||
mekfLost = true;
|
||||
}
|
||||
if (mekfInvalidCounter > acsParameters.onBoardParams.mekfViolationTimer) {
|
||||
// Trigger this so STR FDIR can set the device faulty.
|
||||
EventManagerIF::triggerEvent(objects::STAR_TRACKER, acs::MEKF_INVALID_MODE_VIOLATION, 0, 0);
|
||||
mekfInvalidCounter = 0;
|
||||
}
|
||||
commandActuators(0, 0, 0, acsParameters.magnetorquerParameter.torqueDuration, cmdSpeedRws[0],
|
||||
cmdSpeedRws[1], cmdSpeedRws[2], cmdSpeedRws[3],
|
||||
acsParameters.rwHandlingParameters.rampTime);
|
||||
return;
|
||||
} else {
|
||||
if (mekfInvalidFlag) {
|
||||
triggerEvent(acs::MEKF_RECOVERY);
|
||||
mekfInvalidFlag = false;
|
||||
}
|
||||
mekfInvalidCounter = 0;
|
||||
}
|
||||
uint8_t enableAntiStiction = true;
|
||||
double rwPseudoInv[4][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
result = guidance.getDistributionMatrixRw(&sensorValues, *rwPseudoInv);
|
||||
ReturnValue_t result = guidance.getDistributionMatrixRw(&sensorValues, *rwPseudoInv);
|
||||
if (result == returnvalue::FAILED) {
|
||||
if (multipleRwUnavailableCounter >=
|
||||
acsParameters.rwHandlingParameters.multipleRwInvalidTimeout) {
|
||||
@ -455,7 +421,7 @@ void AcsController::performPointingCtrl() {
|
||||
|
||||
switch (mode) {
|
||||
case acs::PTG_IDLE:
|
||||
guidance.targetQuatPtgSun(now, susDataProcessed.sunIjkModel.value, targetQuat,
|
||||
guidance.targetQuatPtgSun(timeDelta, susDataProcessed.sunIjkModel.value, targetQuat,
|
||||
targetSatRotRate);
|
||||
guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
|
||||
targetSatRotRate, errorQuat, errorSatRotRate, errorAngle);
|
||||
@ -476,7 +442,7 @@ void AcsController::performPointingCtrl() {
|
||||
break;
|
||||
|
||||
case acs::PTG_TARGET:
|
||||
guidance.targetQuatPtgThreeAxes(now, gpsDataProcessed.gpsPosition.value,
|
||||
guidance.targetQuatPtgThreeAxes(timeAbsolute, timeDelta, gpsDataProcessed.gpsPosition.value,
|
||||
gpsDataProcessed.gpsVelocity.value, targetQuat,
|
||||
targetSatRotRate);
|
||||
guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
|
||||
@ -500,7 +466,7 @@ void AcsController::performPointingCtrl() {
|
||||
break;
|
||||
|
||||
case acs::PTG_TARGET_GS:
|
||||
guidance.targetQuatPtgGs(now, gpsDataProcessed.gpsPosition.value,
|
||||
guidance.targetQuatPtgGs(timeAbsolute, timeDelta, gpsDataProcessed.gpsPosition.value,
|
||||
susDataProcessed.sunIjkModel.value, targetQuat, targetSatRotRate);
|
||||
guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
|
||||
targetSatRotRate, errorQuat, errorSatRotRate, errorAngle);
|
||||
@ -521,9 +487,9 @@ void AcsController::performPointingCtrl() {
|
||||
break;
|
||||
|
||||
case acs::PTG_NADIR:
|
||||
guidance.targetQuatPtgNadirThreeAxes(now, gpsDataProcessed.gpsPosition.value,
|
||||
gpsDataProcessed.gpsVelocity.value, targetQuat,
|
||||
targetSatRotRate);
|
||||
guidance.targetQuatPtgNadirThreeAxes(
|
||||
timeAbsolute, timeDelta, gpsDataProcessed.gpsPosition.value,
|
||||
gpsDataProcessed.gpsVelocity.value, targetQuat, targetSatRotRate);
|
||||
guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
|
||||
targetSatRotRate, acsParameters.nadirModeControllerParameters.quatRef,
|
||||
acsParameters.nadirModeControllerParameters.refRotRate, errorQuat,
|
||||
|
@ -37,6 +37,7 @@ class AcsController : public ExtendedControllerBase, public ReceivesParameterMes
|
||||
uint16_t startAtIndex) override;
|
||||
|
||||
protected:
|
||||
void performAttitudeControl();
|
||||
void performSafe();
|
||||
void performDetumble();
|
||||
void performPointingCtrl();
|
||||
@ -49,6 +50,11 @@ class AcsController : public ExtendedControllerBase, public ReceivesParameterMes
|
||||
|
||||
bool enableHkSets = false;
|
||||
|
||||
timeval timeAbsolute;
|
||||
timeval timeRelative;
|
||||
double timeDelta = 0.0;
|
||||
timeval oldTimeRelative;
|
||||
|
||||
AcsParameters acsParameters;
|
||||
SensorProcessing sensorProcessing;
|
||||
FusedRotationEstimation fusedRotationEstimation;
|
||||
|
@ -157,7 +157,7 @@ ReturnValue_t PowerController::checkModeCommand(Mode_t mode, Submode_t submode,
|
||||
|
||||
void PowerController::calculateStateOfCharge() {
|
||||
// get time
|
||||
Clock::getClock_timeval(&now);
|
||||
Clock::getClockMonotonic(&now);
|
||||
|
||||
// update EPS HK values
|
||||
ReturnValue_t result = updateEpsData();
|
||||
@ -286,7 +286,12 @@ ReturnValue_t PowerController::calculateOpenCircuitVoltageCharge() {
|
||||
}
|
||||
|
||||
ReturnValue_t PowerController::calculateCoulombCounterCharge() {
|
||||
double timeDiff = timevalOperations::toDouble(now - oldTime);
|
||||
double timeDiff = 0.0;
|
||||
if (oldTime.tv_sec != 0) {
|
||||
timeDiff = timevalOperations::toDouble(now - oldTime);
|
||||
} else {
|
||||
return returnvalue::FAILED;
|
||||
}
|
||||
if (timeDiff > maxAllowedTimeDiff) {
|
||||
// should not be a permanent state so no spam protection required
|
||||
triggerEvent(power::TIMEDELTA_OUT_OF_BOUNDS, static_cast<uint32_t>(timeDiff * 10));
|
||||
|
@ -4,21 +4,21 @@
|
||||
#include <fsfw/globalfunctions/math/MatrixOperations.h>
|
||||
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
|
||||
#include <fsfw/globalfunctions/math/VectorOperations.h>
|
||||
#include <math.h>
|
||||
#include <mission/controller/acs/util/MathOperations.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <filesystem>
|
||||
|
||||
#include "string.h"
|
||||
#include "util/CholeskyDecomposition.h"
|
||||
#include "util/MathOperations.h"
|
||||
#include <string>
|
||||
|
||||
Guidance::Guidance(AcsParameters *acsParameters_) { acsParameters = acsParameters_; }
|
||||
|
||||
Guidance::~Guidance() {}
|
||||
|
||||
void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double velSatE[3],
|
||||
double sunDirI[3], double refDirB[3], double quatBI[4],
|
||||
double targetQuat[4], double targetSatRotRate[3]) {
|
||||
[[deprecated]] void Guidance::targetQuatPtgSingleAxis(const timeval timeAbsolute, double posSatE[3],
|
||||
double velSatE[3], double sunDirI[3],
|
||||
double refDirB[3], double quatBI[4],
|
||||
double targetQuat[4],
|
||||
double targetSatRotRate[3]) {
|
||||
//-------------------------------------------------------------------------------------
|
||||
// Calculation of target quaternion to groundstation or given latitude, longitude and altitude
|
||||
//-------------------------------------------------------------------------------------
|
||||
@ -38,7 +38,7 @@ void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double ve
|
||||
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::ecfToEciWithNutPre(timeAbsolute, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
|
||||
|
||||
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
@ -136,8 +136,9 @@ void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double ve
|
||||
QuaternionOperations::multiply(quatIB, targetQuat, targetQuat);
|
||||
}
|
||||
|
||||
void Guidance::targetQuatPtgThreeAxes(timeval now, double posSatE[3], double velSatE[3],
|
||||
double targetQuat[4], double targetSatRotRate[3]) {
|
||||
void Guidance::targetQuatPtgThreeAxes(const timeval timeAbsolute, const double timeDelta,
|
||||
double posSatE[3], double velSatE[3], double targetQuat[4],
|
||||
double targetSatRotRate[3]) {
|
||||
//-------------------------------------------------------------------------------------
|
||||
// Calculation of target quaternion for target pointing
|
||||
//-------------------------------------------------------------------------------------
|
||||
@ -154,7 +155,7 @@ void Guidance::targetQuatPtgThreeAxes(timeval now, double posSatE[3], double vel
|
||||
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::ecfToEciWithNutPre(timeAbsolute, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
|
||||
|
||||
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
@ -199,11 +200,12 @@ void Guidance::targetQuatPtgThreeAxes(timeval now, double posSatE[3], double vel
|
||||
QuaternionOperations::fromDcm(dcmIX, targetQuat);
|
||||
|
||||
int8_t timeElapsedMax = acsParameters->targetModeControllerParameters.timeElapsedMax;
|
||||
targetRotationRate(timeElapsedMax, now, targetQuat, targetSatRotRate);
|
||||
targetRotationRate(timeElapsedMax, timeDelta, targetQuat, targetSatRotRate);
|
||||
}
|
||||
|
||||
void Guidance::targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3],
|
||||
double targetQuat[4], double targetSatRotRate[3]) {
|
||||
void Guidance::targetQuatPtgGs(const timeval timeAbsolute, const double timeDelta,
|
||||
double posSatE[3], double sunDirI[3], double targetQuat[4],
|
||||
double targetSatRotRate[3]) {
|
||||
//-------------------------------------------------------------------------------------
|
||||
// Calculation of target quaternion for ground station pointing
|
||||
//-------------------------------------------------------------------------------------
|
||||
@ -221,7 +223,7 @@ void Guidance::targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3]
|
||||
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::ecfToEciWithNutPre(timeAbsolute, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
|
||||
|
||||
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
@ -263,10 +265,10 @@ void Guidance::targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3]
|
||||
QuaternionOperations::fromDcm(dcmTgt, targetQuat);
|
||||
|
||||
int8_t timeElapsedMax = acsParameters->gsTargetModeControllerParameters.timeElapsedMax;
|
||||
targetRotationRate(timeElapsedMax, now, targetQuat, targetSatRotRate);
|
||||
targetRotationRate(timeElapsedMax, timeDelta, targetQuat, targetSatRotRate);
|
||||
}
|
||||
|
||||
void Guidance::targetQuatPtgSun(timeval now, double sunDirI[3], double targetQuat[4],
|
||||
void Guidance::targetQuatPtgSun(double timeDelta, double sunDirI[3], double targetQuat[4],
|
||||
double targetSatRotRate[3]) {
|
||||
//-------------------------------------------------------------------------------------
|
||||
// Calculation of target quaternion to sun
|
||||
@ -298,12 +300,13 @@ void Guidance::targetQuatPtgSun(timeval now, double sunDirI[3], double targetQua
|
||||
// Calculation of reference rotation rate
|
||||
//----------------------------------------------------------------------------
|
||||
int8_t timeElapsedMax = acsParameters->gsTargetModeControllerParameters.timeElapsedMax;
|
||||
targetRotationRate(timeElapsedMax, now, targetQuat, targetSatRotRate);
|
||||
targetRotationRate(timeElapsedMax, timeDelta, targetQuat, targetSatRotRate);
|
||||
}
|
||||
|
||||
void Guidance::targetQuatPtgNadirSingleAxis(timeval now, double posSatE[3], double quatBI[4],
|
||||
double targetQuat[4], double refDirB[3],
|
||||
double refSatRate[3]) {
|
||||
[[deprecated]] void Guidance::targetQuatPtgNadirSingleAxis(const timeval timeAbsolute,
|
||||
double posSatE[3], double quatBI[4],
|
||||
double targetQuat[4], double refDirB[3],
|
||||
double refSatRate[3]) {
|
||||
//-------------------------------------------------------------------------------------
|
||||
// Calculation of target quaternion for Nadir pointing
|
||||
//-------------------------------------------------------------------------------------
|
||||
@ -314,7 +317,7 @@ void Guidance::targetQuatPtgNadirSingleAxis(timeval now, double posSatE[3], doub
|
||||
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::ecfToEciWithNutPre(timeAbsolute, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
|
||||
|
||||
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
@ -362,7 +365,8 @@ void Guidance::targetQuatPtgNadirSingleAxis(timeval now, double posSatE[3], doub
|
||||
QuaternionOperations::multiply(quatIB, targetQuat, targetQuat);
|
||||
}
|
||||
|
||||
void Guidance::targetQuatPtgNadirThreeAxes(timeval now, double posSatE[3], double velSatE[3],
|
||||
void Guidance::targetQuatPtgNadirThreeAxes(const timeval timeAbsolute, const double timeDelta,
|
||||
double posSatE[3], double velSatE[3],
|
||||
double targetQuat[4], double refSatRate[3]) {
|
||||
//-------------------------------------------------------------------------------------
|
||||
// Calculation of target quaternion for Nadir pointing
|
||||
@ -371,7 +375,7 @@ void Guidance::targetQuatPtgNadirThreeAxes(timeval now, double posSatE[3], doubl
|
||||
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::ecfToEciWithNutPre(timeAbsolute, *dcmEI, *dcmEIDot);
|
||||
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
|
||||
|
||||
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
@ -407,7 +411,7 @@ void Guidance::targetQuatPtgNadirThreeAxes(timeval now, double posSatE[3], doubl
|
||||
QuaternionOperations::fromDcm(dcmTgt, targetQuat);
|
||||
|
||||
int8_t timeElapsedMax = acsParameters->nadirModeControllerParameters.timeElapsedMax;
|
||||
targetRotationRate(timeElapsedMax, now, targetQuat, refSatRate);
|
||||
targetRotationRate(timeElapsedMax, timeDelta, targetQuat, refSatRate);
|
||||
}
|
||||
|
||||
void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
|
||||
@ -448,23 +452,21 @@ void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], do
|
||||
VectorOperations<double>::subtract(currentSatRotRate, targetSatRotRate, errorSatRotRate, 3);
|
||||
}
|
||||
|
||||
void Guidance::targetRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4],
|
||||
double *refSatRate) {
|
||||
void Guidance::targetRotationRate(const int8_t timeElapsedMax, const double timeDelta,
|
||||
double quatInertialTarget[4], double *refSatRate) {
|
||||
//-------------------------------------------------------------------------------------
|
||||
// Calculation of target rotation rate
|
||||
//-------------------------------------------------------------------------------------
|
||||
double timeElapsed = now.tv_sec + now.tv_usec * 1e-6 -
|
||||
(timeSavedQuaternion.tv_sec + timeSavedQuaternion.tv_usec * 1e-6);
|
||||
if (VectorOperations<double>::norm(savedQuaternion, 4) == 0) {
|
||||
std::memcpy(savedQuaternion, quatInertialTarget, sizeof(savedQuaternion));
|
||||
}
|
||||
if (timeElapsed < timeElapsedMax) {
|
||||
if (timeDelta < timeElapsedMax and timeDelta != 0.0) {
|
||||
double q[4] = {0, 0, 0, 0}, qS[4] = {0, 0, 0, 0};
|
||||
QuaternionOperations::inverse(quatInertialTarget, q);
|
||||
QuaternionOperations::inverse(savedQuaternion, qS);
|
||||
double qDiff[4] = {0, 0, 0, 0};
|
||||
VectorOperations<double>::subtract(q, qS, qDiff, 4);
|
||||
VectorOperations<double>::mulScalar(qDiff, 1 / timeElapsed, qDiff, 4);
|
||||
VectorOperations<double>::mulScalar(qDiff, 1. / timeDelta, qDiff, 4);
|
||||
|
||||
double tgtQuatVec[3] = {q[0], q[1], q[2]};
|
||||
double qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]};
|
||||
@ -488,11 +490,7 @@ void Guidance::targetRotationRate(int8_t timeElapsedMax, timeval now, double qua
|
||||
refSatRate[2] = 0;
|
||||
}
|
||||
|
||||
timeSavedQuaternion = now;
|
||||
savedQuaternion[0] = quatInertialTarget[0];
|
||||
savedQuaternion[1] = quatInertialTarget[1];
|
||||
savedQuaternion[2] = quatInertialTarget[2];
|
||||
savedQuaternion[3] = quatInertialTarget[3];
|
||||
std::memcpy(savedQuaternion, quatInertialTarget, sizeof(savedQuaternion));
|
||||
}
|
||||
|
||||
ReturnValue_t Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues,
|
||||
|
@ -17,25 +17,26 @@ class Guidance {
|
||||
|
||||
// Function to get the target quaternion and reference rotation rate from gps position and
|
||||
// position of the ground station
|
||||
void targetQuatPtgSingleAxis(timeval now, double posSatE[3], double velSatE[3], double sunDirI[3],
|
||||
double refDirB[3], double quatBI[4], double targetQuat[4],
|
||||
double targetSatRotRate[3]);
|
||||
void targetQuatPtgThreeAxes(timeval now, double posSatE[3], double velSatE[3], double quatIX[4],
|
||||
double targetSatRotRate[3]);
|
||||
void targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3], double quatIX[4],
|
||||
double targetSatRotRate[3]);
|
||||
void targetQuatPtgSingleAxis(const timeval timeAbsolute, double posSatE[3], double velSatE[3],
|
||||
double sunDirI[3], double refDirB[3], double quatBI[4],
|
||||
double targetQuat[4], double targetSatRotRate[3]);
|
||||
void targetQuatPtgThreeAxes(const timeval timeAbsolute, const double timeDelta, double posSatE[3],
|
||||
double velSatE[3], double quatIX[4], double targetSatRotRate[3]);
|
||||
void targetQuatPtgGs(const timeval timeAbsolute, const double timeDelta, double posSatE[3],
|
||||
double sunDirI[3], double quatIX[4], double targetSatRotRate[3]);
|
||||
|
||||
// Function to get the target quaternion and reference rotation rate for sun pointing after ground
|
||||
// station
|
||||
void targetQuatPtgSun(timeval now, double sunDirI[3], double targetQuat[4],
|
||||
void targetQuatPtgSun(const double timeDelta, double sunDirI[3], double targetQuat[4],
|
||||
double targetSatRotRate[3]);
|
||||
|
||||
// Function to get the target quaternion and refence rotation rate from gps position for Nadir
|
||||
// pointing
|
||||
void targetQuatPtgNadirSingleAxis(timeval now, double posSatE[3], double quatBI[4],
|
||||
void targetQuatPtgNadirSingleAxis(const timeval timeAbsolute, double posSatE[3], double quatBI[4],
|
||||
double targetQuat[4], double refDirB[3], double refSatRate[3]);
|
||||
void targetQuatPtgNadirThreeAxes(timeval now, double posSatE[3], double velSatE[3],
|
||||
double targetQuat[4], double refSatRate[3]);
|
||||
void targetQuatPtgNadirThreeAxes(const timeval timeAbsolute, const double timeDelta,
|
||||
double posSatE[3], double velSatE[3], double targetQuat[4],
|
||||
double refSatRate[3]);
|
||||
|
||||
// @note: Calculates the error quaternion between the current orientation and the target
|
||||
// quaternion, considering a reference quaternion. Additionally the difference between the actual
|
||||
@ -48,8 +49,8 @@ class Guidance {
|
||||
double targetSatRotRate[3], double errorQuat[4], double errorSatRotRate[3],
|
||||
double &errorAngle);
|
||||
|
||||
void targetRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4],
|
||||
double *targetSatRotRate);
|
||||
void targetRotationRate(const int8_t timeElapsedMax, const double timeDelta,
|
||||
double quatInertialTarget[4], double *targetSatRotRate);
|
||||
|
||||
// @note: will give back the pseudoinverse matrix for the reaction wheel depending on the valid
|
||||
// reation wheel maybe can be done in "commanding.h"
|
||||
@ -59,7 +60,6 @@ class Guidance {
|
||||
const AcsParameters *acsParameters;
|
||||
|
||||
bool strBlindAvoidFlag = false;
|
||||
timeval timeSavedQuaternion;
|
||||
double savedQuaternion[4] = {0, 0, 0, 0};
|
||||
double omegaRefSaved[3] = {0, 0, 0};
|
||||
|
||||
|
@ -7,7 +7,7 @@ SensorProcessing::~SensorProcessing() {}
|
||||
void SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value,
|
||||
bool mgm1valid, const float *mgm2Value, bool mgm2valid,
|
||||
const float *mgm3Value, bool mgm3valid, const float *mgm4Value,
|
||||
bool mgm4valid, timeval timeOfMgmMeasurement,
|
||||
bool mgm4valid, timeval timeAbsolute, double timeDelta,
|
||||
const AcsParameters::MgmHandlingParameters *mgmParameters,
|
||||
acsctrl::GpsDataProcessed *gpsDataProcessed,
|
||||
acsctrl::MgmDataProcessed *mgmDataProcessed) {
|
||||
@ -18,11 +18,12 @@ void SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const
|
||||
if (gpsDataProcessed->source.value != acs::GpsSource::NONE) {
|
||||
Igrf13Model igrf13;
|
||||
igrf13.schmidtNormalization();
|
||||
igrf13.updateCoeffGH(timeOfMgmMeasurement);
|
||||
igrf13.updateCoeffGH(timeAbsolute);
|
||||
// ToDo
|
||||
// maybe put a condition here, to only update after a full day, this
|
||||
// class function has around 700 steps to perform
|
||||
igrf13.magFieldComp(gpsDataProcessed->gdLongitude.value, gpsDataProcessed->gcLatitude.value,
|
||||
gpsDataProcessed->altitude.value, timeOfMgmMeasurement, magIgrfModel);
|
||||
gpsDataProcessed->altitude.value, timeAbsolute, magIgrfModel);
|
||||
gpsValid = true;
|
||||
}
|
||||
if (not mgm0valid and not mgm1valid and not mgm2valid and not mgm3valid and
|
||||
@ -129,14 +130,12 @@ void SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const
|
||||
//-----------------------Mgm Rate Computation ---------------------------------------------------
|
||||
double mgmVecTotDerivative[3] = {0.0, 0.0, 0.0};
|
||||
bool mgmVecTotDerivativeValid = false;
|
||||
double timeDiff = timevalOperations::toDouble(timeOfMgmMeasurement - timeOfSavedMagFieldEst);
|
||||
if (timeOfSavedMagFieldEst.tv_sec != 0 and timeDiff > 0 and
|
||||
VectorOperations<double>::norm(savedMgmVecTot, 3) != 0) {
|
||||
if (timeDelta > 0 and VectorOperations<double>::norm(savedMgmVecTot, 3) != 0) {
|
||||
VectorOperations<double>::subtract(mgmVecTot, savedMgmVecTot, mgmVecTotDerivative, 3);
|
||||
VectorOperations<double>::mulScalar(mgmVecTotDerivative, 1. / timeDiff, mgmVecTotDerivative, 3);
|
||||
VectorOperations<double>::mulScalar(mgmVecTotDerivative, 1. / timeDelta, mgmVecTotDerivative,
|
||||
3);
|
||||
mgmVecTotDerivativeValid = true;
|
||||
}
|
||||
timeOfSavedMagFieldEst = timeOfMgmMeasurement;
|
||||
std::memcpy(savedMgmVecTot, mgmVecTot, sizeof(savedMgmVecTot));
|
||||
|
||||
if (VectorOperations<double>::norm(mgmVecTotDerivative, 3) != 0 and
|
||||
@ -177,11 +176,12 @@ void SensorProcessing::processSus(
|
||||
const uint16_t *sus6Value, bool sus6valid, const uint16_t *sus7Value, bool sus7valid,
|
||||
const uint16_t *sus8Value, bool sus8valid, const uint16_t *sus9Value, bool sus9valid,
|
||||
const uint16_t *sus10Value, bool sus10valid, const uint16_t *sus11Value, bool sus11valid,
|
||||
timeval timeOfSusMeasurement, const AcsParameters::SusHandlingParameters *susParameters,
|
||||
timeval timeAbsolute, double timeDelta,
|
||||
const AcsParameters::SusHandlingParameters *susParameters,
|
||||
const AcsParameters::SunModelParameters *sunModelParameters,
|
||||
acsctrl::SusDataProcessed *susDataProcessed) {
|
||||
/* -------- Sun Model Direction (IJK frame) ------- */
|
||||
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfSusMeasurement);
|
||||
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeAbsolute);
|
||||
|
||||
// Julean Centuries
|
||||
double sunIjkModel[3] = {0.0, 0.0, 0.0};
|
||||
@ -354,11 +354,10 @@ void SensorProcessing::processSus(
|
||||
|
||||
double susVecTotDerivative[3] = {0.0, 0.0, 0.0};
|
||||
bool susVecTotDerivativeValid = false;
|
||||
double timeDiff = timevalOperations::toDouble(timeOfSusMeasurement - timeOfSavedSusDirEst);
|
||||
if (timeOfSavedSusDirEst.tv_sec != 0 and timeDiff > 0 and
|
||||
VectorOperations<double>::norm(savedSusVecTot, 3) != 0) {
|
||||
if (timeDelta > 0 and VectorOperations<double>::norm(savedSusVecTot, 3) != 0) {
|
||||
VectorOperations<double>::subtract(susVecTot, savedSusVecTot, susVecTotDerivative, 3);
|
||||
VectorOperations<double>::mulScalar(susVecTotDerivative, 1. / timeDiff, susVecTotDerivative, 3);
|
||||
VectorOperations<double>::mulScalar(susVecTotDerivative, 1. / timeDelta, susVecTotDerivative,
|
||||
3);
|
||||
susVecTotDerivativeValid = true;
|
||||
}
|
||||
std::memcpy(savedSusVecTot, susVecTot, sizeof(savedSusVecTot));
|
||||
@ -367,7 +366,6 @@ void SensorProcessing::processSus(
|
||||
lowPassFilter(susVecTotDerivative, susDataProcessed->susVecTotDerivative.value,
|
||||
susParameters->susRateFilterWeight);
|
||||
}
|
||||
timeOfSavedSusDirEst = timeOfSusMeasurement;
|
||||
{
|
||||
PoolReadGuard pg(susDataProcessed);
|
||||
if (pg.getReadResult() == returnvalue::OK) {
|
||||
@ -414,7 +412,7 @@ void SensorProcessing::processGyr(
|
||||
const double gyr2axXvalue, bool gyr2axXvalid, const double gyr2axYvalue, bool gyr2axYvalid,
|
||||
const double gyr2axZvalue, bool gyr2axZvalid, const double gyr3axXvalue, bool gyr3axXvalid,
|
||||
const double gyr3axYvalue, bool gyr3axYvalid, const double gyr3axZvalue, bool gyr3axZvalid,
|
||||
timeval timeOfGyrMeasurement, const AcsParameters::GyrHandlingParameters *gyrParameters,
|
||||
const AcsParameters::GyrHandlingParameters *gyrParameters,
|
||||
acsctrl::GyrDataProcessed *gyrDataProcessed) {
|
||||
bool gyr0valid = (gyr0axXvalid && gyr0axYvalid && gyr0axZvalid);
|
||||
bool gyr1valid = (gyr1axXvalid && gyr1axYvalid && gyr1axZvalid);
|
||||
@ -521,7 +519,7 @@ void SensorProcessing::processGyr(
|
||||
}
|
||||
|
||||
void SensorProcessing::processGps(const double gpsLatitude, const double gpsLongitude,
|
||||
const double gpsAltitude, const double gpsUnixSeconds,
|
||||
const double gpsAltitude, const double timeDelta,
|
||||
const bool validGps,
|
||||
const AcsParameters::GpsParameters *gpsParameters,
|
||||
acsctrl::GpsDataProcessed *gpsDataProcessed) {
|
||||
@ -563,18 +561,14 @@ void SensorProcessing::processGps(const double gpsLatitude, const double gpsLong
|
||||
// Calculation of the satellite velocity in earth fixed frame
|
||||
double deltaDistance[3] = {0, 0, 0};
|
||||
MathOperations<double>::cartesianFromLatLongAlt(latitudeRad, gdLongitude, altitude, posSatE);
|
||||
if (validSavedPosSatE and
|
||||
(gpsUnixSeconds - timeOfSavedPosSatE) < (gpsParameters->timeDiffVelocityMax) and
|
||||
(gpsUnixSeconds - timeOfSavedPosSatE) > 0) {
|
||||
if (validSavedPosSatE and timeDelta < (gpsParameters->timeDiffVelocityMax) and timeDelta > 0) {
|
||||
VectorOperations<double>::subtract(posSatE, savedPosSatE, deltaDistance, 3);
|
||||
double timeDiffGpsMeas = gpsUnixSeconds - timeOfSavedPosSatE;
|
||||
VectorOperations<double>::mulScalar(deltaDistance, 1. / timeDiffGpsMeas, gpsVelocityE, 3);
|
||||
VectorOperations<double>::mulScalar(deltaDistance, 1. / timeDelta, gpsVelocityE, 3);
|
||||
}
|
||||
savedPosSatE[0] = posSatE[0];
|
||||
savedPosSatE[1] = posSatE[1];
|
||||
savedPosSatE[2] = posSatE[2];
|
||||
|
||||
timeOfSavedPosSatE = gpsUnixSeconds;
|
||||
validSavedPosSatE = true;
|
||||
|
||||
gpsSource = acs::GpsSource::GPS;
|
||||
@ -594,13 +588,15 @@ void SensorProcessing::processGps(const double gpsLatitude, const double gpsLong
|
||||
}
|
||||
}
|
||||
|
||||
void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
|
||||
void SensorProcessing::process(timeval timeAbsolute, double timeDelta,
|
||||
ACS::SensorValues *sensorValues,
|
||||
acsctrl::MgmDataProcessed *mgmDataProcessed,
|
||||
acsctrl::SusDataProcessed *susDataProcessed,
|
||||
acsctrl::GyrDataProcessed *gyrDataProcessed,
|
||||
acsctrl::GpsDataProcessed *gpsDataProcessed,
|
||||
const AcsParameters *acsParameters) {
|
||||
sensorValues->update();
|
||||
|
||||
processGps(
|
||||
sensorValues->gpsSet.latitude.value, sensorValues->gpsSet.longitude.value,
|
||||
sensorValues->gpsSet.altitude.value, sensorValues->gpsSet.unixSeconds.value,
|
||||
@ -617,7 +613,8 @@ void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
|
||||
sensorValues->mgm3Rm3100Set.fieldStrengths.value,
|
||||
sensorValues->mgm3Rm3100Set.fieldStrengths.isValid(),
|
||||
sensorValues->imtqMgmSet.mtmRawNt.value, sensorValues->imtqMgmSet.mtmRawNt.isValid(),
|
||||
now, &acsParameters->mgmHandlingParameters, gpsDataProcessed, mgmDataProcessed);
|
||||
timeAbsolute, timeDelta, &acsParameters->mgmHandlingParameters, gpsDataProcessed,
|
||||
mgmDataProcessed);
|
||||
|
||||
processSus(sensorValues->susSets[0].channels.value, sensorValues->susSets[0].channels.isValid(),
|
||||
sensorValues->susSets[1].channels.value, sensorValues->susSets[1].channels.isValid(),
|
||||
@ -631,8 +628,8 @@ void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
|
||||
sensorValues->susSets[9].channels.value, sensorValues->susSets[9].channels.isValid(),
|
||||
sensorValues->susSets[10].channels.value, sensorValues->susSets[10].channels.isValid(),
|
||||
sensorValues->susSets[11].channels.value, sensorValues->susSets[11].channels.isValid(),
|
||||
now, &acsParameters->susHandlingParameters, &acsParameters->sunModelParameters,
|
||||
susDataProcessed);
|
||||
timeAbsolute, timeDelta, &acsParameters->susHandlingParameters,
|
||||
&acsParameters->sunModelParameters, susDataProcessed);
|
||||
|
||||
processGyr(
|
||||
sensorValues->gyr0AdisSet.angVelocX.value, sensorValues->gyr0AdisSet.angVelocX.isValid(),
|
||||
@ -646,7 +643,7 @@ void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
|
||||
sensorValues->gyr2AdisSet.angVelocZ.value, sensorValues->gyr2AdisSet.angVelocZ.isValid(),
|
||||
sensorValues->gyr3L3gSet.angVelocX.value, sensorValues->gyr3L3gSet.angVelocX.isValid(),
|
||||
sensorValues->gyr3L3gSet.angVelocY.value, sensorValues->gyr3L3gSet.angVelocY.isValid(),
|
||||
sensorValues->gyr3L3gSet.angVelocZ.value, sensorValues->gyr3L3gSet.angVelocZ.isValid(), now,
|
||||
sensorValues->gyr3L3gSet.angVelocZ.value, sensorValues->gyr3L3gSet.angVelocZ.isValid(),
|
||||
&acsParameters->gyrHandlingParameters, gyrDataProcessed);
|
||||
}
|
||||
|
||||
|
@ -24,22 +24,21 @@ class SensorProcessing {
|
||||
SensorProcessing();
|
||||
virtual ~SensorProcessing();
|
||||
|
||||
void process(timeval now, ACS::SensorValues *sensorValues,
|
||||
void process(timeval timeAbsolute, double timeDelta, ACS::SensorValues *sensorValues,
|
||||
acsctrl::MgmDataProcessed *mgmDataProcessed,
|
||||
acsctrl::SusDataProcessed *susDataProcessed,
|
||||
acsctrl::GyrDataProcessed *gyrDataProcessed,
|
||||
acsctrl::GpsDataProcessed *gpsDataProcessed,
|
||||
const AcsParameters *acsParameters); // Will call protected functions
|
||||
acsctrl::GpsDataProcessed *gpsDataProcessed, const AcsParameters *acsParameters);
|
||||
|
||||
private:
|
||||
static constexpr float ZERO_VEC_F[3] = {0, 0, 0};
|
||||
static constexpr double ZERO_VEC_D[3] = {0, 0, 0};
|
||||
static constexpr double ECCENTRICITY_WGS84 = 0.0818195;
|
||||
|
||||
protected:
|
||||
// short description needed for every function
|
||||
void processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value, bool mgm1valid,
|
||||
const float *mgm2Value, bool mgm2valid, const float *mgm3Value, bool mgm3valid,
|
||||
const float *mgm4Value, bool mgm4valid, timeval timeOfMgmMeasurement,
|
||||
const float *mgm4Value, bool mgm4valid, timeval timeAbsolute, double timeDelta,
|
||||
const AcsParameters::MgmHandlingParameters *mgmParameters,
|
||||
acsctrl::GpsDataProcessed *gpsDataProcessed,
|
||||
acsctrl::MgmDataProcessed *mgmDataProcessed);
|
||||
@ -52,7 +51,7 @@ class SensorProcessing {
|
||||
bool sus7valid, const uint16_t *sus8Value, bool sus8valid,
|
||||
const uint16_t *sus9Value, bool sus9valid, const uint16_t *sus10Value,
|
||||
bool sus10valid, const uint16_t *sus11Value, bool sus11valid,
|
||||
timeval timeOfSusMeasurement,
|
||||
timeval timeAbsolute, double timeDelta,
|
||||
const AcsParameters::SusHandlingParameters *susParameters,
|
||||
const AcsParameters::SunModelParameters *sunModelParameters,
|
||||
acsctrl::SusDataProcessed *susDataProcessed);
|
||||
@ -65,7 +64,6 @@ class SensorProcessing {
|
||||
bool gyr2axYvalid, const double gyr2axZvalue, bool gyr2axZvalid,
|
||||
const double gyr3axXvalue, bool gyr3axXvalid, const double gyr3axYvalue,
|
||||
bool gyr3axYvalid, const double gyr3axZvalue, bool gyr3axZvalid,
|
||||
timeval timeOfGyrMeasurement,
|
||||
const AcsParameters::GyrHandlingParameters *gyrParameters,
|
||||
acsctrl::GyrDataProcessed *gyrDataProcessed);
|
||||
|
||||
@ -77,13 +75,9 @@ class SensorProcessing {
|
||||
void lowPassFilter(double *newValue, double *oldValue, const double weight);
|
||||
|
||||
double savedMgmVecTot[3] = {0.0, 0.0, 0.0};
|
||||
timeval timeOfSavedMagFieldEst;
|
||||
double savedSusVecTot[3] = {0.0, 0.0, 0.0};
|
||||
timeval timeOfSavedSusDirEst;
|
||||
bool validMagField = false;
|
||||
|
||||
double savedPosSatE[3] = {0.0, 0.0, 0.0};
|
||||
double timeOfSavedPosSatE = 0.0;
|
||||
bool validSavedPosSatE = false;
|
||||
|
||||
SusConverter susConverter;
|
||||
|
Loading…
Reference in New Issue
Block a user