First Version of ACS Controller #329

Merged
muellerr merged 106 commits from acs-ctrl-v1 into develop 2022-12-02 16:21:58 +01:00
2 changed files with 243 additions and 0 deletions
Showing only changes of commit 4583f0cb86 - Show all commits

View File

@ -0,0 +1,126 @@
/*
* Igrf13Model.cpp
*
* Created on: 10 Mar 2022
* Author: Robin Marquardt
*/
#include "Igrf13Model.h"
#include <cmath>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <fsfw/src/fsfw/globalfunctions/constants.h>
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h>
#include <acs/math/MathOperations.h>
using namespace Math;
Igrf13Model::Igrf13Model(){
}
Igrf13Model::~Igrf13Model(){
}
void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude,
const double altitude, timeval timeOfMagMeasurement, double* magFieldModelInertial) {
double phi = longitude, theta = gcLatitude; //geocentric
/* Here is the co-latitude needed*/
theta -= 90*PI/180;
theta *= (-1);
double rE = 6371200.0; // radius earth [m]
/* Predefine recursive associated Legendre polynomials */
double P11 = 1;
double P10 = P11; //P10 = P(n-1,m-0)
double dP11 = 0; //derivative
double dP10 = dP11; //derivative
double P2 = 0, dP2 = 0, P20 = 0, dP20 = 0, K = 0;
for (int m = 0; m <= igrfOrder; m++) {
for (int n = 1; n <= igrfOrder; n++) {
if (m <= n) {
/* Calculation of Legendre Polynoms (normalised) */
if (n == m) {
P2 = sin(theta) * P11;
dP2 = sin(theta) * dP11 - cos(theta) * P11;
P11 = P2;
P10 = P11;
P20 = 0;
dP11 = dP2;
dP10 = dP11;
dP20 = 0;
} else if (n == 1) {
P2 = cos(theta) * P10;
dP2 = cos(theta) * dP10 - sin(theta) * P10;
P20 = P10;
P10 = P2;
dP20 = dP10;
dP10 = dP2;
} else {
K = (pow((n - 1), 2) - pow(m, 2))
/ ((2 * n - 1) * (2 * n - 3));
P2 = cos(theta) * P10 - K * P20;
dP2 = cos(theta) * dP10 - sin(theta) * P10 - K * dP20;
P20 = P10;
P10 = P2;
dP20 = dP10;
dP10 = dP2;
}
/* gradient of scalar potential towards radius */
magFieldModel[0]+=pow(rE/(altitude+rE),(n+2))*(n+1)*
((updatedG[m][n-1]*cos(m*phi) + updatedH[m][n-1]*sin(m*phi))*P2);
/* gradient of scalar potential towards phi */
magFieldModel[1]+=pow(rE/(altitude+rE),(n+2))*
((updatedG[m][n-1]*cos(m*phi) + updatedH[m][n-1]*sin(m*phi))*dP2);
/* gradient of scalar potential towards theta */
magFieldModel[2]+=pow(rE/(altitude+rE),(n+2))*
((-updatedG[m][n-1]*sin(m*phi) + updatedH[m][n-1]*cos(m*phi))*P2*m);
}
}
}
magFieldModel[1] *= -1;
magFieldModel[2] *= (-1 / sin(theta));
/* Next step: transform into inertial KOS (IJK)*/
//Julean Centuries
double JD2000Floor = 0;
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfMagMeasurement);
JD2000Floor = floor(JD2000);
double JC2000 = JD2000Floor / 36525;
double gst = 100.4606184 + 36000.77005361 * JC2000 + 0.00038793 * pow(JC2000,2)
- 0.000000026 * pow(JC2000,3); //greenwich sidereal time
gst *= PI/180; //convert to radians
double sec = (JD2000 - JD2000Floor) * 86400; // Seconds on this day (Universal time) // FROM GPS ?
double omega0 = 0.00007292115; // mean angular velocity earth [rad/s]
gst +=omega0 * sec;
double lst = gst + longitude; //local sidereal time [rad]
magFieldModelInertial[0] = magFieldModel[0] * cos(theta) + magFieldModel[1] * sin(theta)*cos(lst) - magFieldModel[1] * sin(lst);
magFieldModelInertial[1] = magFieldModel[0] * cos(theta) + magFieldModel[1] * sin(theta)*sin(lst) + magFieldModel[1] * cos(lst);
magFieldModelInertial[2] = magFieldModel[0] * sin(theta) + magFieldModel[1] * cos(lst);
double normVecMagFieldInert[3] = {0,0,0};
VectorOperations<double>::normalize(magFieldModelInertial, normVecMagFieldInert, 3);
}
void Igrf13Model::updateCoeffGH(timeval timeOfMagMeasurement){
double JD2000Igrf = (2458850.0-2451545); //Begin of IGRF-13 (2020-01-01,00:00:00) in JD2000
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfMagMeasurement);
double days = ceil(JD2000-JD2000Igrf);
for(int i = 0;i <= igrfOrder; i++){
for(int j = 0;j <= (igrfOrder-1); j++){
updatedG[i][j] = coeffG[i][j] + svG[i][j] * (days/365);
updatedH[i][j] = coeffH[i][j] + svH[i][j] * (days/365);
}
}
}

View File

@ -0,0 +1,117 @@
/*
* Igrf13Model.h
*
* Created on: 10 Mar 2022
* Author: Robin Marquardt
* Description: Calculates the magnetic field vector of earth with the IGRF Model.
* Sources: https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
* https://doi.org/10.1186/s40623-020-01288-x
* J. Davis, Mathematical Modeling of Earth's Magnetic Field, TN, 2004
*
* [Conversion of ENU (geocentric) to IJK: Skript Bahnmechanik für Raumfahrzeuge,
* Prof. Dr.-Ing. Stefanos Fasoulas / Dr.-Ing. Frank Zimmermann]
*
*/
#ifndef IGRF13MODEL_H_
#define IGRF13MODEL_H_
#include <cmath>
#include <stdint.h>
#include <string.h>
#include <time.h>
// Output should be transformed to [T] instead of [nT]
// Updating Coefficients has to be implemented yet. Question, updating everyday ?
class Igrf13Model {
public:
Igrf13Model();
virtual ~Igrf13Model();
// Main Function
void magFieldComp(const double longitude, const double gcLatitude, const double altitude, timeval timeOfMagMeasurement,double* magFieldModelInertial);
// Right now the radius for igrf is simply with r0 + altitude calculated. In reality the radius is oriented from the satellite to earth COM
// Difference up to 25 km, which is 5 % of the total flight altitude
/* Inputs:
* - longitude: geocentric longitude [rad]
* - latitude: geocentric latitude [rad]
* - altitude: [m]
* - timeOfMagMeasurement: time of actual measurement [s]
*
* Outputs:
* - magFieldModelInertial: Magnetic Field Vector in IJK KOS [nT]*/
// Coefficient wary over year, could be updated sometimes.
void updateCoeffGH(timeval timeOfMagMeasurement); //Secular variation (SV)
double magFieldModel[3];
private:
const double coeffG[14][13] = {{-29404.8, -2499.6, 1363.2, 903.0, -234.3, 66.0, 80.6, 23.7, 5.0, -1.9, 3.0, -2.0, 0.1},
{-1450.9, 2982.0, -2381.2, 809.5, 363.2, 65.5, -76.7, 9.7, 8.4, -6.2, -1.4, -0.1, -0.9},
{0, 1677.0, 1236.2, 86.3, 187.8, 72.9, -8.2, -17.6, 2.9, -0.1, -2.5, 0.5, 0.5},
{0, 0, 525.7, -309.4, -140.7, -121.5, 56.5, -0.5, -1.5, 1.7, 2.3, 1.3 ,0.7},
{0 ,0 ,0, 48.0, -151.2, -36.2, 15.8, -21.1, -1.1, -0.9, -0.9, -1.2, -0.3},
{0, 0, 0, 0, 13.5, 13.5, 6.4, 15.3, -13.2, 0.7, 0.3, 0.7, 0.8},
{0, 0, 0, 0, 0,-64.7, -7.2, 13.7, 1.1, -0.9, -0.7, 0.3, 0.0},
{0, 0, 0, 0, 0, 0, 9.8, -16.5, 8.8, 1.9, -0.1, 0.5, 0.8},
{0, 0, 0, 0, 0, 0, 0, -0.3, -9.3, 1.4, 1.4, -0.3, 0.0},
{0, 0, 0, 0, 0, 0, 0, 0, -11.9, -2.4, -0.6, -0.5, 0.4},
{0, 0, 0, 0, 0, 0, 0, 0, 0, -3.8, 0.2, 0.1, 0.1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.1, -1.1, 0.5},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.3, -0.5},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.4}}; // [m][n] in nT
const double coeffH[14][13] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{4652.5, -2991.6, -82.1, 281.9, 47.7, -19.1, -51.5, 8.4, -23.4, 3.4, 0.0, -1.2, -0.9},
{0, -734.6, 241.9, -158.4, 208.3, 25.1, -16.9, -15.3, 11.0, -0.2, 2.5, 0.5, 0.6},
{0, 0, -543.4, 199.7, -121.2, 52.8, 2.2, 12.8, 9.8, 3.6, -0.6, 1.4, 1.4},
{0, 0, 0, -349.7, 32.3, -64.5, 23.5, -11.7, -5.1, 4.8, -0.4, -1.8, -0.4},
{0, 0, 0, 0, 98.9, 8.9, -2.2, 14.9, -6.3, -8.6, 0.6, 0.1, -1.3},
{0, 0, 0, 0, 0, 68.1, -27.2, 3.6, 7.8, -0.1, -0.2, 0.8, -0.1},
{0, 0, 0, 0, 0, 0, -1.8, -6.9, 0.4, -4.3, -1.7, -0.2, 0.3},
{0, 0, 0, 0, 0, 0, 0, 2.8, -1.4, -3.4, -1.6, 0.6, -0.1},
{0, 0, 0, 0, 0, 0, 0, 0, 9.6, -0.1, -3.0, 0.2, 0.5},
{0, 0, 0, 0, 0, 0, 0, 0, 0, -8.8, -2.0, -0.9, 0.5},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.6, 0.0, -0.4},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5, -0.4},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.6}}; // [m][n] in nT
const double svG[14][13] = {{5.7, -11, 2.2, -1.2, -0.3, -0.5, -0.1, 0, 0, 0, 0, 0 ,0},
{7.4, -7, -5.9, -1.6, 0.5, -0.3, -0.2, 0.1, 0, 0, 0, 0,0},
{0, -2.1, 3.1, -5.9, -0.6, 0.4, 0, -0.1, 0, 0, 0, 0, 0},
{0, 0, -12, 5.2, 0.2, 1.3, 0.7, 0.4, 0, 0, 0, 0, 0},
{0 ,0 ,0, -5.1, 1.3, -1.4, 0.1, -0.1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0.9, 0, -0.5, 0.4, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0.9, -0.8, 0.3, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0.8, -0.1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0.4, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; // [m][n] in nT
const double svH[14][13] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{-25.9, -30.2, 6, -0.1, 0, 0, 0.6, -0.2, 0, 0, 0, 0,0},
{0, -22.4, -1.1, 6.5, 2.5, -1.6, 0.6, 0.6, 0, 0, 0, 0, 0},
{0, 0, 0.5, 3.6, -0.6, -1.3, -0.8, -0.2, 0, 0, 0, 0, 0},
{0 ,0 ,0, -5, 3, 0.8, -0.2, 0.5, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0.3, 0, -1.1, -0.3, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0.1, -0.4, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0.3, 0.5, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; // [m][n] in nT
double updatedG[14][13];
double updatedH[14][13];
static const int igrfOrder = 13; // degree of truncation
};
#endif /* IGRF13MODEL_H_ */