commented out storage accessor

This commit is contained in:
Robin Müller 2020-05-10 00:14:00 +02:00
parent 0f286461d0
commit 2f58c3a305
2 changed files with 328 additions and 328 deletions

View File

@ -1,154 +1,154 @@
#include <test/prototypes/StorageAccessor.h>
ConstStorageAccessor::ConstStorageAccessor(store_address_t storeId): storeId(storeId) {}
ConstStorageAccessor::~ConstStorageAccessor() {
if(deleteData and store != nullptr) {
sif::debug << "deleting store data" << std::endl;
store->deleteDataNonLocking(storeId);
}
if(mutexLock != nullptr) {
sif::debug << "unlocking mutex lock" << std::endl;
mutexLock.reset();
}
}
ConstStorageAccessor& ConstStorageAccessor::operator=(
ConstStorageAccessor&& other) {
constDataPointer = other.constDataPointer;
storeId = other.storeId;
store = other.store;
size_ = other.size_;
deleteData = other.deleteData;
this->store = other.store;
// Transfer ownership of the lock.
mutexLock = std::move(other.mutexLock);
// This prevents double deletion of the resource
other.mutexLock = nullptr;
// This prevent premature deletion
other.store = nullptr;
return *this;
}
StorageAccessor::StorageAccessor(store_address_t storeId):
ConstStorageAccessor(storeId) {
}
StorageAccessor& StorageAccessor::operator =(
StorageAccessor&& other) {
// Call the parent move assignment and also assign own member.
dataPointer = other.dataPointer;
StorageAccessor::operator=(std::move(other));
return * this;
}
// Call the parent move ctor and also transfer own member.
StorageAccessor::StorageAccessor(StorageAccessor&& other):
ConstStorageAccessor(std::move(other)), dataPointer(other.dataPointer) {
}
ConstStorageAccessor::ConstStorageAccessor(ConstStorageAccessor&& other):
constDataPointer(other.constDataPointer), storeId(other.storeId),
size_(other.size_), store(other.store), deleteData(other.deleteData),
internalState(other.internalState) {
// Transfer ownership of the lock.
mutexLock = std::move(other.mutexLock);
// This prevents double deletion of the resource. Not strictly necessary,
// from the testing I have conducted so far but I am not familiar enough
// with move semantics so I will just set the other lock to nullptr for now.
other.mutexLock = nullptr;
// This prevent premature deletion
other.store = nullptr;
}
const uint8_t* ConstStorageAccessor::data() const {
return constDataPointer;
}
size_t ConstStorageAccessor::size() const {
if(internalState == AccessState::UNINIT) {
sif::warning << "StorageAccessor: Not initialized!" << std::endl;
}
return size_;
}
void ConstStorageAccessor::getDataCopy(uint8_t *pointer) {
if(internalState == AccessState::UNINIT) {
sif::warning << "StorageAccessor: Not initialized!" << std::endl;
return;
}
std::copy(constDataPointer, constDataPointer + size_, pointer);
}
void ConstStorageAccessor::release() {
deleteData = false;
}
ReturnValue_t ConstStorageAccessor::lock(MutexIF* mutex, uint32_t mutexTimeout) {
if(mutexLock == nullptr) {
mutexLock = std::unique_ptr<MutexHelper>(new MutexHelper(mutex, mutexTimeout));
return mutexLock.get()->getResult();
}
else {
sif::warning << "StorageAccessor: Attempted to lock twice. Check code!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
}
void ConstStorageAccessor::unlock() {
if(mutexLock != nullptr) {
mutexLock.reset();
}
}
store_address_t ConstStorageAccessor::getId() const {
return storeId;
}
void ConstStorageAccessor::print() const {
if(internalState == AccessState::UNINIT) {
sif::warning << "StorageAccessor: Not initialized!" << std::endl;
return;
}
sif::info << "StorageAccessor: Printing data: [";
for(uint16_t iPool = 0; iPool < size_; iPool++) {
sif::info << std::hex << (int)constDataPointer[iPool];
if(iPool < size_ - 1){
sif::info << " , ";
}
}
sif::info << " ] " << std::endl;
}
void ConstStorageAccessor::assignStore(StorageManagerIF* store) {
internalState = AccessState::READ;
this->store = store;
}
uint8_t* StorageAccessor::data() {
if(internalState == AccessState::UNINIT) {
sif::warning << "StorageAccessor: Not initialized!" << std::endl;
}
return dataPointer;
}
ReturnValue_t StorageAccessor::write(uint8_t *data, size_t size,
uint16_t offset) {
if(internalState == AccessState::UNINIT) {
sif::warning << "StorageAccessor: Not initialized!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
if(offset + size > size_) {
sif::error << "StorageAccessor: Data too large for pool entry!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
std::copy(data, data + size, dataPointer);
return HasReturnvaluesIF::RETURN_OK;
}
void StorageAccessor::assignConstPointer() {
constDataPointer = dataPointer;
}
//#include <framework/storagemanager/StorageAccessor.h>
//
//ConstStorageAccessor::ConstStorageAccessor(store_address_t storeId): storeId(storeId) {}
//
//ConstStorageAccessor::~ConstStorageAccessor() {
// if(deleteData and store != nullptr) {
// sif::debug << "deleting store data" << std::endl;
// store->deleteDataNonLocking(storeId);
// }
// if(mutexLock != nullptr) {
// sif::debug << "unlocking mutex lock" << std::endl;
// mutexLock.reset();
// }
//}
//
//ConstStorageAccessor& ConstStorageAccessor::operator=(
// ConstStorageAccessor&& other) {
// constDataPointer = other.constDataPointer;
// storeId = other.storeId;
// store = other.store;
// size_ = other.size_;
// deleteData = other.deleteData;
// this->store = other.store;
// // Transfer ownership of the lock.
// mutexLock = std::move(other.mutexLock);
// // This prevents double deletion of the resource
// other.mutexLock = nullptr;
// // This prevent premature deletion
// other.store = nullptr;
// return *this;
//}
//
//StorageAccessor::StorageAccessor(store_address_t storeId):
// ConstStorageAccessor(storeId) {
//}
//
//StorageAccessor& StorageAccessor::operator =(
// StorageAccessor&& other) {
// // Call the parent move assignment and also assign own member.
// dataPointer = other.dataPointer;
// StorageAccessor::operator=(std::move(other));
// return * this;
//}
//
//// Call the parent move ctor and also transfer own member.
//StorageAccessor::StorageAccessor(StorageAccessor&& other):
// ConstStorageAccessor(std::move(other)), dataPointer(other.dataPointer) {
//}
//
//ConstStorageAccessor::ConstStorageAccessor(ConstStorageAccessor&& other):
// constDataPointer(other.constDataPointer), storeId(other.storeId),
// size_(other.size_), store(other.store), deleteData(other.deleteData),
// internalState(other.internalState) {
// // Transfer ownership of the lock.
// mutexLock = std::move(other.mutexLock);
// // This prevents double deletion of the resource. Not strictly necessary,
// // from the testing I have conducted so far but I am not familiar enough
// // with move semantics so I will just set the other lock to nullptr for now.
// other.mutexLock = nullptr;
// // This prevent premature deletion
// other.store = nullptr;
//}
//
//const uint8_t* ConstStorageAccessor::data() const {
// return constDataPointer;
//}
//
//size_t ConstStorageAccessor::size() const {
// if(internalState == AccessState::UNINIT) {
// sif::warning << "StorageAccessor: Not initialized!" << std::endl;
// }
// return size_;
//}
//
//void ConstStorageAccessor::getDataCopy(uint8_t *pointer) {
// if(internalState == AccessState::UNINIT) {
// sif::warning << "StorageAccessor: Not initialized!" << std::endl;
// return;
// }
// std::copy(constDataPointer, constDataPointer + size_, pointer);
//}
//
//void ConstStorageAccessor::release() {
// deleteData = false;
//}
//
//ReturnValue_t ConstStorageAccessor::lock(MutexIF* mutex, uint32_t mutexTimeout) {
// if(mutexLock == nullptr) {
// mutexLock = std::unique_ptr<MutexHelper>(new MutexHelper(mutex, mutexTimeout));
// return mutexLock.get()->getResult();
// }
// else {
// sif::warning << "StorageAccessor: Attempted to lock twice. Check code!" << std::endl;
// return HasReturnvaluesIF::RETURN_FAILED;
// }
//}
//
//void ConstStorageAccessor::unlock() {
// if(mutexLock != nullptr) {
// mutexLock.reset();
// }
//}
//
//store_address_t ConstStorageAccessor::getId() const {
// return storeId;
//}
//
//void ConstStorageAccessor::print() const {
// if(internalState == AccessState::UNINIT) {
// sif::warning << "StorageAccessor: Not initialized!" << std::endl;
// return;
// }
// sif::info << "StorageAccessor: Printing data: [";
// for(uint16_t iPool = 0; iPool < size_; iPool++) {
// sif::info << std::hex << (int)constDataPointer[iPool];
// if(iPool < size_ - 1){
// sif::info << " , ";
// }
// }
// sif::info << " ] " << std::endl;
//}
//
//void ConstStorageAccessor::assignStore(StorageManagerIF* store) {
// internalState = AccessState::READ;
// this->store = store;
//}
//
//
//uint8_t* StorageAccessor::data() {
// if(internalState == AccessState::UNINIT) {
// sif::warning << "StorageAccessor: Not initialized!" << std::endl;
// }
// return dataPointer;
//}
//
//ReturnValue_t StorageAccessor::write(uint8_t *data, size_t size,
// uint16_t offset) {
// if(internalState == AccessState::UNINIT) {
// sif::warning << "StorageAccessor: Not initialized!" << std::endl;
// return HasReturnvaluesIF::RETURN_FAILED;
// }
// if(offset + size > size_) {
// sif::error << "StorageAccessor: Data too large for pool entry!" << std::endl;
// return HasReturnvaluesIF::RETURN_FAILED;
// }
// std::copy(data, data + size, dataPointer);
// return HasReturnvaluesIF::RETURN_OK;
//}
//
//void StorageAccessor::assignConstPointer() {
// constDataPointer = dataPointer;
//}
//
//

View File

@ -1,174 +1,174 @@
/**
* @brief Helper classes to facilitate safe access to storages which is also
* conforming to RAII principles
* @details These helper can be used together with the
* StorageManager classes to manage access to a storage.
* It can take care of thread-safety while also providing
* mechanisms to automatically clear storage data and unlocking the
* pool.
*/
#ifndef TEST_PROTOTYPES_STORAGEACCESSOR_H_
#define TEST_PROTOTYPES_STORAGEACCESSOR_H_
#include <framework/ipc/MutexHelper.h>
#include <framework/storagemanager/StorageManagerIF.h>
#include <memory>
/**
* @brief Accessor class which can be returned by pool managers
* or passed and set by pool managers to have safe access to the pool
* resources.
*/
class ConstStorageAccessor {
//! StorageManager classes have exclusive access to private variables.
template<uint8_t NUMBER_OF_POOLS>
friend class PoolManager;
template<uint8_t NUMBER_OF_POOLS>
friend class LocalPool;
public:
/**
* @brief Simple constructor which takes the store ID of the storage
* entry to access.
* @param storeId
*/
ConstStorageAccessor(store_address_t storeId);
/**
* @brief Move ctor and move assignment allow returning accessors as
* a returnvalue. They prevent resource being free prematurely.
* Refer to: https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/cpp/
* move-constructors-and-move-assignment-operators-cpp.md
* @param
* @return
*/
ConstStorageAccessor& operator= (ConstStorageAccessor&&);
ConstStorageAccessor (ConstStorageAccessor&&);
//! The copy ctor and copy assignemnt should be deleted implicitely
//! according to https://foonathan.net/2019/02/special-member-functions/
//! but I still deleted them to make it more explicit. (remember rule of 5).
ConstStorageAccessor& operator= (ConstStorageAccessor&) = delete;
ConstStorageAccessor (ConstStorageAccessor&) = delete;
/**
* @brief The destructor in default configuration takes care of
* deleting the accessed pool entry and unlocking the mutex
*/
virtual ~ConstStorageAccessor();
/**
* @brief Returns a pointer to the read-only data
* @return
*/
const uint8_t* data() const;
/**
* @brief Copies the read-only data to the supplied pointer
* @param pointer
*/
void getDataCopy(uint8_t *pointer);
/**
* @brief Calling this will prevent the Accessor from deleting the data
* when the destructor is called.
*/
void release();
/**
* @brief Locks the supplied mutex.
* @details
* The mutex will be unlocked automatically
* when this class is destroyed (for example when exiting the scope).
* Only one mutex can be locked at a time!
* @param mutex
* @param mutexTimeout
* @return
*/
ReturnValue_t lock(MutexIF* mutex,
uint32_t mutexTimeout = MutexIF::NO_TIMEOUT);
/**
* @brief Unlocks the mutex (if one has been locked previously).
* Unless this function is called, the mutex is unlocked
* when the class exits the scope.
*/
void unlock();
/**
* Get the size of the data
* @return
*/
size_t size() const;
/**
* Get the storage ID.
* @return
*/
store_address_t getId() const;
void print() const;
protected:
const uint8_t* constDataPointer = nullptr;
store_address_t storeId;
size_t size_ = 0;
//! Managing pool, has to assign itself.
StorageManagerIF* store = nullptr;
//! Unique pointer to the mutex lock instance. Is initialized by
//! the pool manager.
std::unique_ptr<MutexHelper> mutexLock = nullptr;
bool deleteData = true;
enum class AccessState {
UNINIT,
READ
};
//! Internal state for safety reasons.
AccessState internalState = AccessState::UNINIT;
/**
* Used by the pool manager instances to assign themselves to the
* accessor. This is necessary to delete the data when the acessor
* exits the scope ! The internal state will be considered read
* when this function is called, so take care all data is set properly as
* well.
* @param
*/
void assignStore(StorageManagerIF*);
};
/**
* @brief Child class for modifyable data. Also has a normal pointer member.
*/
class StorageAccessor: public ConstStorageAccessor {
//! StorageManager classes have exclusive access to private variables.
template<uint8_t NUMBER_OF_POOLS>
friend class PoolManager;
template<uint8_t NUMBER_OF_POOLS>
friend class LocalPool;
public:
StorageAccessor(store_address_t storeId);
/**
* @brief Move ctor and move assignment allow returning accessors as
* a returnvalue. They prevent resource being free prematurely.
* Refer to: https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/cpp/
* move-constructors-and-move-assignment-operators-cpp.md
* @param
* @return
*/
StorageAccessor& operator= (StorageAccessor&&);
StorageAccessor (StorageAccessor&&);
ReturnValue_t write(uint8_t *data, size_t size,
uint16_t offset);
uint8_t* data();
private:
//! Non-const pointer for modifyable data.
uint8_t* dataPointer = nullptr;
//! For modifyable data, the const pointer is assigned to the normal
//! pointer by the pool manager so both access functions can be used safely
void assignConstPointer();
};
#endif /* TEST_PROTOTYPES_STORAGEACCESSOR_H_ */
///**
// * @brief Helper classes to facilitate safe access to storages which is also
// * conforming to RAII principles
// * @details These helper can be used together with the
// * StorageManager classes to manage access to a storage.
// * It can take care of thread-safety while also providing
// * mechanisms to automatically clear storage data and unlocking the
// * pool.
// */
//#ifndef TEST_PROTOTYPES_STORAGEACCESSOR_H_
//#define TEST_PROTOTYPES_STORAGEACCESSOR_H_
//
//#include <framework/ipc/MutexHelper.h>
//#include <framework/storagemanager/StorageManagerIF.h>
//#include <memory>
//
//
///**
// * @brief Accessor class which can be returned by pool managers
// * or passed and set by pool managers to have safe access to the pool
// * resources.
// */
//class ConstStorageAccessor {
// //! StorageManager classes have exclusive access to private variables.
// template<uint8_t NUMBER_OF_POOLS>
// friend class PoolManager;
// template<uint8_t NUMBER_OF_POOLS>
// friend class LocalPool;
//public:
// /**
// * @brief Simple constructor which takes the store ID of the storage
// * entry to access.
// * @param storeId
// */
// ConstStorageAccessor(store_address_t storeId);
//
// /**
// * @brief Move ctor and move assignment allow returning accessors as
// * a returnvalue. They prevent resource being free prematurely.
// * Refer to: https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/cpp/
// * move-constructors-and-move-assignment-operators-cpp.md
// * @param
// * @return
// */
// ConstStorageAccessor& operator= (ConstStorageAccessor&&);
// ConstStorageAccessor (ConstStorageAccessor&&);
//
// //! The copy ctor and copy assignemnt should be deleted implicitely
// //! according to https://foonathan.net/2019/02/special-member-functions/
// //! but I still deleted them to make it more explicit. (remember rule of 5).
// ConstStorageAccessor& operator= (ConstStorageAccessor&) = delete;
// ConstStorageAccessor (ConstStorageAccessor&) = delete;
//
// /**
// * @brief The destructor in default configuration takes care of
// * deleting the accessed pool entry and unlocking the mutex
// */
// virtual ~ConstStorageAccessor();
//
// /**
// * @brief Returns a pointer to the read-only data
// * @return
// */
// const uint8_t* data() const;
//
// /**
// * @brief Copies the read-only data to the supplied pointer
// * @param pointer
// */
// void getDataCopy(uint8_t *pointer);
//
// /**
// * @brief Calling this will prevent the Accessor from deleting the data
// * when the destructor is called.
// */
// void release();
// /**
// * @brief Locks the supplied mutex.
// * @details
// * The mutex will be unlocked automatically
// * when this class is destroyed (for example when exiting the scope).
// * Only one mutex can be locked at a time!
// * @param mutex
// * @param mutexTimeout
// * @return
// */
// ReturnValue_t lock(MutexIF* mutex,
// uint32_t mutexTimeout = MutexIF::NO_TIMEOUT);
// /**
// * @brief Unlocks the mutex (if one has been locked previously).
// * Unless this function is called, the mutex is unlocked
// * when the class exits the scope.
// */
// void unlock();
//
//
// /**
// * Get the size of the data
// * @return
// */
// size_t size() const;
//
// /**
// * Get the storage ID.
// * @return
// */
// store_address_t getId() const;
//
// void print() const;
//protected:
// const uint8_t* constDataPointer = nullptr;
// store_address_t storeId;
// size_t size_ = 0;
// //! Managing pool, has to assign itself.
// StorageManagerIF* store = nullptr;
// //! Unique pointer to the mutex lock instance. Is initialized by
// //! the pool manager.
// std::unique_ptr<MutexHelper> mutexLock = nullptr;
// bool deleteData = true;
//
// enum class AccessState {
// UNINIT,
// READ
// };
// //! Internal state for safety reasons.
// AccessState internalState = AccessState::UNINIT;
// /**
// * Used by the pool manager instances to assign themselves to the
// * accessor. This is necessary to delete the data when the acessor
// * exits the scope ! The internal state will be considered read
// * when this function is called, so take care all data is set properly as
// * well.
// * @param
// */
// void assignStore(StorageManagerIF*);
//
//};
//
//
///**
// * @brief Child class for modifyable data. Also has a normal pointer member.
// */
//class StorageAccessor: public ConstStorageAccessor {
// //! StorageManager classes have exclusive access to private variables.
// template<uint8_t NUMBER_OF_POOLS>
// friend class PoolManager;
// template<uint8_t NUMBER_OF_POOLS>
// friend class LocalPool;
//public:
// StorageAccessor(store_address_t storeId);
// /**
// * @brief Move ctor and move assignment allow returning accessors as
// * a returnvalue. They prevent resource being free prematurely.
// * Refer to: https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/cpp/
// * move-constructors-and-move-assignment-operators-cpp.md
// * @param
// * @return
// */
// StorageAccessor& operator= (StorageAccessor&&);
// StorageAccessor (StorageAccessor&&);
//
// ReturnValue_t write(uint8_t *data, size_t size,
// uint16_t offset);
// uint8_t* data();
//
//private:
// //! Non-const pointer for modifyable data.
// uint8_t* dataPointer = nullptr;
// //! For modifyable data, the const pointer is assigned to the normal
// //! pointer by the pool manager so both access functions can be used safely
// void assignConstPointer();
//};
//
//#endif /* TEST_PROTOTYPES_STORAGEACCESSOR_H_ */