First Version of ACS Controller #329

Merged
muellerr merged 106 commits from acs-ctrl-v1 into develop 2022-12-02 16:21:58 +01:00
4 changed files with 221 additions and 179 deletions
Showing only changes of commit deb7c4e500 - Show all commits

View File

@ -8,6 +8,7 @@ AcsController::AcsController(object_id_t objectId)
navigation(&acsParameters), navigation(&acsParameters),
actuatorCmd(&acsParameters), actuatorCmd(&acsParameters),
guidance(&acsParameters), guidance(&acsParameters),
safeCtrl(&acsParameters),
detumble(&acsParameters), detumble(&acsParameters),
ptgCtrl(&acsParameters), ptgCtrl(&acsParameters),
detumbleCounter{0}, detumbleCounter{0},
@ -35,7 +36,7 @@ void AcsController::performControlOperation() {
if (mode != MODE_OFF) { if (mode != MODE_OFF) {
switch (submode) { switch (submode) {
case SUBMODE_SAFE: case SUBMODE_SAFE:
// performSafe(); performSafe();
break; break;
case SUBMODE_DETUMBLE: case SUBMODE_DETUMBLE:
@ -72,7 +73,66 @@ void AcsController::performControlOperation() {
// DEBUG END // DEBUG END
} }
void AcsController::performSafe() {} void AcsController::performSafe() {
// Concept: SAFE MODE WITH MEKF
// -do the sensor processing, maybe is does make more sense do call this class function in
// another place since we have to do it for every mode regardless of safe or not
ACS::SensorValues sensorValues;
ACS::OutputValues outputValues;
timeval now; // We need to give the actual time here
sensorProcessing.process(now, &sensorValues, &outputValues, &acsParameters);
ReturnValue_t validMekf;
navigation.useMekf(&sensorValues, &outputValues, &validMekf); // DOES THIS WORK WITH VALID?
// Give desired satellite rate and sun direction to align
double satRateSafe[3] = {0, 0, 0}, sunTargetDir[3] = {0, 0, 0};
guidance.getTargetParamsSafe(sunTargetDir, satRateSafe);
// IF MEKF is working
double magMomMtq[3] = {0, 0, 0};
bool magMomMtqValid = false;
if (validMekf == returnvalue::OK) {
safeCtrl.safeMekf(now, (outputValues.quatMekfBJ), &(outputValues.quatMekfBJValid),
(outputValues.magFieldModel), &(outputValues.magFieldModelValid),
(outputValues.sunDirModel), &(outputValues.sunDirModelValid),
(outputValues.satRateMekf), &(outputValues.satRateMekfValid), sunTargetDir,
satRateSafe, magMomMtq, &magMomMtqValid);
} else {
safeCtrl.safeNoMekf(now, outputValues.sunDirEst, &outputValues.sunDirEstValid,
outputValues.sunVectorDerivative, &(outputValues.sunVectorDerivativeValid),
outputValues.magFieldEst, &(outputValues.magFieldEstValid),
outputValues.magneticFieldVectorDerivative,
&(outputValues.magneticFieldVectorDerivativeValid), sunTargetDir,
satRateSafe, magMomMtq, &magMomMtqValid);
}
double dipolCmdUnits[3] = {0, 0, 0};
actuatorCmd.cmdDipolMtq(magMomMtq, dipolCmdUnits);
// Detumble check and switch
if (outputValues.satRateMekfValid && VectorOperations<double>::norm(outputValues.satRateMekf, 3) >
acsParameters.detumbleParameter.omegaDetumbleStart) {
detumbleCounter++;
}
else if (outputValues.satRateEstValid &&
VectorOperations<double>::norm(outputValues.satRateEst, 3) >
acsParameters.detumbleParameter.omegaDetumbleStart) {
detumbleCounter++;
}
else {
detumbleCounter = 0;
}
if (detumbleCounter > acsParameters.detumbleParameter.detumblecounter) {
submode = SUBMODE_DETUMBLE;
detumbleCounter = 0;
}
// commanding.magnetorquesDipol();
}
void AcsController::performDetumble() { void AcsController::performDetumble() {
ACS::SensorValues sensorValues; ACS::SensorValues sensorValues;
@ -293,6 +353,8 @@ void AcsController::copySusData() {
PoolReadGuard pg(&susSets[9]); PoolReadGuard pg(&susSets[9]);
if (pg.getReadResult() == returnvalue::OK) { if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(susData.sus9.value, susSets[9].channels.value, 6 * sizeof(uint16_t)); std::memcpy(susData.sus9.value, susSets[9].channels.value, 6 * sizeof(uint16_t));
sif::debug << susData.sus9.isValid() << std::endl;
sif::debug << susSets[9].channels.isValid() << std::endl;
} }
} }
{ {

View File

@ -11,6 +11,7 @@
#include "acs/SensorProcessing.h" #include "acs/SensorProcessing.h"
#include "acs/control/Detumble.h" #include "acs/control/Detumble.h"
#include "acs/control/PtgCtrl.h" #include "acs/control/PtgCtrl.h"
#include "acs/control/SafeCtrl.h"
#include "controllerdefinitions/AcsCtrlDefinitions.h" #include "controllerdefinitions/AcsCtrlDefinitions.h"
#include "fsfw_hal/devicehandlers/MgmLIS3MDLHandler.h" #include "fsfw_hal/devicehandlers/MgmLIS3MDLHandler.h"
#include "fsfw_hal/devicehandlers/MgmRM3100Handler.h" #include "fsfw_hal/devicehandlers/MgmRM3100Handler.h"
@ -29,7 +30,6 @@ class AcsController : public ExtendedControllerBase {
static const Submode_t SUBMODE_PTG_NADIR = 5; static const Submode_t SUBMODE_PTG_NADIR = 5;
protected: protected:
void performSafe(); void performSafe();
void performDetumble(); void performDetumble();
void performPointingCtrl(); void performPointingCtrl();
@ -41,6 +41,7 @@ class AcsController : public ExtendedControllerBase {
ActuatorCmd actuatorCmd; ActuatorCmd actuatorCmd;
Guidance guidance; Guidance guidance;
SafeCtrl safeCtrl;
Detumble detumble; Detumble detumble;
PtgCtrl ptgCtrl; PtgCtrl ptgCtrl;

View File

@ -6,37 +6,34 @@
*/ */
#include "SafeCtrl.h" #include "SafeCtrl.h"
#include "../util/MathOperations.h"
#include <math.h>
#include <fsfw/globalfunctions/constants.h> #include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h>
#include "../util/MathOperations.h"
SafeCtrl::SafeCtrl(AcsParameters *acsParameters_){ SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) {
loadAcsParameters(acsParameters_); loadAcsParameters(acsParameters_);
MatrixOperations<double>::multiplyScalar(*(inertiaEIVE->inertiaMatrix), 10, *gainMatrixInertia, 3, 3); MatrixOperations<double>::multiplyScalar(*(inertiaEIVE->inertiaMatrix), 10, *gainMatrixInertia, 3,
3);
} }
SafeCtrl::~SafeCtrl(){ SafeCtrl::~SafeCtrl() {}
} void SafeCtrl::loadAcsParameters(AcsParameters *acsParameters_) {
void SafeCtrl::loadAcsParameters(AcsParameters *acsParameters_){
safeModeControllerParameters = &(acsParameters_->safeModeControllerParameters); safeModeControllerParameters = &(acsParameters_->safeModeControllerParameters);
inertiaEIVE = &(acsParameters_->inertiaEIVE); inertiaEIVE = &(acsParameters_->inertiaEIVE);
} }
ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool *quatBJValid, ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool *quatBJValid,
double *magFieldModel, bool *magFieldModelValid, double *magFieldModel, bool *magFieldModelValid,
double *sunDirModel, bool *sunDirModelValid, double *sunDirModel, bool *sunDirModelValid, double *satRateMekf,
double *satRateMekf, bool *rateMekfValid, bool *rateMekfValid, double *sunDirRef, double *satRatRef,
double *sunDirRef, double *satRatRef, double *outputMagMomB, bool *outputValid) {
double *outputMagMomB, bool *outputValid){ if (!(*quatBJValid) || !(*magFieldModelValid) || !(*sunDirModelValid) || !(*rateMekfValid)) {
if ( !(*quatBJValid) || !(*magFieldModelValid) || !(*sunDirModelValid) ||
!(*rateMekfValid)) {
*outputValid = false; *outputValid = false;
return SAFECTRL_MEKF_INPUT_INVALID; return SAFECTRL_MEKF_INPUT_INVALID;
} }
@ -45,10 +42,10 @@ ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool *quatBJValid,
kRate = safeModeControllerParameters->k_rate_mekf; kRate = safeModeControllerParameters->k_rate_mekf;
kAlign = safeModeControllerParameters->k_align_mekf; kAlign = safeModeControllerParameters->k_align_mekf;
// Calc sunDirB ,magFieldB with mekf output and model // Calc sunDirB ,magFieldB with mekf output and model
double dcmBJ[3][3] = {{0,0,0},{0,0,0},{0,0,0}}; double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::dcmFromQuat(quatBJ, *dcmBJ); MathOperations<double>::dcmFromQuat(quatBJ, *dcmBJ);
double sunDirB[3] = {0,0,0}, magFieldB[3] = {0,0,0}; double sunDirB[3] = {0, 0, 0}, magFieldB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBJ, sunDirModel, sunDirB, 3, 3, 1); MatrixOperations<double>::multiply(*dcmBJ, sunDirModel, sunDirB, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmBJ, magFieldModel, magFieldB, 3, 3, 1); MatrixOperations<double>::multiply(*dcmBJ, magFieldModel, magFieldB, 3, 3, 1);
@ -57,71 +54,66 @@ ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool *quatBJValid,
VectorOperations<double>::cross(sunDirRef, sunDirB, crossSun); VectorOperations<double>::cross(sunDirRef, sunDirB, crossSun);
double normCrossSun = VectorOperations<double>::norm(crossSun, 3); double normCrossSun = VectorOperations<double>::norm(crossSun, 3);
// calc angle alpha between sunDirRef and sunDIr // calc angle alpha between sunDirRef and sunDIr
double alpha = 0, dotSun = 0; double alpha = 0, dotSun = 0;
dotSun = VectorOperations<double>::dot(sunDirRef, sunDirB); dotSun = VectorOperations<double>::dot(sunDirRef, sunDirB);
alpha = acos(dotSun); alpha = acos(dotSun);
// Law Torque calculations // Law Torque calculations
double torqueCmd[3] = {0, 0, 0}, torqueAlign[3] = {0, 0, 0}, double torqueCmd[3] = {0, 0, 0}, torqueAlign[3] = {0, 0, 0}, torqueRate[3] = {0, 0, 0},
torqueRate[3] = {0, 0, 0}, torqueAll[3] = {0, 0, 0}; torqueAll[3] = {0, 0, 0};
double scalarFac = 0; double scalarFac = 0;
scalarFac = kAlign * alpha / normCrossSun; scalarFac = kAlign * alpha / normCrossSun;
VectorOperations<double>::mulScalar(crossSun, scalarFac, torqueAlign, 3); VectorOperations<double>::mulScalar(crossSun, scalarFac, torqueAlign, 3);
double rateSafeMode[3] = {0,0,0}; double rateSafeMode[3] = {0, 0, 0};
VectorOperations<double>::subtract(satRateMekf, satRatRef, rateSafeMode, 3); VectorOperations<double>::subtract(satRateMekf, satRatRef, rateSafeMode, 3);
VectorOperations<double>::mulScalar(rateSafeMode, -kRate, torqueRate, 3); VectorOperations<double>::mulScalar(rateSafeMode, -kRate, torqueRate, 3);
VectorOperations<double>::add(torqueRate, torqueAlign, torqueAll, 3); VectorOperations<double>::add(torqueRate, torqueAlign, torqueAll, 3);
// Adding factor of inertia for axes // Adding factor of inertia for axes
MatrixOperations<double>::multiply(*gainMatrixInertia, torqueAll, torqueCmd, 3, 3, 1); MatrixOperations<double>::multiply(*gainMatrixInertia, torqueAll, torqueCmd, 3, 3, 1);
// MagMom B (orthogonal torque) // MagMom B (orthogonal torque)
double torqueMgt[3] = {0,0,0}; double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldB, torqueCmd, torqueMgt); VectorOperations<double>::cross(magFieldB, torqueCmd, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3); double normMag = VectorOperations<double>::norm(magFieldB, 3);
VectorOperations<double>::mulScalar(torqueMgt, 1/pow(normMag,2), outputMagMomB, 3); VectorOperations<double>::mulScalar(torqueMgt, 1 / pow(normMag, 2), outputMagMomB, 3);
*outputValid = true; *outputValid = true;
return returnvalue::OK; return returnvalue::OK;
} }
// Will be the version in worst case scenario in event of no working MEKF (nor RMUs) // Will be the version in worst case scenario in event of no working MEKF (nor RMUs)
void SafeCtrl::safeNoMekf(timeval now, double *susDirB, bool *susDirBValid, void SafeCtrl::safeNoMekf(timeval now, double *susDirB, bool *susDirBValid, double *sunRateB,
double *sunRateB, bool *sunRateBValid, bool *sunRateBValid, double *magFieldB, bool *magFieldBValid,
double *magFieldB, bool *magFieldBValid, double *magRateB, bool *magRateBValid, double *sunDirRef,
double *magRateB, bool *magRateBValid, double *satRateRef, double *outputMagMomB, bool *outputValid) {
double *sunDirRef, double *satRateRef, // Check for invalid Inputs
double *outputMagMomB, bool *outputValid){ if (!susDirBValid || !magFieldBValid || !magRateBValid) {
// Check for invalid Inputs
if ( !susDirBValid || !magFieldBValid || !magRateBValid) {
*outputValid = false; *outputValid = false;
return; return;
} }
// normalize sunDir and magDir // normalize sunDir and magDir
double magDirB[3] = {0, 0, 0}; double magDirB[3] = {0, 0, 0};
VectorOperations<double>::normalize(magFieldB, magDirB, 3); VectorOperations<double>::normalize(magFieldB, magDirB, 3);
VectorOperations<double>::normalize(susDirB, susDirB, 3); VectorOperations<double>::normalize(susDirB, susDirB, 3);
// Cosinus angle between sunDir and magDir // Cosinus angle between sunDir and magDir
double cosAngleSunMag = VectorOperations<double>::dot(magDirB, susDirB); double cosAngleSunMag = VectorOperations<double>::dot(magDirB, susDirB);
// Rate parallel to sun direction and magnetic field direction // Rate parallel to sun direction and magnetic field direction
double rateParaSun = 0, rateParaMag = 0; double rateParaSun = 0, rateParaMag = 0;
double dotSunRateMag = 0, dotmagRateSun = 0, double dotSunRateMag = 0, dotmagRateSun = 0, rateFactor = 0;
rateFactor = 0;
dotSunRateMag = VectorOperations<double>::dot(sunRateB, magDirB); dotSunRateMag = VectorOperations<double>::dot(sunRateB, magDirB);
dotmagRateSun = VectorOperations<double>::dot(magRateB, susDirB); dotmagRateSun = VectorOperations<double>::dot(magRateB, susDirB);
rateFactor = 1 - pow(cosAngleSunMag,2); rateFactor = 1 - pow(cosAngleSunMag, 2);
rateParaSun = ( dotmagRateSun + cosAngleSunMag * dotSunRateMag ) / rateFactor; rateParaSun = (dotmagRateSun + cosAngleSunMag * dotSunRateMag) / rateFactor;
rateParaMag = ( dotSunRateMag + cosAngleSunMag * dotmagRateSun ) / rateFactor; rateParaMag = (dotSunRateMag + cosAngleSunMag * dotmagRateSun) / rateFactor;
// Full rate or estimate // Full rate or estimate
double estSatRate[3] = {0, 0, 0}; double estSatRate[3] = {0, 0, 0};
double estSatRateMag[3] = {0, 0, 0}, estSatRateSun[3] = {0, 0, 0}; double estSatRateMag[3] = {0, 0, 0}, estSatRateSun[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(susDirB, rateParaSun, estSatRateSun, 3); VectorOperations<double>::mulScalar(susDirB, rateParaSun, estSatRateSun, 3);
@ -131,21 +123,21 @@ void SafeCtrl::safeNoMekf(timeval now, double *susDirB, bool *susDirBValid,
VectorOperations<double>::add(estSatRateSun, estSatRateMag, estSatRate, 3); VectorOperations<double>::add(estSatRateSun, estSatRateMag, estSatRate, 3);
VectorOperations<double>::mulScalar(estSatRate, 0.5, estSatRate, 3); VectorOperations<double>::mulScalar(estSatRate, 0.5, estSatRate, 3);
/* Only valid if angle between sun direction and magnetic field direction /* Only valid if angle between sun direction and magnetic field direction
is sufficiently large */ is sufficiently large */
double sinAngle = 0; double sinAngle = 0;
sinAngle = sin(acos(cos(cosAngleSunMag))); sinAngle = sin(acos(cos(cosAngleSunMag)));
if ( !(sinAngle > sin( safeModeControllerParameters->sunMagAngleMin * M_PI / 180))) { if (!(sinAngle > sin(safeModeControllerParameters->sunMagAngleMin * M_PI / 180))) {
return; return;
} }
// Rate for Torque Calculation // Rate for Torque Calculation
double diffRate[3] = {0, 0, 0}; /* ADD TO MONITORING */ double diffRate[3] = {0, 0, 0}; /* ADD TO MONITORING */
VectorOperations<double>::subtract(estSatRate, satRateRef, diffRate, 3); VectorOperations<double>::subtract(estSatRate, satRateRef, diffRate, 3);
// Torque Align calculation // Torque Align calculation
double kRateNoMekf = 0, kAlignNoMekf = 0; double kRateNoMekf = 0, kAlignNoMekf = 0;
kRateNoMekf = safeModeControllerParameters->k_rate_no_mekf; kRateNoMekf = safeModeControllerParameters->k_rate_no_mekf;
kAlignNoMekf = safeModeControllerParameters->k_align_no_mekf; kAlignNoMekf = safeModeControllerParameters->k_align_no_mekf;
@ -160,28 +152,26 @@ void SafeCtrl::safeNoMekf(timeval now, double *susDirB, bool *susDirBValid,
double torqueAlignFactor = kAlignNoMekf * angleAlignErr / sinAngleAlignErr; double torqueAlignFactor = kAlignNoMekf * angleAlignErr / sinAngleAlignErr;
VectorOperations<double>::mulScalar(crossSusSunRef, torqueAlignFactor, torqueAlign, 3); VectorOperations<double>::mulScalar(crossSusSunRef, torqueAlignFactor, torqueAlign, 3);
//Torque Rate Calculations // Torque Rate Calculations
double torqueRate[3] = {0, 0, 0}; double torqueRate[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(diffRate, -kRateNoMekf, torqueRate, 3); VectorOperations<double>::mulScalar(diffRate, -kRateNoMekf, torqueRate, 3);
//Final torque // Final torque
double torqueB[3] = {0, 0, 0}, torqueAlignRate[3] = {0, 0, 0}; double torqueB[3] = {0, 0, 0}, torqueAlignRate[3] = {0, 0, 0};
VectorOperations<double>::add(torqueRate, torqueAlign, torqueAlignRate, 3); VectorOperations<double>::add(torqueRate, torqueAlign, torqueAlignRate, 3);
MatrixOperations<double>::multiply(*(inertiaEIVE->inertiaMatrix), torqueAlignRate, torqueB, 3, 3, 1); MatrixOperations<double>::multiply(*(inertiaEIVE->inertiaMatrix), torqueAlignRate, torqueB, 3, 3,
1);
//Magnetic moment // Magnetic moment
double magMomB[3] = {0, 0, 0}; double magMomB[3] = {0, 0, 0};
double crossMagFieldTorque[3] = {0, 0, 0}; double crossMagFieldTorque[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldB, torqueB, crossMagFieldTorque); VectorOperations<double>::cross(magFieldB, torqueB, crossMagFieldTorque);
double magMomFactor = pow( VectorOperations<double>::norm(magFieldB, 3), 2 ); double magMomFactor = pow(VectorOperations<double>::norm(magFieldB, 3), 2);
VectorOperations<double>::mulScalar(crossMagFieldTorque, 1/magMomFactor, magMomB, 3); VectorOperations<double>::mulScalar(crossMagFieldTorque, 1 / magMomFactor, magMomB, 3);
outputMagMomB[0] = magMomB[0]; outputMagMomB[0] = magMomB[0];
outputMagMomB[1] = magMomB[1]; outputMagMomB[1] = magMomB[1];
outputMagMomB[2] = magMomB[2]; outputMagMomB[2] = magMomB[2];
*outputValid = true; *outputValid = true;
} }

View File

@ -8,20 +8,17 @@
#ifndef SAFECTRL_H_ #ifndef SAFECTRL_H_
#define SAFECTRL_H_ #define SAFECTRL_H_
#include "../SensorValues.h"
#include "../OutputValues.h"
#include "../AcsParameters.h"
#include "../config/classIds.h"
#include <string.h>
#include <stdio.h> #include <stdio.h>
#include <string.h>
#include <time.h> #include <time.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "../AcsParameters.h"
#include "../OutputValues.h"
#include "../SensorValues.h"
#include "../config/classIds.h"
class SafeCtrl{ class SafeCtrl {
public:
public:
SafeCtrl(AcsParameters *acsParameters_); SafeCtrl(AcsParameters *acsParameters_);
virtual ~SafeCtrl(); virtual ~SafeCtrl();
@ -30,35 +27,27 @@ public:
void loadAcsParameters(AcsParameters *acsParameters_); void loadAcsParameters(AcsParameters *acsParameters_);
ReturnValue_t safeMekf(timeval now, double *quatBJ, bool *quatBJValid, ReturnValue_t safeMekf(timeval now, double *quatBJ, bool *quatBJValid, double *magFieldModel,
double *magFieldModel, bool *magFieldModelValid, bool *magFieldModelValid, double *sunDirModel, bool *sunDirModelValid,
double *sunDirModel, bool *sunDirModelValid, double *satRateMekf, bool *rateMekfValid, double *sunDirRef,
double *satRateMekf, bool *rateMekfValid, double *satRatRef, // From Guidance (!)
double *sunDirRef, double *satRatRef, // From Guidance (!)
double *outputMagMomB, bool *outputValid); double *outputMagMomB, bool *outputValid);
void safeNoMekf(timeval now, double *susDirB, bool *susDirBValid, void safeNoMekf(timeval now, double *susDirB, bool *susDirBValid, double *sunRateB,
double *sunRateB, bool *sunRateBValid, bool *sunRateBValid, double *magFieldB, bool *magFieldBValid, double *magRateB,
double *magFieldB, bool *magFieldBValid, bool *magRateBValid, double *sunDirRef, double *satRateRef, double *outputMagMomB,
double *magRateB, bool *magRateBValid, bool *outputValid);
double *sunDirRef, double *satRateRef,
double *outputMagMomB, bool *outputValid);
void idleSunPointing(); // with reaction wheels void idleSunPointing(); // with reaction wheels
protected: protected:
private:
private: AcsParameters::SafeModeControllerParameters *safeModeControllerParameters;
AcsParameters::SafeModeControllerParameters* safeModeControllerParameters; AcsParameters::InertiaEIVE *inertiaEIVE;
AcsParameters::InertiaEIVE* inertiaEIVE;
double gainMatrixInertia[3][3]; double gainMatrixInertia[3][3];
double magFieldBState[3]; double magFieldBState[3];
timeval magFieldBStateTime; timeval magFieldBStateTime;
}; };
#endif /* ACS_CONTROL_SAFECTRL_H_ */ #endif /* ACS_CONTROL_SAFECTRL_H_ */