2020-12-14 11:17:22 +01:00
|
|
|
#ifndef FSFW_TIMEMANAGER_CLOCK_H_
|
|
|
|
#define FSFW_TIMEMANAGER_CLOCK_H_
|
2018-07-12 16:29:32 +02:00
|
|
|
|
2022-02-02 10:29:30 +01:00
|
|
|
#include <cstdint>
|
|
|
|
|
2020-12-15 23:00:30 +01:00
|
|
|
#include "clockDefinitions.h"
|
2021-07-13 20:22:54 +02:00
|
|
|
#include "fsfw/globalfunctions/timevalOperations.h"
|
2022-02-02 10:29:30 +01:00
|
|
|
#include "fsfw/ipc/MutexFactory.h"
|
|
|
|
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
|
2020-12-21 14:07:06 +01:00
|
|
|
|
|
|
|
#ifdef WIN32
|
|
|
|
#include <winsock2.h>
|
|
|
|
#else
|
2020-05-29 17:45:08 +02:00
|
|
|
#include <sys/time.h>
|
2020-12-20 15:32:03 +01:00
|
|
|
#endif
|
2020-05-29 17:45:08 +02:00
|
|
|
|
2018-07-12 16:29:32 +02:00
|
|
|
class Clock {
|
2022-02-02 10:29:30 +01:00
|
|
|
public:
|
|
|
|
typedef struct {
|
|
|
|
uint32_t year; //!< Year, A.D.
|
|
|
|
uint32_t month; //!< Month, 1 .. 12.
|
|
|
|
uint32_t day; //!< Day, 1 .. 31.
|
|
|
|
uint32_t hour; //!< Hour, 0 .. 23.
|
|
|
|
uint32_t minute; //!< Minute, 0 .. 59.
|
|
|
|
uint32_t second; //!< Second, 0 .. 59.
|
|
|
|
uint32_t usecond; //!< Microseconds, 0 .. 999999
|
|
|
|
} TimeOfDay_t;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This method returns the number of clock ticks per second.
|
|
|
|
* In RTEMS, this is typically 1000.
|
|
|
|
* @return The number of ticks.
|
|
|
|
*
|
|
|
|
* @deprecated, we should not worry about ticks, but only time
|
|
|
|
*/
|
|
|
|
static uint32_t getTicksPerSecond(void);
|
|
|
|
/**
|
|
|
|
* This system call sets the system time.
|
|
|
|
* To set the time, it uses a TimeOfDay_t struct.
|
|
|
|
* @param time The struct with the time settings to set.
|
|
|
|
* @return -@c RETURN_OK on success. Otherwise, the OS failure code
|
|
|
|
* is returned.
|
|
|
|
*/
|
|
|
|
static ReturnValue_t setClock(const TimeOfDay_t *time);
|
|
|
|
/**
|
|
|
|
* This system call sets the system time.
|
|
|
|
* To set the time, it uses a timeval struct.
|
|
|
|
* @param time The struct with the time settings to set.
|
|
|
|
* @return -@c RETURN_OK on success. Otherwise, the OS failure code is returned.
|
|
|
|
*/
|
|
|
|
static ReturnValue_t setClock(const timeval *time);
|
|
|
|
/**
|
|
|
|
* This system call returns the current system clock in timeval format.
|
|
|
|
* The timval format has the fields @c tv_sec with seconds and @c tv_usec with
|
|
|
|
* microseconds since an OS-defined epoch.
|
|
|
|
* @param time A pointer to a timeval struct where the current time is stored.
|
|
|
|
* @return @c RETURN_OK on success. Otherwise, the OS failure code is returned.
|
|
|
|
*/
|
|
|
|
static ReturnValue_t getClock_timeval(timeval *time);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get the time since boot in a timeval struct
|
|
|
|
*
|
|
|
|
* @param[out] time A pointer to a timeval struct where the uptime is stored.
|
|
|
|
* @return @c RETURN_OK on success. Otherwise, the OS failure code is returned.
|
|
|
|
*
|
|
|
|
* @deprecated, I do not think this should be able to fail, use timeval getUptime()
|
|
|
|
*/
|
|
|
|
static ReturnValue_t getUptime(timeval *uptime);
|
|
|
|
|
|
|
|
static timeval getUptime();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get the time since boot in milliseconds
|
|
|
|
*
|
|
|
|
* This value can overflow! Still, it can be used to calculate time intervalls
|
|
|
|
* between two calls up to 49 days by always using uint32_t in the calculation
|
|
|
|
*
|
|
|
|
* @param ms uptime in ms
|
|
|
|
* @return RETURN_OK on success. Otherwise, the OS failure code is returned.
|
|
|
|
*/
|
|
|
|
static ReturnValue_t getUptime(uint32_t *uptimeMs);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the time in microseconds since an OS-defined epoch.
|
|
|
|
* The time is returned in a 64 bit unsigned integer.
|
|
|
|
* @param time A pointer to a 64 bit unisigned integer where the data is stored.
|
|
|
|
* @return
|
|
|
|
* - @c RETURN_OK on success.
|
|
|
|
* - Otherwise, the OS failure code is returned.
|
|
|
|
*/
|
|
|
|
static ReturnValue_t getClock_usecs(uint64_t *time);
|
|
|
|
/**
|
|
|
|
* Returns the time in a TimeOfDay_t struct.
|
|
|
|
* @param time A pointer to a TimeOfDay_t struct.
|
|
|
|
* @return
|
|
|
|
* - @c RETURN_OK on success.
|
|
|
|
* - Otherwise, the OS failure code is returned.
|
|
|
|
*/
|
|
|
|
static ReturnValue_t getDateAndTime(TimeOfDay_t *time);
|
|
|
|
|
2022-03-22 17:54:09 +01:00
|
|
|
/**
|
|
|
|
* Convert to time of day struct given the POSIX timeval struct
|
|
|
|
* @param from
|
|
|
|
* @param to
|
|
|
|
* @return
|
|
|
|
*/
|
|
|
|
static ReturnValue_t convertTimevalToTimeOfDay(const timeval *from, TimeOfDay_t *to);
|
2022-02-02 10:29:30 +01:00
|
|
|
/**
|
|
|
|
* Converts a time of day struct to POSIX seconds.
|
|
|
|
* @param time The time of day as input
|
|
|
|
* @param timeval The corresponding seconds since the epoch.
|
|
|
|
* @return
|
|
|
|
* - @c RETURN_OK on success.
|
|
|
|
* - Otherwise, the OS failure code is returned.
|
|
|
|
*/
|
|
|
|
static ReturnValue_t convertTimeOfDayToTimeval(const TimeOfDay_t *from, timeval *to);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Converts a time represented as seconds and subseconds since unix
|
|
|
|
* epoch to days since J2000
|
|
|
|
*
|
|
|
|
* @param time seconds since unix epoch
|
|
|
|
* @param[out] JD2000 days since J2000
|
|
|
|
* @return @c RETURN_OK
|
|
|
|
*/
|
|
|
|
static ReturnValue_t convertTimevalToJD2000(timeval time, double *JD2000);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates and adds the offset between UTC and TT
|
|
|
|
*
|
|
|
|
* Depends on the leap seconds to be set correctly.
|
|
|
|
* Therefore, it does not work for historic
|
|
|
|
* dates as only the current leap seconds are known.
|
|
|
|
*
|
|
|
|
* @param utc timeval, corresponding to UTC time
|
|
|
|
* @param[out] tt timeval, corresponding to Terrestial Time
|
|
|
|
* @return
|
|
|
|
* - @c RETURN_OK on success
|
|
|
|
* - @c RETURN_FAILED if leapSeconds are not set
|
|
|
|
*/
|
|
|
|
static ReturnValue_t convertUTCToTT(timeval utc, timeval *tt);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Set the Leap Seconds since 1972
|
|
|
|
*
|
|
|
|
* @param leapSeconds_
|
|
|
|
* @return
|
|
|
|
* - @c RETURN_OK on success.
|
|
|
|
*/
|
|
|
|
static ReturnValue_t setLeapSeconds(const uint16_t leapSeconds_);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get the Leap Seconds since 1972
|
|
|
|
*
|
|
|
|
* Setter must be called before
|
|
|
|
*
|
|
|
|
* @param[out] leapSeconds_
|
|
|
|
* @return
|
|
|
|
* - @c RETURN_OK on success.
|
|
|
|
* - @c RETURN_FAILED on error
|
|
|
|
*/
|
|
|
|
static ReturnValue_t getLeapSeconds(uint16_t *leapSeconds_);
|
|
|
|
|
|
|
|
private:
|
|
|
|
/**
|
|
|
|
* Function to check and create the Mutex for the clock
|
|
|
|
* @return
|
|
|
|
* - @c RETURN_OK on success.
|
|
|
|
* - Otherwise @c RETURN_FAILED if not able to create one
|
|
|
|
*/
|
|
|
|
static ReturnValue_t checkOrCreateClockMutex();
|
|
|
|
|
|
|
|
static MutexIF *timeMutex;
|
|
|
|
static uint16_t leapSeconds;
|
2022-03-25 18:47:31 +01:00
|
|
|
static bool leapSecondsSet;
|
2018-07-12 16:29:32 +02:00
|
|
|
};
|
|
|
|
|
2020-12-14 11:17:22 +01:00
|
|
|
#endif /* FSFW_TIMEMANAGER_CLOCK_H_ */
|