Compare commits

..

8 Commits

1034 changed files with 51216 additions and 60384 deletions

View File

@ -1,7 +0,0 @@
---
BasedOnStyle: Google
IndentWidth: 2
---
Language: Cpp
ColumnLimit: 100
---

2
.gitignore vendored
View File

@ -2,5 +2,3 @@
.project
.settings
.metadata
/build*

View File

@ -1,12 +1,5 @@
cmake_minimum_required(VERSION 3.13)
set(FSFW_VERSION 3)
set(FSFW_SUBVERSION 0)
set(FSFW_REVISION 1)
# Add the cmake folder so the FindSphinx module is found
set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
option(FSFW_GENERATE_SECTIONS
"Generate function and data sections. Required to remove unused code" ON
)
@ -14,17 +7,9 @@ if(FSFW_GENERATE_SECTIONS)
option(FSFW_REMOVE_UNUSED_CODE "Remove unused code" ON)
endif()
option(FSFW_BUILD_UNITTESTS "Build unittest binary in addition to static library" OFF)
option(FSFW_BUILD_DOCS "Build documentation with Sphinx and Doxygen" OFF)
if(FSFW_BUILD_UNITTESTS)
option(FSFW_TESTS_GEN_COV "Generate coverage data for unittests" ON)
endif()
option(FSFW_WARNING_SHADOW_LOCAL_GCC "Enable -Wshadow=local warning in GCC" ON)
# Options to exclude parts of the FSFW from compilation.
option(FSFW_ADD_INTERNAL_TESTS "Add internal unit tests" ON)
option(FSFW_ADD_UNITTESTS "Add regular unittests. Requires Catch2" OFF)
option(FSFW_ADD_HAL "Add Hardware Abstraction Layer" ON)
# Optional sources
option(FSFW_ADD_PUS "Compile with PUS sources" ON)
@ -36,70 +21,14 @@ option(FSFW_ADD_COORDINATES "Compile with coordinate components" OFF)
option(FSFW_ADD_TMSTORAGE "Compile with tm storage components" OFF)
# Contrib sources
option(FSFW_ADD_SGP4_PROPAGATOR "Add SGP4 propagator code" OFF)
option(FSFW_ADD_SPG4_PROPAGATOR "Add SPG4 propagator code" OFF)
set(LIB_FSFW_NAME fsfw)
set(FSFW_TEST_TGT fsfw-tests)
set(FSFW_DUMMY_TGT fsfw-dummy)
project(${LIB_FSFW_NAME})
add_library(${LIB_FSFW_NAME})
if(FSFW_BUILD_UNITTESTS)
message(STATUS "Building the FSFW unittests in addition to the static library")
# Check whether the user has already installed Catch2 first
find_package(Catch2 3)
# Not installed, so use FetchContent to download and provide Catch2
if(NOT Catch2_FOUND)
include(FetchContent)
FetchContent_Declare(
Catch2
GIT_REPOSITORY https://github.com/catchorg/Catch2.git
GIT_TAG v3.0.0-preview4
)
FetchContent_MakeAvailable(Catch2)
#fixes regression -preview4, to be confirmed in later releases
set_target_properties(Catch2 PROPERTIES DEBUG_POSTFIX "")
endif()
set(FSFW_CONFIG_PATH tests/src/fsfw_tests/unit/testcfg)
configure_file(tests/src/fsfw_tests/unit/testcfg/FSFWConfig.h.in FSFWConfig.h)
configure_file(tests/src/fsfw_tests/unit/testcfg/TestsConfig.h.in tests/TestsConfig.h)
project(${FSFW_TEST_TGT} CXX C)
add_executable(${FSFW_TEST_TGT})
if(FSFW_TESTS_GEN_COV)
message(STATUS "Generating coverage data for the library")
message(STATUS "Targets linking against ${LIB_FSFW_NAME} "
"will be compiled with coverage data as well"
)
include(FetchContent)
FetchContent_Declare(
cmake-modules
GIT_REPOSITORY https://github.com/bilke/cmake-modules.git
)
FetchContent_MakeAvailable(cmake-modules)
set(CMAKE_BUILD_TYPE "Debug")
list(APPEND CMAKE_MODULE_PATH ${cmake-modules_SOURCE_DIR})
include(CodeCoverage)
endif()
endif()
set(FSFW_CORE_INC_PATH "inc")
set_property(CACHE FSFW_OSAL PROPERTY STRINGS host linux rtems freertos)
# For configure files
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_BINARY_DIR}
)
target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_CURRENT_BINARY_DIR}
)
if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED True)
@ -108,7 +37,7 @@ elseif(${CMAKE_CXX_STANDARD} LESS 11)
endif()
# Backwards comptability
if(OS_FSFW AND NOT FSFW_OSAL)
if(OS_FSFW)
message(WARNING "Please pass the FSFW OSAL as FSFW_OSAL instead of OS_FSFW")
set(FSFW_OSAL OS_FSFW)
endif()
@ -132,120 +61,48 @@ endif()
set(FSFW_OSAL_DEFINITION FSFW_OSAL_HOST)
if(FSFW_OSAL MATCHES host)
set(FSFW_OS_NAME "Host")
set(FSFW_OSAL_HOST ON)
set(OS_FSFW_NAME "Host")
elseif(FSFW_OSAL MATCHES linux)
set(FSFW_OS_NAME "Linux")
set(FSFW_OSAL_LINUX ON)
set(OS_FSFW_NAME "Linux")
set(FSFW_OSAL_DEFINITION FSFW_OSAL_LINUX)
elseif(FSFW_OSAL MATCHES freertos)
set(FSFW_OS_NAME "FreeRTOS")
set(FSFW_OSAL_FREERTOS ON)
target_link_libraries(${LIB_FSFW_NAME} PRIVATE
set(OS_FSFW_NAME "FreeRTOS")
set(FSFW_OSAL_DEFINITION FSFW_OSAL_FREERTOS)
target_link_libraries(${LIB_FSFW_NAME} PRIVATE
${LIB_OS_NAME}
)
)
elseif(FSFW_OSAL STREQUAL rtems)
set(FSFW_OS_NAME "RTEMS")
set(FSFW_OSAL_RTEMS ON)
set(OS_FSFW_NAME "RTEMS")
set(FSFW_OSAL_DEFINITION FSFW_OSAL_RTEMS)
else()
message(WARNING
"Invalid operating system for FSFW specified! Setting to host.."
)
set(FSFW_OS_NAME "Host")
set(OS_FSFW "host")
message(WARNING
"Invalid operating system for FSFW specified! Setting to host.."
)
set(OS_FSFW_NAME "Host")
set(OS_FSFW "host")
endif()
configure_file(src/fsfw/FSFW.h.in fsfw/FSFW.h)
configure_file(src/fsfw/FSFWVersion.h.in fsfw/FSFWVersion.h)
target_compile_definitions(${LIB_FSFW_NAME} PRIVATE
${FSFW_OSAL_DEFINITION}
)
message(STATUS "Compiling FSFW for the ${FSFW_OS_NAME} operating system.")
target_compile_definitions(${LIB_FSFW_NAME} INTERFACE
${FSFW_OSAL_DEFINITION}
)
message(STATUS "Compiling FSFW for the ${OS_FSFW_NAME} operating system.")
add_subdirectory(src)
add_subdirectory(tests)
if(FSFW_ADD_HAL)
add_subdirectory(hal)
endif()
add_subdirectory(hal)
add_subdirectory(contrib)
if(FSFW_BUILD_DOCS)
add_subdirectory(docs)
endif()
if(FSFW_BUILD_UNITTESTS)
if(FSFW_TESTS_GEN_COV)
if(CMAKE_COMPILER_IS_GNUCXX)
include(CodeCoverage)
# Remove quotes.
separate_arguments(COVERAGE_COMPILER_FLAGS
NATIVE_COMMAND "${COVERAGE_COMPILER_FLAGS}"
)
# Add compile options manually, we don't want coverage for Catch2
target_compile_options(${FSFW_TEST_TGT} PRIVATE
"${COVERAGE_COMPILER_FLAGS}"
)
target_compile_options(${LIB_FSFW_NAME} PRIVATE
"${COVERAGE_COMPILER_FLAGS}"
)
# Exclude directories here
if(WIN32)
set(GCOVR_ADDITIONAL_ARGS
"--exclude-throw-branches"
"--exclude-unreachable-branches"
)
set(COVERAGE_EXCLUDES
"/c/msys64/mingw64/*" "*/fsfw_hal/*"
)
elseif(UNIX)
set(COVERAGE_EXCLUDES
"/usr/include/*" "/usr/bin/*" "Catch2/*"
"/usr/local/include/*" "*/fsfw_tests/*"
"*/catch2-src/*" "*/fsfw_hal/*"
)
endif()
target_link_options(${FSFW_TEST_TGT} PRIVATE
-fprofile-arcs
-ftest-coverage
)
target_link_options(${LIB_FSFW_NAME} PRIVATE
-fprofile-arcs
-ftest-coverage
)
# Need to specify this as an interface, otherwise there will the compile issues
target_link_options(${LIB_FSFW_NAME} INTERFACE
-fprofile-arcs
-ftest-coverage
)
if(WIN32)
setup_target_for_coverage_gcovr_html(
NAME ${FSFW_TEST_TGT}_coverage
EXECUTABLE ${FSFW_TEST_TGT}
DEPENDENCIES ${FSFW_TEST_TGT}
)
else()
setup_target_for_coverage_lcov(
NAME ${FSFW_TEST_TGT}_coverage
EXECUTABLE ${FSFW_TEST_TGT}
DEPENDENCIES ${FSFW_TEST_TGT}
)
endif()
endif()
endif()
target_link_libraries(${FSFW_TEST_TGT} PRIVATE Catch2::Catch2 ${LIB_FSFW_NAME})
endif()
# The project CMakeLists file has to set the FSFW_CONFIG_PATH and add it.
# If this is not given, we include the default configuration and emit a warning.
if(NOT FSFW_CONFIG_PATH)
set(DEF_CONF_PATH misc/defaultcfg/fsfwconfig)
if(NOT FSFW_BUILD_DOCS)
message(WARNING "Flight Software Framework configuration path not set!")
message(WARNING "Setting default configuration from ${DEF_CONF_PATH} ..")
endif()
add_subdirectory(${DEF_CONF_PATH})
set(FSFW_CONFIG_PATH ${DEF_CONF_PATH})
message(WARNING "Flight Software Framework configuration path not set!")
message(WARNING "Setting default configuration!")
add_subdirectory(defaultcfg/fsfwconfig)
endif()
# FSFW might be part of a possibly complicated folder structure, so we
@ -332,17 +189,4 @@ target_compile_options(${LIB_FSFW_NAME} PRIVATE
target_link_libraries(${LIB_FSFW_NAME} PRIVATE
${FSFW_ADDITIONAL_LINK_LIBS}
)
string(CONCAT POST_BUILD_COMMENT
"######################################################################\n"
"Built FSFW v${FSFW_VERSION}.${FSFW_SUBVERSION}.${FSFW_REVISION}, "
"Target OSAL: ${FSFW_OS_NAME}\n"
"######################################################################\n"
)
add_custom_command(
TARGET ${LIB_FSFW_NAME}
POST_BUILD
COMMENT ${POST_BUILD_COMMENT}
)
)

107
README.md
View File

@ -1,4 +1,4 @@
![FSFW Logo](misc/logo/FSFW_Logo_V3_bw.png)
![FSFW Logo](logo/FSFW_Logo_V3_bw.png)
# Flight Software Framework (FSFW)
@ -22,107 +22,28 @@ Currently, the FSFW provides the following OSALs:
- FreeRTOS
- RTEMS
The recommended hardware is a microprocessor with more than 1 MB of RAM and 1 MB of non-volatile
memory. For reference, current applications use a Cobham Gaisler UT699 (LEON3FT), a
ISISPACE IOBC or a Zynq-7020 SoC. The `fsfw` was also successfully run on the
STM32H743ZI-Nucleo board and on a Raspberry Pi and is currently running on the active
satellite mission Flying Laptop.
The recommended hardware is a microprocessor with more than 1 MB of RAM and 1 MB of non-volatile Memory. For reference, current applications use a Cobham Gaisler UT699 (LEON3FT), a ISISPACE IOBC or a Zynq-7020 SoC. The `fsfw` was also successfully run on the STM32H743ZI-Nucleo board and on a Raspberry Pi and is currently running on the active satellite mission Flying Laptop.
## Getting started
The [Hosted FSFW example](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted) provides a
good starting point and a demo to see the FSFW capabilities.
It is recommended to get started by building and playing around with the demo application.
There are also other examples provided for all OSALs using the popular embedded platforms
Raspberry Pi, Beagle Bone Black and STM32H7.
The [FSFW example](https://egit.irs.uni-stuttgart.de/fsfw/fsfw_example) provides a good starting point and a demo to see the FSFW capabilities and build it with the Make or the CMake build system. It is recommended to evaluate the FSFW by building and playing around with the demo application.
Generally, the FSFW is included in a project by providing
a configuration folder, building the static library and linking against it.
There are some functions like `printChar` which are different depending on the target architecture
and need to be implemented by the mission developer.
Generally, the FSFW is included in a project by compiling the FSFW sources and providing
a configuration folder and adding it to the include path. There are some functions like `printChar` which are different depending on the target architecture and need to be implemented by the mission developer.
A template configuration folder was provided and can be copied into the project root to have
a starting point. The [configuration section](docs/README-config.md#top) provides more specific
information about the possible options.
## Adding the library
The following steps show how to add and use FSFW components. It is still recommended to
try out the example mentioned above to get started, but the following steps show how to
add and link against the FSFW library in general.
1. Add this repository as a submodule
```sh
git submodule add https://egit.irs.uni-stuttgart.de/fsfw/fsfw.git fsfw
```
2. Add the following directive inside the uppermost `CMakeLists.txt` file of your project
```cmake
add_subdirectory(fsfw)
```
3. Make sure to provide a configuration folder and supply the path to that folder with
the `FSFW_CONFIG_PATH` CMake variable from the uppermost `CMakeLists.txt` file.
It is also necessary to provide the `printChar` function. You can find an example
implementation for a hosted build
[here](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted/src/branch/master/bsp_hosted/utility/printChar.c).
4. Link against the FSFW library
```cmake
target_link_libraries(<YourProjectName> PRIVATE fsfw)
```
5. It should now be possible use the FSFW as a static library from the user code.
## Building the unittests
The FSFW also has unittests which use the [Catch2 library](https://github.com/catchorg/Catch2).
These are built by setting the CMake option `FSFW_BUILD_UNITTESTS` to `ON` or `TRUE`
from your project `CMakeLists.txt` file or from the command line.
The fsfw-tests binary will be built as part of the static library and dropped alongside it.
If the unittests are built, the library and the tests will be built with coverage information by
default. This can be disabled by setting the `FSFW_TESTS_COV_GEN` option to `OFF` or `FALSE`.
You can use the following commands inside the `fsfw` folder to set up the build system
```sh
mkdir build-Unittest && cd build-Unittest
cmake -DFSFW_BUILD_UNITTESTS=ON -DFSFW_OSAL=host -DCMAKE_BUILD_TYPE=Debug ..
```
You can also use `-DFSFW_OSAL=linux` on Linux systems.
Coverage data in HTML format can be generated using the `CodeCoverage`
[CMake module](https://github.com/bilke/cmake-modules/tree/master).
To build the unittests, run them and then generare the coverage data in this format,
the following command can be used inside the build directory after the build system was set up
```sh
cmake --build . -- fsfw-tests_coverage -j
```
The `coverage.py` script located in the `script` folder can also be used to do this conveniently.
## Formatting the sources
The formatting is done by the `clang-format` tool. The configuration is contained within the
`.clang-format` file in the repository root. As long as `clang-format` is installed, you
can run the `apply-clang-format.sh` helper script to format all source files consistently.
a starting point. The [configuration section](doc/README-config.md#top) provides more specific information about the possible options.
## Index
[1. High-level overview](docs/README-highlevel.md#top) <br>
[2. Core components](docs/README-core.md#top) <br>
[3. Configuration](docs/README-config.md#top) <br>
[4. OSAL overview](docs/README-osal.md#top) <br>
[5. PUS services](docs/README-pus.md#top) <br>
[6. Device Handler overview](docs/README-devicehandlers.md#top) <br>
[7. Controller overview](docs/README-controllers.md#top) <br>
[8. Local Data Pools](docs/README-localpools.md#top) <br>
[1. High-level overview](doc/README-highlevel.md#top) <br>
[2. Core components](doc/README-core.md#top) <br>
[3. Configuration](doc/README-config.md#top) <br>
[4. OSAL overview](doc/README-osal.md#top) <br>
[5. PUS services](doc/README-pus.md#top) <br>
[6. Device Handler overview](doc/README-devicehandlers.md#top) <br>
[7. Controller overview](doc/README-controllers.md#top) <br>
[8. Local Data Pools](doc/README-localpools.md#top) <br>

View File

@ -1,8 +0,0 @@
FROM ubuntu:focal
RUN apt-get update
RUN apt-get --yes upgrade
#tzdata is a dependency, won't install otherwise
ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get --yes install gcc g++ cmake make lcov git valgrind nano iputils-ping

View File

@ -1,43 +0,0 @@
pipeline {
environment {
BUILDDIR = 'build-tests'
}
agent {
docker { image 'fsfw-ci:d1'}
}
stages {
stage('Clean') {
steps {
sh 'rm -rf $BUILDDIR'
}
}
stage('Configure') {
steps {
dir(BUILDDIR) {
sh 'cmake -DFSFW_OSAL=host -DFSFW_BUILD_UNITTESTS=ON ..'
}
}
}
stage('Build') {
steps {
dir(BUILDDIR) {
sh 'cmake --build . -j'
}
}
}
stage('Unittests') {
steps {
dir(BUILDDIR) {
sh 'cmake --build . -- fsfw-tests_coverage -j'
}
}
}
stage('Valgrind') {
steps {
dir(BUILDDIR) {
sh 'valgrind --leak-check=full --error-exitcode=1 ./fsfw-tests'
}
}
}
}
}

View File

@ -1,13 +0,0 @@
# Look for an executable called sphinx-build
find_program(SPHINX_EXECUTABLE
NAMES sphinx-build
DOC "Path to sphinx-build executable")
include(FindPackageHandleStandardArgs)
# Handle standard arguments to find_package like REQUIRED and QUIET
find_package_handle_standard_args(
Sphinx
"Failed to find sphinx-build executable"
SPHINX_EXECUTABLE
)

View File

@ -1,9 +1,11 @@
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
)
target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}
)
add_subdirectory(fsfw_contrib)
if(FSFW_ADD_SPG4_PROPAGATOR)
target_sources(${LIB_FSFW_NAME} PRIVATE
sgp4/sgp4unit.cpp
)
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/sgp4
)
target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/sgp4
)
endif()

View File

@ -1,11 +0,0 @@
if(FSFW_ADD_SGP4_PROPAGATOR)
target_sources(${LIB_FSFW_NAME} PRIVATE
sgp4/sgp4unit.cpp
)
target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/sgp4
)
target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/sgp4
)
endif()

View File

@ -31,9 +31,7 @@ cohesive pool variables. These sets simply iterator over the list of variables a
`read` and `commit` functions of each variable. The following diagram shows the
high-level architecture of the local data pools.
.. image:: ../misc/logo/FSFW_Logo_V3_bw.png
:alt: FSFW Logo
<img align="center" src="./images/PoolArchitecture.png" width="50%"> <br>
An example is shown for using the local data pools with a Gyroscope.
For example, the following code shows an implementation to access data from a Gyroscope taken

View File

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 52 KiB

1
docs/.gitignore vendored
View File

@ -1 +0,0 @@
/_build

View File

@ -1,66 +0,0 @@
# This is based on this excellent posting provided by Sy:
# https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
find_package(Doxygen REQUIRED)
find_package(Sphinx REQUIRED)
get_target_property(LIB_FSFW_PUBLIC_HEADER_DIRS ${LIB_FSFW_NAME} INTERFACE_INCLUDE_DIRECTORIES)
# TODO: Add HAL as well
file(GLOB_RECURSE LIB_FSFW_PUBLIC_HEADERS ${PROJECT_SOURCE_DIR}/src/*.h)
file(GLOB_RECURSE RST_DOC_FILES ${PROJECT_SOURCE_DIR}/docs/*.rst)
set(DOXYGEN_INPUT_DIR ${PROJECT_SOURCE_DIR}/src)
set(DOXYGEN_OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}/doxygen)
set(DOXYGEN_INDEX_FILE ${DOXYGEN_OUTPUT_DIR}/xml/index.xml)
set(DOXYFILE_IN ${CMAKE_CURRENT_SOURCE_DIR}/Doxyfile.in)
set(DOXYFILE_OUT ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile)
# Replace variables inside @@ with the current values
configure_file(${DOXYFILE_IN} ${DOXYFILE_OUT} @ONLY)
# Doxygen won't create this for us
file(MAKE_DIRECTORY ${DOXYGEN_OUTPUT_DIR})
# Only regenerate Doxygen when the Doxyfile or public headers change
add_custom_command(
OUTPUT ${DOXYGEN_INDEX_FILE}
DEPENDS ${LIB_FSFW_PUBLIC_HEADERS}
COMMAND ${DOXYGEN_EXECUTABLE} ${DOXYFILE_OUT}
MAIN_DEPENDENCY ${DOXYFILE_OUT} ${DOXYFILE_IN}
COMMENT "Generating docs"
VERBATIM
)
# Nice named target so we can run the job easily
add_custom_target(Doxygen ALL DEPENDS ${DOXYGEN_INDEX_FILE})
set(SPHINX_SOURCE ${CMAKE_CURRENT_SOURCE_DIR})
set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR}/sphinx)
set(SPHINX_INDEX_FILE ${SPHINX_BUILD}/index.html)
# Only regenerate Sphinx when:
# - Doxygen has rerun
# - Our doc files have been updated
# - The Sphinx config has been updated
add_custom_command(
OUTPUT ${SPHINX_INDEX_FILE}
COMMAND
${SPHINX_EXECUTABLE} -b html
# Tell Breathe where to find the Doxygen output
-Dbreathe_projects.fsfw=${DOXYGEN_OUTPUT_DIR}/xml
${SPHINX_SOURCE} ${SPHINX_BUILD}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS
# Other docs files you want to track should go here (or in some variable)
${RST_DOC_FILES}
${DOXYGEN_INDEX_FILE}
MAIN_DEPENDENCY ${SPHINX_SOURCE}/conf.py
COMMENT "Generating documentation with Sphinx"
)
# Nice named target so we can run the job easily
add_custom_target(Sphinx ALL DEPENDS ${SPHINX_INDEX_FILE})
# Add an install target to install the docs
include(GNUInstallDirs)
install(DIRECTORY ${SPHINX_BUILD}
DESTINATION ${CMAKE_INSTALL_DOCDIR})

View File

@ -1,7 +0,0 @@
INPUT = "@DOXYGEN_INPUT_DIR@"
RECURSIVE = YES
OUTPUT_DIRECTORY = "@DOXYGEN_OUTPUT_DIR@"
GENERATE_XML = YES

View File

@ -1,20 +0,0 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@ -1,16 +0,0 @@
API
====
.. toctree::
:maxdepth: 4
api/objectmanager
api/task
api/ipc
api/returnvalue
api/event
api/modes
api/health
api/action
api/devicehandler
api/controller

View File

@ -1,15 +0,0 @@
Action Module API
=================
``ActionHelper``
-----------------
.. doxygenclass:: ActionHelper
:members:
``HasActionsIF``
-----------------
.. doxygenclass:: HasActionsIF
:members:
:protected-members:

View File

@ -1,16 +0,0 @@
Controller API
=================
``ControllerBase``
-------------------------
.. doxygenclass:: ControllerBase
:members:
:protected-members:
``ExtendedControllerBase``
-----------------------------
.. doxygenclass:: ExtendedControllerBase
:members:
:protected-members:

View File

@ -1,16 +0,0 @@
Device Handler Base API
=========================
``DeviceHandlerBase``
-----------------------
.. doxygenclass:: DeviceHandlerBase
:members:
:protected-members:
``DeviceHandlerIF``
-----------------------
.. doxygenclass:: DeviceHandlerIF
:members:
:protected-members:

View File

@ -1,6 +0,0 @@
.. _eventapi:
Event API
============
.. doxygenfile:: Event.h

View File

@ -1,9 +0,0 @@
Health API
===========
``HasHealthIF``
------------------
.. doxygenclass:: HasHealthIF
:members:
:protected-members:

View File

@ -1,9 +0,0 @@
IPC Module API
=================
``MessageQueueIF``
-------------------
.. doxygenclass:: MessageQueueIF
:members:
:protected-members:

View File

@ -1,10 +0,0 @@
Modes API
=========
``HasModesIF``
---------------
.. doxygenclass:: HasModesIF
:members:
:protected-members:

View File

@ -1,30 +0,0 @@
Object Manager API
=========================
``SystemObject``
--------------------
.. doxygenclass:: SystemObject
:members:
:protected-members:
``ObjectManager``
-----------------------
.. doxygenclass:: ObjectManager
:members:
:protected-members:
``SystemObjectIF``
--------------------
.. doxygenclass:: SystemObjectIF
:members:
:protected-members:
``ObjectManagerIF``
-----------------------
.. doxygenclass:: ObjectManagerIF
:members:
:protected-members:

View File

@ -1,10 +0,0 @@
.. _retvalapi:
Returnvalue API
==================
.. doxygenfile:: HasReturnvaluesIF.h
.. _fwclassids:
.. doxygenfile:: FwClassIds.h

View File

@ -1,8 +0,0 @@
Task API
=========
``ExecutableObjectIF``
-----------------------
.. doxygenclass:: ExecutableObjectIF
:members:

View File

@ -1,56 +0,0 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
# -- Project information -----------------------------------------------------
project = 'Flight Software Framework'
copyright = '2021, Institute of Space Systems (IRS)'
author = 'Institute of Space Systems (IRS)'
# The full version, including alpha/beta/rc tags
release = '2.0.1'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [ "breathe" ]
breathe_default_project = "fsfw"
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'alabaster'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []

View File

@ -1,41 +0,0 @@
Configuring the FSFW
=====================
The FSFW can be configured via the ``fsfwconfig`` folder. A template folder has been provided in
``misc/defaultcfg`` to have a starting point for this. The folder should be added
to the include path. The primary configuration file is the ``FSFWConfig.h`` folder. Some
of the available options will be explained in more detail here.
Auto-Translation of Events
----------------------------
The FSFW allows the automatic translation of events, which allows developers to track triggered
events directly via console output. Using this feature requires:
1. ``FSFW_OBJ_EVENT_TRANSLATION`` set to 1 in the configuration file.
2. Special auto-generated translation files which translate event IDs and object IDs into
human readable strings. These files can be generated using the
`fsfwgen Python scripts <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-gen>`_.
3. The generated translation files for the object IDs should be named ``translatesObjects.cpp``
and ``translateObjects.h`` and should be copied to the ``fsfwconfig/objects`` folder
4. The generated translation files for the event IDs should be named ``translateEvents.cpp`` and
``translateEvents.h`` and should be copied to the ``fsfwconfig/events`` folder
An example implementations of these translation file generators can be found as part
of the `SOURCE project here <https://git.ksat-stuttgart.de/source/sourceobsw/-/tree/develop/generators>`_
or the `FSFW example <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted/src/branch/master/generators>`_
Configuring the Event Manager
----------------------------------
The number of allowed subscriptions can be modified with the following
parameters:
.. code-block:: cpp
namespace fsfwconfig {
//! Configure the allocated pool sizes for the event manager.
static constexpr size_t FSFW_EVENTMGMR_MATCHTREE_NODES = 240;
static constexpr size_t FSFW_EVENTMGMT_EVENTIDMATCHERS = 120;
static constexpr size_t FSFW_EVENTMGMR_RANGEMATCHERS = 120;
}

View File

@ -1,2 +0,0 @@
Controllers
=============

View File

@ -1,70 +0,0 @@
.. _core:
Core Modules
=============
The core modules provide the most important functionalities of the Flight Software Framework.
Clock
------
- This is a class of static functions that can be used at anytime
- Leap Seconds must be set if any time conversions from UTC to other times is used
Object Manager
---------------
- Must be created during program startup
- The component which handles all references. All :cpp:class:`SystemObject`\s register at this
component.
- All :cpp:class:`SystemObject`\s needs to have a unique Object ID. Those can be managed like
framework objects.
- A reference to an object can be retrieved by calling the ``get`` function of
:cpp:class:`ObjectManagerIF`. The target type must be specified as a template argument.
A ``nullptr`` check of the returning pointer must be done. This function is based on
run-time type information.
.. code-block:: cpp
template <typename T> T* ObjectManagerIF::get(object_id_t id);
- A typical way to create all objects on startup is a handing a static produce function to the
ObjectManager on creation. By calling ``ObjectManager::instance()->initialize(produceFunc)`` the
produce function will be called and all :cpp:class:`SystemObject`\s will be initialized
afterwards.
Event Manager
---------------
- Component which allows routing of events
- Other objects can subscribe to specific events, ranges of events or all events of an object.
- Subscriptions can be done during runtime but should be done during initialization
- Amounts of allowed subscriptions can be configured in ``FSFWConfig.h``
Health Table
---------------
- A component which holds every health state
- Provides a thread safe way to access all health states without the need of message exchanges
Stores
--------------
- The message based communication can only exchange a few bytes of information inside the message
itself. Therefore, additional information can be exchanged with Stores. With this, only the
store address must be exchanged in the message.
- Internally, the FSFW uses an IPC Store to exchange data between processes. For incoming TCs a TC
Store is used. For outgoing TM a TM store is used.
- All of them should use the Thread Safe Class storagemanager/PoolManager
Tasks
---------
There are two different types of tasks:
- The PeriodicTask just executes objects that are of type ExecutableObjectIF in the order of the
insertion to the Tasks.
- FixedTimeslotTask executes a list of calls in the order of the given list. This is intended for
DeviceHandlers, where polling should be in a defined order. An example can be found in
``defaultcfg/fsfwconfig/pollingSequence`` folder

View File

@ -1,3 +0,0 @@
Device Handlers
==================

View File

@ -1,115 +0,0 @@
Getting Started
================
Getting started
----------------
The `Hosted FSFW example`_ provides a good starting point and a demo to see the FSFW capabilities.
It is recommended to get started by building and playing around with the demo application.
There are also other examples provided for all OSALs using the popular embedded platforms
Raspberry Pi, Beagle Bone Black and STM32H7.
Generally, the FSFW is included in a project by providing
a configuration folder, building the static library and linking against it.
There are some functions like ``printChar`` which are different depending on the target architecture
and need to be implemented by the mission developer.
A template configuration folder was provided and can be copied into the project root to have
a starting point. The [configuration section](docs/README-config.md#top) provides more specific
information about the possible options.
Adding the library
-------------------
The following steps show how to add and use FSFW components. It is still recommended to
try out the example mentioned above to get started, but the following steps show how to
add and link against the FSFW library in general.
1. Add this repository as a submodule
.. code-block:: console
git submodule add https://egit.irs.uni-stuttgart.de/fsfw/fsfw.git fsfw
2. Add the following directive inside the uppermost ``CMakeLists.txt`` file of your project
.. code-block:: cmake
add_subdirectory(fsfw)
3. Make sure to provide a configuration folder and supply the path to that folder with
the `FSFW_CONFIG_PATH` CMake variable from the uppermost `CMakeLists.txt` file.
It is also necessary to provide the `printChar` function. You can find an example
implementation for a hosted build
`here <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted/src/branch/master/bsp_hosted/utility/printChar.c>`_.
4. Link against the FSFW library
.. code-block:: cmake
target_link_libraries(<YourProjectName> PRIVATE fsfw)
5. It should now be possible use the FSFW as a static library from the user code.
Building the unittests
-------------------------
The FSFW also has unittests which use the `Catch2 library`_.
These are built by setting the CMake option ``FSFW_BUILD_UNITTESTS`` to ``ON`` or `TRUE`
from your project `CMakeLists.txt` file or from the command line.
The fsfw-tests binary will be built as part of the static library and dropped alongside it.
If the unittests are built, the library and the tests will be built with coverage information by
default. This can be disabled by setting the `FSFW_TESTS_COV_GEN` option to `OFF` or `FALSE`.
You can use the following commands inside the ``fsfw`` folder to set up the build system
.. code-block:: console
mkdir build-tests && cd build-tests
cmake -DFSFW_BUILD_UNITTESTS=ON -DFSFW_OSAL=host ..
You can also use ``-DFSFW_OSAL=linux`` on Linux systems.
Coverage data in HTML format can be generated using the `Code coverage`_ CMake module.
To build the unittests, run them and then generare the coverage data in this format,
the following command can be used inside the build directory after the build system was set up
.. code-block:: console
cmake --build . -- fsfw-tests_coverage -j
The ``helper.py`` script located in the ``script`` folder can also be used to create, build
and open the unittests conveniently. Try ``helper.py -h`` for more information.
Building the documentation
----------------------------
The FSFW documentation is built using the tools Sphinx, doxygen and breathe based on the
instructions provided in `this blogpost <https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/>`_. You can set up a
documentation build system using the following commands
.. code-block:: bash
mkdir build-docs && cd build-docs
cmake -DFSFW_BUILD_DOCS=ON -DFSFW_OSAL=host ..
Then you can generate the documentation using
.. code-block:: bash
cmake --build . -j
You can find the generated documentation inside the ``docs/sphinx`` folder inside the build
folder. Simply open the ``index.html`` in the webbrowser of your choice.
The ``helper.py`` script located in the ``script`` folder can also be used to create, build
and open the documentation conveniently. Try ``helper.py -h`` for more information.
.. _`Hosted FSFW example`: https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted
.. _`Catch2 library`: https://github.com/catchorg/Catch2
.. _`Code coverage`: https://github.com/bilke/cmake-modules/tree/master

View File

@ -1,149 +0,0 @@
.. _highlevel:
High-level overview
===================
Structure
----------
The general structure is driven by the usage of interfaces provided by objects.
The FSFW uses C++11 as baseline. The intention behind this is that this C++ Standard should be
widely available, even with older compilers.
The FSFW uses dynamic allocation during the initialization but provides static containers during runtime.
This simplifies the instantiation of objects and allows the usage of some standard containers.
Dynamic Allocation after initialization is discouraged and different solutions are provided in the
FSFW to achieve that. The fsfw uses run-time type information but exceptions are not allowed.
Failure Handling
-----------------
Functions should return a defined :cpp:type:`ReturnValue_t` to signal to the caller that something has
gone wrong. Returnvalues must be unique. For this the function :cpp:func:`HasReturnvaluesIF::makeReturnCode`
or the :ref:`macro MAKE_RETURN_CODE <retvalapi>` can be used. The ``CLASS_ID`` is a unique ID for that type of object.
See the :ref:`FSFW Class IDs file <fwclassids>`. The user can add custom ``CLASS_ID``\s via the
``fsfwconfig`` folder.
OSAL
------------
The FSFW provides operation system abstraction layers for Linux, FreeRTOS and RTEMS.
The OSAL provides periodic tasks, message queues, clocks and semaphores as well as mutexes.
The :ref:`OSAL README <osal>` provides more detailed information on provided components
and how to use them.
Core Components
----------------
The FSFW has following core components. More detailed informations can be found in the
:ref:`core component section <core>`:
1. Tasks: Abstraction for different (periodic) task types like periodic tasks or tasks
with fixed timeslots
2. ObjectManager: This module stores all `SystemObjects` by mapping a provided unique object ID
to the object handles.
3. Static Stores: Different stores are provided to store data of variable size (like telecommands
or small telemetry) in a pool structure without using dynamic memory allocation.
These pools are allocated up front.
4. Clock: This module provided common time related functions
5. EventManager: This module allows routing of events generated by `SystemObjects`
6. HealthTable: A component which stores the health states of objects
Static IDs in the framework
--------------------------------
Some parts of the framework use a static routing address for communication.
An example setup of IDs can be found in the example config in ``misc/defaultcfg/fsfwconfig/objects``
inside the function ``Factory::setStaticFrameworkObjectIds``.
Events
----------------
Events are tied to objects. EventIds can be generated by calling the
:ref:`macro MAKE_EVENT <eventapi>` or the function :cpp:func:`event::makeEvent`.
This works analog to the returnvalues. Every object that needs own Event IDs has to get a
unique ``SUBSYSTEM_ID``. Every :cpp:class:`SystemObject` can call
:cpp:func:`SystemObject::triggerEvent` from the parent class.
Therefore, event messages contain the specific EventId and the objectId of the object that
has triggered.
Internal Communication
-------------------------
Components communicate mostly via Messages through Queues.
Those queues are created by calling the singleton ``QueueFactory::instance()->create`` which
will create `MessageQueue` instances for the used OSAL.
External Communication
--------------------------
The external communication with the mission control system is mostly up to the user implementation.
The FSFW provides PUS Services which can be used to but don't need to be used.
The services can be seen as a conversion from a TC to a message based communication and back.
TMTC Communication
~~~~~~~~~~~~~~~~~~~
The FSFW provides some components to facilitate TMTC handling via the PUS commands.
For example, a UDP or TCP PUS server socket can be opened on a specific port using the
files located in ``osal/common``. The FSFW example uses this functionality to allow sending
telecommands and receiving telemetry using the
`TMTC commander application <https://github.com/robamu-org/tmtccmd>`_.
Simple commands like the PUS Service 17 ping service can be tested by simply running the
``tmtc_client_cli.py`` or ``tmtc_client_gui.py`` utility in
the `example tmtc folder <https://egit.irs.uni-stuttgart.de/fsfw/fsfw_example_public/src/branch/master/tmtc>`_
while the `fsfw_example` application is running.
More generally, any class responsible for handling incoming telecommands and sending telemetry
can implement the generic ``TmTcBridge`` class located in ``tmtcservices``. Many applications
also use a dedicated polling task for reading telecommands which passes telecommands
to the ``TmTcBridge`` implementation.
CCSDS Frames, CCSDS Space Packets and PUS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the communication is based on CCSDS Frames and Space Packets, several classes can be used to
distributed the packets to the corresponding services. Those can be found in ``tcdistribution``.
If Space Packets are used, a timestamper has to be provided by the user.
An example can be found in the ``timemanager`` folder, which uses ``CCSDSTime::CDS_short``.
Device Handlers
--------------------------
DeviceHandlers are another important component of the FSFW. The idea is, to have a software
counterpart of every physical device to provide a simple mode, health and commanding interface.
By separating the underlying Communication Interface with
``DeviceCommunicationIF``, a device handler (DH) can be tested on different hardware.
The DH has mechanisms to monitor the communication with the physical device which allow
for FDIR reaction. Device Handlers can be created by implementing ``DeviceHandlerBase``.
A standard FDIR component for the DH will be created automatically but can
be overwritten by the user. More information on DeviceHandlers can be found in the
related [documentation section](doc/README-devicehandlers.md#top).
Modes and Health
--------------------
The two interfaces ``HasModesIF`` and ``HasHealthIF`` provide access for commanding and monitoring
of components. On-board mode management is implement in hierarchy system.
- Device handlers and controllers are the lowest part of the hierarchy.
- The next layer are assemblies. Those assemblies act as a component which handle
redundancies of handlers. Assemblies share a common core with the top level subsystem components
- The top level subsystem components are used to group assemblies, controllers and device handlers.
For example, a spacecraft can have a atttitude control subsystem and a power subsystem.
Those assemblies are intended to act as auto-generated components from a database which describes
the subsystem modes. The definitions contain transition and target tables which contain the DH,
Assembly and Controller Modes to be commanded.
Transition tables contain as many steps as needed to reach the mode from any other mode, e.g. a
switch into any higher AOCS mode might first turn on the sensors, than the actuators and the
controller as last component.
The target table is used to describe the state that is checked continuously by the subsystem.
All of this allows System Modes to be generated as Subsystem object as well from the same database.
This System contains list of subsystem modes in the transition and target tables.
Therefore, it allows a modular system to create system modes and easy commanding of those, because
only the highest components must be commanded.
The health state represents if the component is able to perform its tasks.
This can be used to signal the system to avoid using this component instead of a redundant one.
The on-board FDIR uses the health state for isolation and recovery.

View File

@ -1,69 +0,0 @@
.. Flight Software Framework documentation master file, created by
sphinx-quickstart on Tue Nov 30 10:56:03 2021.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Flight Software Framework (FSFW) documentation
================================================
.. image:: ../misc/logo/FSFW_Logo_V3_bw.png
:alt: FSFW Logo
The Flight Software Framework is a C++ Object Oriented Framework for unmanned,
automated systems like Satellites.
The initial version of the Flight Software Framework was developed during
the Flying Laptop Project by the University of Stuttgart in cooperation
with Airbus Defence and Space GmbH.
Quick facts
---------------
The framework is designed for systems, which communicate with external devices, perform control
loops, receive telecommands and send telemetry, and need to maintain a high level of availability.
Therefore, a mode and health system provides control over the states of the software and the
controlled devices. In addition, a simple mechanism of event based fault detection, isolation and
recovery is implemented as well.
The FSFW provides abstraction layers for operating systems to provide a uniform operating system
abstraction layer (OSAL). Some components of this OSAL are required internally by the FSFW but is
also very useful for developers to implement the same application logic on different operating
systems with a uniform interface.
Currently, the FSFW provides the following OSALs:
- Linux
- Host
- FreeRTOS
- RTEMS
The recommended hardware is a microprocessor with more than 1 MB of RAM and 1 MB of non-volatile
memory. For reference, current applications use a Cobham Gaisler UT699 (LEON3FT), a
ISISPACE IOBC or a Zynq-7020 SoC. The ``fsfw`` was also successfully run on the
STM32H743ZI-Nucleo board and on a Raspberry Pi and is currently running on the active
satellite mission Flying Laptop.
Index
-------
.. toctree::
:maxdepth: 2
:caption: Contents:
getting_started
highlevel
core
config
osal
pus
devicehandlers
controllers
localpools
api
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

View File

@ -1,181 +0,0 @@
Local Data Pools
=========================================
The following text is targeted towards mission software developers which would like
to use the local data pools provided by the FSFW to store data like sensor values so they can be
used by other software objects like controllers as well. If a custom class should have a local
pool which can be used by other software objects as well, following steps have to be performed:
1. Create a ``LocalDataPoolManager`` member object in the custom class
2. Implement the ``HasLocalDataPoolIF`` with specifies the interface between the local pool
manager and the class owning the local pool.
The local data pool manager is also able to process housekeeping service requests in form
of messages, generate periodic housekeeping packet, generate notification and snapshots of changed
variables and datasets and process notifications and snapshots coming from other objects.
The two former tasks are related to the external interface using telemetry and telecommands (TMTC)
while the later two are related to data consumers like controllers only acting on data change
detected by the data creator instead of checking the data manually each cycle. Two important
framework classes ``DeviceHandlerBase`` and ``ExtendedControllerBase`` already perform the two steps
shown above so the steps required are altered slightly.
Storing and Accessing pool data
-------------------------------------
The pool manager is responsible for thread-safe access of the pool data, but the actual
access to the pool data from the point of view of a mission software developer happens via proxy
classes like pool variable classes. These classes store a copy
of the pool variable with the matching datatype and copy the actual data from the local pool
on a ``read`` call. Changed variables can then be written to the local pool with a ``commit`` call.
The ``read`` and ``commit`` calls are thread-safe and can be called concurrently from data creators
and data consumers. Generally, a user will create a dataset class which in turn groups all
cohesive pool variables. These sets simply iterator over the list of variables and call the
``read`` and ``commit`` functions of each variable. The following diagram shows the
high-level architecture of the local data pools.
.. image:: ../docs/images/PoolArchitecture.png
:alt: Pool Architecture
An example is shown for using the local data pools with a Gyroscope.
For example, the following code shows an implementation to access data from a Gyroscope taken
from the SOURCE CubeSat project:
.. code-block:: cpp
class GyroPrimaryDataset: public StaticLocalDataSet<3 * sizeof(float)> {
public:
/**
* Constructor for data users
* @param gyroId
*/
GyroPrimaryDataset(object_id_t gyroId):
StaticLocalDataSet(sid_t(gyroId, gyrodefs::GYRO_DATA_SET_ID)) {
setAllVariablesReadOnly();
}
lp_var_t<float> angVelocityX = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_X, this);
lp_var_t<float> angVelocityY = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_Y, this);
lp_var_t<float> angVelocityZ = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_Z, this);
private:
friend class GyroHandler;
/**
* Constructor for data creator
* @param hkOwner
*/
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, gyrodefs::GYRO_DATA_SET_ID) {}
};
There is a public constructor for users which sets all variables to read-only and there is a
constructor for the GyroHandler data creator by marking it private and declaring the ``GyroHandler``
as a friend class. Both the atittude controller and the ``GyroHandler`` can now
use the same class definition to access the pool variables with ``read`` and ``commit`` semantics
in a thread-safe way. Generally, each class requiring access will have the set class as a member
class. The data creator will also be generally a ``DeviceHandlerBase`` subclass and some additional
steps are necessary to expose the set for housekeeping purposes.
Using the local data pools in a ``DeviceHandlerBase`` subclass
--------------------------------------------------------------
It is very common to store data generated by devices like a sensor into a pool which can
then be used by other objects. Therefore, the ``DeviceHandlerBase`` already has a
local pool. Using the aforementioned example, the ``GyroHandler`` will now have the set class
as a member:
.. code-block:: cpp
class GyroHandler: ... {
public:
...
private:
...
GyroPrimaryDataset gyroData;
...
};
The constructor used for the creators expects the owner class as a parameter, so we initialize
the object in the `GyroHandler` constructor like this:
.. code-block:: cpp
GyroHandler::GyroHandler(object_id_t objectId, object_id_t comIF,
CookieIF *comCookie, uint8_t switchId):
DeviceHandlerBase(objectId, comIF, comCookie), switchId(switchId),
gyroData(this) {}
We need to assign the set to a reply ID used in the ``DeviceHandlerBase``.
The combination of the ``GyroHandler`` object ID and the reply ID will be the 64-bit structure ID
``sid_t`` and is used to globally identify the set, for example when requesting housekeeping data or
generating update messages. We need to assign our custom set class in some way so that the local
pool manager can access the custom data sets as well.
By default, the ``getDataSetHandle`` will take care of this tasks. The default implementation for a
``DeviceHandlerBase`` subclass will use the internal command map to retrieve
a handle to a dataset from a given reply ID. Therefore,
we assign the set in the ``fillCommandAndReplyMap`` function:
.. code-block:: cpp
void GyroHandler::fillCommandAndReplyMap() {
...
this->insertInCommandAndReplyMap(gyrodefs::GYRO_DATA, 3, &gyroData);
...
}
Now, we need to create the actual pool entries as well, using the ``initializeLocalDataPool``
function. Here, we also immediately subscribe for periodic housekeeping packets
with an interval of 4 seconds. They are still disabled in this example and can be enabled
with a housekeeping service command.
.. code-block:: cpp
ReturnValue_t GyroHandler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_Z,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::GENERAL_CONFIG_REG42,
new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(gyrodefs::RANGE_CONFIG_REG43,
new PoolEntry<uint8_t>({0}));
poolManager.subscribeForPeriodicPacket(gyroData.getSid(), false, 4.0, false);
return HasReturnvaluesIF::RETURN_OK;
}
Now, if we receive some sensor data and converted them into the right format,
we can write it into the pool like this, using a guard class to ensure the set is commited back
in any case:
.. code-block:: cpp
PoolReadGuard readHelper(&gyroData);
if(readHelper.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
if(not gyroData.isValid()) {
gyroData.setValidity(true, true);
}
gyroData.angVelocityX = angularVelocityX;
gyroData.angVelocityY = angularVelocityY;
gyroData.angVelocityZ = angularVelocityZ;
}
The guard class will commit the changed data on destruction automatically.
Using the local data pools in a ``ExtendedControllerBase`` subclass
----------------------------------------------------------------------
Coming soon

View File

@ -1,35 +0,0 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=.
set BUILDDIR=_build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

View File

@ -1,63 +0,0 @@
.. _osal:
Operating System Abstraction Layer (OSAL)
============================================
Some specific information on the provided OSALs are provided.
Linux
-------
This OSAL can be used to compile for Linux host systems like Ubuntu 20.04 or for
embedded Linux targets like the Raspberry Pi. This OSAL generally requires threading support
and real-time functionalities. For most UNIX systems, this is done by adding ``-lrt`` and
``-lpthread`` to the linked libraries in the compilation process. The CMake build support provided
will do this automatically for the ``fsfw`` target. It should be noted that most UNIX systems need
to be configured specifically to allow the real-time functionalities required by the FSFW.
Hosted OSAL
-------------------
This is the newest OSAL. Support for Semaphores has not been implemented yet and will propably be
implemented as soon as C++20 with Semaphore support has matured. This OSAL can be used to run the
FSFW on any host system, but currently has only been tested on Windows 10 and Ubuntu 20.04. Unlike
the other OSALs, it uses dynamic memory allocation (e.g. for the message queue implementation).
Cross-platform serial port (USB) support might be added soon.
FreeRTOS OSAL
------------------
FreeRTOS is not included and the developer needs to take care of compiling the FreeRTOS sources and
adding the ``FreeRTOSConfig.h`` file location to the include path. This OSAL has only been tested
extensively with the pre-emptive scheduler configuration so far but it should in principle also be
possible to use a cooperative scheduler. It is recommended to use the `heap_4` allocation scheme.
When using newlib (nano), it is also recommended to add ``#define configUSE_NEWLIB_REENTRANT`` to
the FreeRTOS configuration file to ensure thread-safety.
When using this OSAL, developers also need to provide an implementation for the
``vRequestContextSwitchFromISR`` function. This has been done because the call to request a context
switch from an ISR is generally located in the ``portmacro.h`` header and is different depending on
the target architecture or device.
RTEMS OSAL
---------------
The RTEMS OSAL was the first implemented OSAL which is also used on the active satellite Flying Laptop.
TCP/IP socket abstraction
------------------------------
The Linux and Host OSAL provide abstraction layers for the socket API. Currently, only UDP sockets
have been imlemented. This is very useful to test TMTC handling either on the host computer
directly (targeting localhost with a TMTC application) or on embedded Linux devices, sending
TMTC packets via Ethernet.
Example Applications
----------------------
There are example applications available for each OSAL
- `Hosted OSAL <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted>`_
- `Linux OSAL for MCUs <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-linux-mcu>`_
- `FreeRTOS OSAL on the STM32H743ZIT <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-stm32h7-freertos>`_
- `RTEMS OSAL on the STM32H743ZIT <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-stm32h7-rtems>`_

View File

@ -1,2 +0,0 @@
PUS Services
==============

View File

@ -3,13 +3,7 @@ cmake_minimum_required(VERSION 3.13)
# Can also be changed by upper CMakeLists.txt file
find_library(LIB_FSFW_NAME fsfw REQUIRED)
option(FSFW_HAL_ADD_LINUX "Add the Linux HAL to the sources. Requires gpiod library" OFF)
# On by default for now because I did not have an issue including and compiling those files
# and libraries on a Desktop Linux system and the primary target of the FSFW is still embedded
# Linux. The only exception from this is the gpiod library which requires a dedicated installation,
# but CMake is able to determine whether this library is installed with find_library.
option(FSFW_HAL_LINUX_ADD_PERIPHERAL_DRIVERS "Add peripheral drivers for embedded Linux" ON)
option(FSFW_HAL_ADD_LINUX "Add the Linux HAL to the sources. Required gpiod library" OFF)
option(FSFW_HAL_ADD_RASPBERRY_PI "Add Raspberry Pi specific code to the sources" OFF)
option(FSFW_HAL_ADD_STM32H7 "Add the STM32H7 HAL to the sources" OFF)
option(FSFW_HAL_WARNING_SHADOW_LOCAL_GCC "Enable -Wshadow=local warning in GCC" ON)

View File

@ -6,4 +6,4 @@ target_include_directories(${LIB_FSFW_NAME} INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}
)
add_subdirectory(fsfw_hal)
add_subdirectory(fsfw)

View File

@ -0,0 +1 @@
add_subdirectory(hal)

View File

@ -1,7 +1,7 @@
add_subdirectory(devicehandlers)
add_subdirectory(common)
if(UNIX)
if(FSFW_HAL_ADD_LINUX)
add_subdirectory(linux)
endif()

View File

@ -0,0 +1,50 @@
#include "fsfw/hal/common/gpio/GpioCookie.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
GpioCookie::GpioCookie() {
}
ReturnValue_t GpioCookie::addGpio(gpioId_t gpioId, GpioBase* gpioConfig) {
if (gpioConfig == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: gpioConfig is nullpointer" << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: gpioConfig is nullpointer\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
auto gpioMapIter = gpioMap.find(gpioId);
if(gpioMapIter == gpioMap.end()) {
auto statusPair = gpioMap.emplace(gpioId, gpioConfig);
if (statusPair.second == false) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: Failed to add GPIO " << gpioId <<
" to GPIO map" << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: Failed to add GPIO %d to GPIO map\n", gpioId);
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: GPIO already exists in GPIO map " << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: GPIO already exists in GPIO map\n");
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
GpioMap GpioCookie::getGpioMap() const {
return gpioMap;
}
GpioCookie::~GpioCookie() {
for(auto& config: gpioMap) {
delete(config.second);
}
}

View File

@ -1,12 +1,12 @@
#ifndef COMMON_GPIO_GPIOCOOKIE_H_
#define COMMON_GPIO_GPIOCOOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "GpioIF.h"
#include "gpioDefinitions.h"
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
/**
* @brief Cookie for the GpioIF. Allows the GpioIF to determine which
* GPIOs to initialize and whether they should be configured as in- or
@ -17,24 +17,25 @@
*
* @author J. Meier
*/
class GpioCookie : public CookieIF {
public:
GpioCookie();
class GpioCookie: public CookieIF {
public:
virtual ~GpioCookie();
GpioCookie();
ReturnValue_t addGpio(gpioId_t gpioId, GpioBase* gpioConfig);
virtual ~GpioCookie();
/**
* @brief Get map with registered GPIOs.
*/
GpioMap getGpioMap() const;
ReturnValue_t addGpio(gpioId_t gpioId, GpioBase* gpioConfig);
private:
/**
* Returns a copy of the internal GPIO map.
*/
GpioMap gpioMap;
/**
* @brief Get map with registered GPIOs.
*/
GpioMap getGpioMap() const;
private:
/**
* Returns a copy of the internal GPIO map.
*/
GpioMap gpioMap;
};
#endif /* COMMON_GPIO_GPIOCOOKIE_H_ */

View File

@ -0,0 +1,54 @@
#ifndef COMMON_GPIO_GPIOIF_H_
#define COMMON_GPIO_GPIOIF_H_
#include "gpioDefinitions.h"
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/devicehandlers/CookieIF.h>
class GpioCookie;
/**
* @brief This class defines the interface for objects requiring the control
* over GPIOs.
* @author J. Meier
*/
class GpioIF : public HasReturnvaluesIF {
public:
virtual ~GpioIF() {};
/**
* @brief Called by the GPIO using object.
* @param cookie Cookie specifying informations of the GPIOs required
* by a object.
*/
virtual ReturnValue_t addGpios(GpioCookie* cookie) = 0;
/**
* @brief By implementing this function a child must provide the
* functionality to pull a certain GPIO to high logic level.
*
* @param gpioId A unique number which specifies the GPIO to drive.
* @return Returns RETURN_OK for success. This should never return RETURN_FAILED.
*/
virtual ReturnValue_t pullHigh(gpioId_t gpioId) = 0;
/**
* @brief By implementing this function a child must provide the
* functionality to pull a certain GPIO to low logic level.
*
* @param gpioId A unique number which specifies the GPIO to drive.
*/
virtual ReturnValue_t pullLow(gpioId_t gpioId) = 0;
/**
* @brief This function requires a child to implement the functionality to read the state of
* an ouput or input gpio.
*
* @param gpioId A unique number which specifies the GPIO to read.
* @param gpioState State of GPIO will be written to this pointer.
*/
virtual ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) = 0;
};
#endif /* COMMON_GPIO_GPIOIF_H_ */

View File

@ -0,0 +1,110 @@
#ifndef COMMON_GPIO_GPIODEFINITIONS_H_
#define COMMON_GPIO_GPIODEFINITIONS_H_
#include <string>
#include <unordered_map>
#include <map>
using gpioId_t = uint16_t;
namespace gpio {
enum Levels {
LOW = 0,
HIGH = 1
};
enum Direction {
IN = 0,
OUT = 1
};
enum GpioOperation {
READ,
WRITE
};
enum GpioTypes {
NONE,
GPIO_REGULAR,
CALLBACK
};
static constexpr gpioId_t NO_GPIO = -1;
using gpio_cb_t = void (*) (gpioId_t gpioId, gpio::GpioOperation gpioOp, int value, void* args);
}
/**
* @brief Struct containing information about the GPIO to use. This is
* required by the libgpiod to access and drive a GPIO.
* @param chipname String of the chipname specifying the group which contains the GPIO to
* access. E.g. gpiochip0. To detect names of GPIO groups run gpiodetect on
* the linux command line.
* @param lineNum The offset of the GPIO within the GPIO group.
* @param consumer Name of the consumer. Simply a description of the GPIO configuration.
* @param direction Specifies whether the GPIO should be used as in- or output.
* @param initValue Defines the initial state of the GPIO when configured as output.
* Only required for output GPIOs.
* @param lineHandle The handle returned by gpiod_chip_get_line will be later written to this
* pointer.
*/
class GpioBase {
public:
GpioBase() = default;
GpioBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction,
int initValue):
gpioType(gpioType), consumer(consumer),direction(direction), initValue(initValue) {}
virtual~ GpioBase() {};
// Can be used to cast GpioBase to a concrete child implementation
gpio::GpioTypes gpioType = gpio::GpioTypes::NONE;
std::string consumer;
gpio::Direction direction = gpio::Direction::IN;
int initValue = 0;
};
class GpiodRegular: public GpioBase {
public:
GpiodRegular() :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, std::string(), gpio::Direction::IN, 0) {
}
;
GpiodRegular(std::string chipname_, int lineNum_, std::string consumer_,
gpio::Direction direction_, int initValue_) :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, consumer_, direction_, initValue_),
chipname(chipname_), lineNum(lineNum_) {
}
GpiodRegular(std::string chipname_, int lineNum_, std::string consumer_) :
GpioBase(gpio::GpioTypes::GPIO_REGULAR, consumer_, gpio::Direction::IN, 0),
chipname(chipname_), lineNum(lineNum_) {
}
std::string chipname;
int lineNum = 0;
struct gpiod_line* lineHandle = nullptr;
};
class GpioCallback: public GpioBase {
public:
GpioCallback(std::string consumer, gpio::Direction direction_, int initValue_,
gpio::gpio_cb_t callback, void* callbackArgs):
GpioBase(gpio::GpioTypes::CALLBACK, consumer, direction_, initValue_),
callback(callback), callbackArgs(callbackArgs) {}
gpio::gpio_cb_t callback = nullptr;
void* callbackArgs = nullptr;
};
using GpioMap = std::map<gpioId_t, GpioBase*>;
using GpioUnorderedMap = std::unordered_map<gpioId_t, GpioBase*>;
using GpioMapIter = GpioMap::iterator;
using GpioUnorderedMapIter = GpioUnorderedMap::iterator;
#endif /* LINUX_GPIO_GPIODEFINITIONS_H_ */

View File

@ -5,7 +5,12 @@
namespace spi {
enum SpiModes : uint8_t { MODE_0, MODE_1, MODE_2, MODE_3 };
enum SpiModes: uint8_t {
MODE_0,
MODE_1,
MODE_2,
MODE_3
};
}

View File

@ -1,3 +1,3 @@
target_sources(${LIB_FSFW_NAME} PRIVATE
TestTask.cpp
)
GyroL3GD20Handler.cpp
)

View File

@ -0,0 +1,262 @@
#include "fsfw/hal/devicehandlers/GyroL3GD20Handler.h"
#include "fsfw/datapool/PoolReadGuard.h"
GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF *comCookie):
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
dataset(this) {
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
debugDivider = new PeriodicOperationDivider(5);
#endif
}
GyroHandlerL3GD20H::~GyroHandlerL3GD20H() {}
void GyroHandlerL3GD20H::doStartUp() {
if(internalState == InternalState::NONE) {
internalState = InternalState::CONFIGURE;
}
if(internalState == InternalState::CONFIGURE) {
if(commandExecuted) {
internalState = InternalState::CHECK_REGS;
commandExecuted = false;
}
}
if(internalState == InternalState::CHECK_REGS) {
if(commandExecuted) {
internalState = InternalState::NORMAL;
if(goNormalModeImmediately) {
setMode(MODE_NORMAL);
}
else {
setMode(_MODE_TO_ON);
}
commandExecuted = false;
}
}
}
void GyroHandlerL3GD20H::doShutDown() {
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t GyroHandlerL3GD20H::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
switch(internalState) {
case(InternalState::NONE):
case(InternalState::NORMAL): {
return HasReturnvaluesIF::RETURN_OK;
}
case(InternalState::CONFIGURE): {
*id = L3GD20H::CONFIGURE_CTRL_REGS;
uint8_t command [5];
command[0] = L3GD20H::CTRL_REG_1_VAL;
command[1] = L3GD20H::CTRL_REG_2_VAL;
command[2] = L3GD20H::CTRL_REG_3_VAL;
command[3] = L3GD20H::CTRL_REG_4_VAL;
command[4] = L3GD20H::CTRL_REG_5_VAL;
return buildCommandFromCommand(*id, command, 5);
}
case(InternalState::CHECK_REGS): {
*id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0);
}
default:
#if FSFW_CPP_OSTREAM_ENABLED == 1
/* Might be a configuration error. */
sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" <<
std::endl;
#else
sif::printDebug("GyroHandler::buildTransitionDeviceCommand: Unknown internal state!\n");
#endif
return HasReturnvaluesIF::RETURN_OK;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::buildNormalDeviceCommand(DeviceCommandId_t *id) {
*id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t GyroHandlerL3GD20H::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(L3GD20H::READ_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN);
rawPacket = commandBuffer;
rawPacketLen = L3GD20H::READ_LEN + 1;
break;
}
case(L3GD20H::CONFIGURE_CTRL_REGS): {
commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK;
if(commandData == nullptr or commandDataLen != 5) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
ctrlReg1Value = commandData[0];
ctrlReg2Value = commandData[1];
ctrlReg3Value = commandData[2];
ctrlReg4Value = commandData[3];
ctrlReg5Value = commandData[4];
bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1;
bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0;
if(not fsH and not fsL) {
sensitivity = L3GD20H::SENSITIVITY_00;
}
else if(not fsH and fsL) {
sensitivity = L3GD20H::SENSITIVITY_01;
}
else {
sensitivity = L3GD20H::SENSITIVITY_11;
}
commandBuffer[1] = ctrlReg1Value;
commandBuffer[2] = ctrlReg2Value;
commandBuffer[3] = ctrlReg3Value;
commandBuffer[4] = ctrlReg4Value;
commandBuffer[5] = ctrlReg5Value;
rawPacket = commandBuffer;
rawPacketLen = 6;
break;
}
case(L3GD20H::READ_CTRL_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK |
L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, 5);
rawPacket = commandBuffer;
rawPacketLen = 6;
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) {
/* For SPI, the ID will always be the one of the last sent command. */
*foundId = this->getPendingCommand();
*foundLen = this->rawPacketLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
case(L3GD20H::CONFIGURE_CTRL_REGS): {
commandExecuted = true;
break;
}
case(L3GD20H::READ_CTRL_REGS): {
if(packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and
packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and
packet[5] == ctrlReg5Value) {
commandExecuted = true;
}
else {
/* Attempt reconfiguration. */
internalState = InternalState::CONFIGURE;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(L3GD20H::READ_REGS): {
if(packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and
packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and
packet[5] != ctrlReg5Value) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
else {
if(internalState == InternalState::CHECK_REGS) {
commandExecuted = true;
}
}
statusReg = packet[L3GD20H::STATUS_IDX];
int16_t angVelocXRaw = packet[L3GD20H::OUT_X_H] << 8 | packet[L3GD20H::OUT_X_L];
int16_t angVelocYRaw = packet[L3GD20H::OUT_Y_H] << 8 | packet[L3GD20H::OUT_Y_L];
int16_t angVelocZRaw = packet[L3GD20H::OUT_Z_H] << 8 | packet[L3GD20H::OUT_Z_L];
float angVelocX = angVelocXRaw * sensitivity;
float angVelocY = angVelocYRaw * sensitivity;
float angVelocZ = angVelocZRaw * sensitivity;
int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX];
float temperature = 25.0 + temperaturOffset;
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
if(debugDivider->checkAndIncrement()) {
/* Set terminal to utf-8 if there is an issue with micro printout. */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "GyroHandlerL3GD20H: Angular velocities in degrees per second:" <<
std::endl;
sif::info << "X: " << angVelocX << " \xC2\xB0" << std::endl;
sif::info << "Y: " << angVelocY << " \xC2\xB0" << std::endl;
sif::info << "Z: " << angVelocZ << " \xC2\xB0" << std::endl;
#else
sif::printInfo("GyroHandlerL3GD20H: Angular velocities in degrees per second:\n");
sif::printInfo("X: %f\n", angVelocX);
sif::printInfo("Y: %f\n", angVelocY);
sif::printInfo("Z: %f\n", angVelocZ);
#endif
}
#endif
PoolReadGuard readSet(&dataset);
if(readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
dataset.angVelocX = angVelocX;
dataset.angVelocY = angVelocY;
dataset.angVelocZ = angVelocZ;
dataset.temperature = temperature;
dataset.setValidity(true, true);
}
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return result;
}
uint32_t GyroHandlerL3GD20H::getTransitionDelayMs(Mode_t from, Mode_t to) {
return 10000;
}
void GyroHandlerL3GD20H::setGoNormalModeAtStartup() {
this->goNormalModeImmediately = true;
}
ReturnValue_t GyroHandlerL3GD20H::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::TEMPERATURE,
new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
}
void GyroHandlerL3GD20H::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset);
insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1);
insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1);
}
void GyroHandlerL3GD20H::modeChanged() {
internalState = InternalState::NONE;
}

View File

@ -0,0 +1,86 @@
#ifndef MISSION_DEVICES_GYROL3GD20HANDLER_H_
#define MISSION_DEVICES_GYROL3GD20HANDLER_H_
#include "OBSWConfig.h"
#include "devicedefinitions/GyroL3GD20Definitions.h"
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
#ifndef FSFW_HAL_L3GD20_GYRO_DEBUG
#define FSFW_HAL_L3GD20_GYRO_DEBUG 1
#endif /* FSFW_HAL_L3GD20_GYRO_DEBUG */
/**
* @brief Device Handler for the L3GD20H gyroscope sensor
* (https://www.st.com/en/mems-and-sensors/l3gd20h.html)
* @details
* Advanced documentation:
* https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/L3GD20H_Gyro
*
* Data is read big endian with the smallest possible range of 245 degrees per second.
*/
class GyroHandlerL3GD20H: public DeviceHandlerBase {
public:
GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF* comCookie);
virtual ~GyroHandlerL3GD20H();
void setGoNormalModeAtStartup();
protected:
/* DeviceHandlerBase overrides */
ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t *id) override;
void doStartUp() override;
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
void fillCommandAndReplyMap() override;
void modeChanged() override;
uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
private:
GyroPrimaryDataset dataset;
enum class InternalState {
NONE,
CONFIGURE,
CHECK_REGS,
NORMAL
};
InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
uint8_t statusReg = 0;
bool goNormalModeImmediately = false;
uint8_t ctrlReg1Value = L3GD20H::CTRL_REG_1_VAL;
uint8_t ctrlReg2Value = L3GD20H::CTRL_REG_2_VAL;
uint8_t ctrlReg3Value = L3GD20H::CTRL_REG_3_VAL;
uint8_t ctrlReg4Value = L3GD20H::CTRL_REG_4_VAL;
uint8_t ctrlReg5Value = L3GD20H::CTRL_REG_5_VAL;
uint8_t commandBuffer[L3GD20H::READ_LEN + 1];
// Set default value
float sensitivity = L3GD20H::SENSITIVITY_00;
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
PeriodicOperationDivider* debugDivider = nullptr;
#endif
};
#endif /* MISSION_DEVICES_GYROL3GD20HANDLER_H_ */

View File

@ -3,7 +3,6 @@
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <cstdint>
namespace L3GD20H {
@ -37,8 +36,8 @@ static constexpr uint8_t SET_Z_ENABLE = 1 << 2;
static constexpr uint8_t SET_X_ENABLE = 1 << 1;
static constexpr uint8_t SET_Y_ENABLE = 1;
static constexpr uint8_t CTRL_REG_1_VAL =
SET_POWER_NORMAL_MODE | SET_Z_ENABLE | SET_Y_ENABLE | SET_X_ENABLE;
static constexpr uint8_t CTRL_REG_1_VAL = SET_POWER_NORMAL_MODE | SET_Z_ENABLE |
SET_Y_ENABLE | SET_X_ENABLE;
/* Register 2 */
static constexpr uint8_t EXTERNAL_EDGE_ENB = 1 << 7;
@ -105,29 +104,40 @@ static constexpr DeviceCommandId_t READ_CTRL_REGS = 2;
static constexpr uint32_t GYRO_DATASET_ID = READ_REGS;
enum GyroPoolIds : lp_id_t { ANG_VELOC_X, ANG_VELOC_Y, ANG_VELOC_Z, TEMPERATURE };
} // namespace L3GD20H
class GyroPrimaryDataset : public StaticLocalDataSet<5> {
public:
/** Constructor for data users like controllers */
GyroPrimaryDataset(object_id_t mgmId)
: StaticLocalDataSet(sid_t(mgmId, L3GD20H::GYRO_DATASET_ID)) {
setAllVariablesReadOnly();
}
/* Angular velocities in degrees per second (DPS) */
lp_var_t<float> angVelocX = lp_var_t<float>(sid.objectId, L3GD20H::ANG_VELOC_X, this);
lp_var_t<float> angVelocY = lp_var_t<float>(sid.objectId, L3GD20H::ANG_VELOC_Y, this);
lp_var_t<float> angVelocZ = lp_var_t<float>(sid.objectId, L3GD20H::ANG_VELOC_Z, this);
lp_var_t<float> temperature = lp_var_t<float>(sid.objectId, L3GD20H::TEMPERATURE, this);
private:
friend class GyroHandlerL3GD20H;
/** Constructor for the data creator */
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner)
: StaticLocalDataSet(hkOwner, L3GD20H::GYRO_DATASET_ID) {}
enum GyroPoolIds: lp_id_t {
ANG_VELOC_X,
ANG_VELOC_Y,
ANG_VELOC_Z,
TEMPERATURE
};
}
class GyroPrimaryDataset: public StaticLocalDataSet<5> {
public:
/** Constructor for data users like controllers */
GyroPrimaryDataset(object_id_t mgmId):
StaticLocalDataSet(sid_t(mgmId, L3GD20H::GYRO_DATASET_ID)) {
setAllVariablesReadOnly();
}
/* Angular velocities in degrees per second (DPS) */
lp_var_t<float> angVelocX = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_X, this);
lp_var_t<float> angVelocY = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_Y, this);
lp_var_t<float> angVelocZ = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_Z, this);
lp_var_t<float> temperature = lp_var_t<float>(sid.objectId,
L3GD20H::TEMPERATURE, this);
private:
friend class GyroHandlerL3GD20H;
/** Constructor for the data creator */
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, L3GD20H::GYRO_DATASET_ID) {}
};
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_ */

View File

@ -0,0 +1,13 @@
if(FSFW_HAL_ADD_RASPBERRY_PI)
add_subdirectory(rpi)
endif()
target_sources(${LIB_FSFW_NAME} PRIVATE
UnixFileGuard.cpp
utility.cpp
)
add_subdirectory(gpio)
add_subdirectory(spi)
add_subdirectory(i2c)
add_subdirectory(uart)

View File

@ -0,0 +1,33 @@
#include "fsfw/hal/linux/UnixFileGuard.h"
UnixFileGuard::UnixFileGuard(std::string device, int* fileDescriptor, int flags,
std::string diagnosticPrefix):
fileDescriptor(fileDescriptor) {
if(fileDescriptor == nullptr) {
return;
}
*fileDescriptor = open(device.c_str(), flags);
if (*fileDescriptor < 0) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << diagnosticPrefix <<"Opening device failed with error code " << errno <<
"." << std::endl;
sif::warning << "Error description: " << strerror(errno) << std::endl;
#else
sif::printError("%sOpening device failed with error code %d.\n", diagnosticPrefix);
sif::printWarning("Error description: %s\n", strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
openStatus = OPEN_FILE_FAILED;
}
}
UnixFileGuard::~UnixFileGuard() {
if(fileDescriptor != nullptr) {
close(*fileDescriptor);
}
}
ReturnValue_t UnixFileGuard::getOpenResult() const {
return openStatus;
}

View File

@ -0,0 +1,33 @@
#ifndef LINUX_UTILITY_UNIXFILEGUARD_H_
#define LINUX_UTILITY_UNIXFILEGUARD_H_
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <string>
#include <fcntl.h>
#include <unistd.h>
class UnixFileGuard {
public:
static constexpr int READ_WRITE_FLAG = O_RDWR;
static constexpr int READ_ONLY_FLAG = O_RDONLY;
static constexpr int NON_BLOCKING_IO_FLAG = O_NONBLOCK;
static constexpr ReturnValue_t OPEN_FILE_FAILED = 1;
UnixFileGuard(std::string device, int* fileDescriptor, int flags,
std::string diagnosticPrefix = "");
virtual~ UnixFileGuard();
ReturnValue_t getOpenResult() const;
private:
int* fileDescriptor = nullptr;
ReturnValue_t openStatus = HasReturnvaluesIF::RETURN_OK;
};
#endif /* LINUX_UTILITY_UNIXFILEGUARD_H_ */

View File

@ -0,0 +1,12 @@
target_sources(${LIB_FSFW_NAME} PRIVATE
LinuxLibgpioIF.cpp
)
# This abstraction layer requires the gpiod library. You can install this library
# with "sudo apt-get install -y libgpiod-dev". If you are cross-compiling, you need
# to install the package before syncing the sysroot to your host computer.
find_library(LIB_GPIO gpiod REQUIRED)
target_link_libraries(${LIB_FSFW_NAME} PRIVATE
${LIB_GPIO}
)

View File

@ -0,0 +1,305 @@
#include "fsfw/hal/linux/gpio/LinuxLibgpioIF.h"
#include "fsfw/hal/common/gpio/gpioDefinitions.h"
#include "fsfw/hal/common/gpio/GpioCookie.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <utility>
#include <unistd.h>
#include <gpiod.h>
LinuxLibgpioIF::LinuxLibgpioIF(object_id_t objectId) : SystemObject(objectId) {
}
LinuxLibgpioIF::~LinuxLibgpioIF() {
for(auto& config: gpioMap) {
delete(config.second);
}
}
ReturnValue_t LinuxLibgpioIF::addGpios(GpioCookie* gpioCookie) {
ReturnValue_t result;
if(gpioCookie == nullptr) {
sif::error << "LinuxLibgpioIF::initialize: Invalid cookie" << std::endl;
return RETURN_FAILED;
}
GpioMap mapToAdd = gpioCookie->getGpioMap();
/* Check whether this ID already exists in the map and remove duplicates */
result = checkForConflicts(mapToAdd);
if (result != RETURN_OK){
return result;
}
result = configureGpios(mapToAdd);
if (result != RETURN_OK) {
return RETURN_FAILED;
}
/* Register new GPIOs in gpioMap */
gpioMap.insert(mapToAdd.begin(), mapToAdd.end());
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::configureGpios(GpioMap& mapToAdd) {
for(auto& gpioConfig: mapToAdd) {
switch(gpioConfig.second->gpioType) {
case(gpio::GpioTypes::NONE): {
return GPIO_INVALID_INSTANCE;
}
case(gpio::GpioTypes::GPIO_REGULAR): {
GpiodRegular* regularGpio = dynamic_cast<GpiodRegular*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_INVALID_INSTANCE;
}
configureRegularGpio(gpioConfig.first, regularGpio);
break;
}
case(gpio::GpioTypes::CALLBACK): {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioConfig.first, gpio::GpioOperation::WRITE,
gpioCallback->initValue, gpioCallback->callbackArgs);
}
}
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, GpiodRegular *regularGpio) {
std::string chipname;
unsigned int lineNum;
struct gpiod_chip *chip;
gpio::Direction direction;
std::string consumer;
struct gpiod_line *lineHandle;
int result = 0;
chipname = regularGpio->chipname;
chip = gpiod_chip_open_by_name(chipname.c_str());
if (!chip) {
sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open chip "
<< chipname << ". Gpio ID: " << gpioId << std::endl;
return RETURN_FAILED;
}
lineNum = regularGpio->lineNum;
lineHandle = gpiod_chip_get_line(chip, lineNum);
if (!lineHandle) {
sif::debug << "LinuxLibgpioIF::configureRegularGpio: Failed to open line " << std::endl;
sif::debug << "GPIO ID: " << gpioId << ", line number: " << lineNum <<
", chipname: " << chipname << std::endl;
sif::debug << "Check if linux GPIO configuration has changed. " << std::endl;
gpiod_chip_close(chip);
return RETURN_FAILED;
}
direction = regularGpio->direction;
consumer = regularGpio->consumer;
/* Configure direction and add a description to the GPIO */
switch (direction) {
case(gpio::OUT): {
result = gpiod_line_request_output(lineHandle, consumer.c_str(),
regularGpio->initValue);
if (result < 0) {
sif::error << "LinuxLibgpioIF::configureRegularGpio: Failed to request line " << lineNum <<
" from GPIO instance with ID: " << gpioId << std::endl;
gpiod_line_release(lineHandle);
return RETURN_FAILED;
}
break;
}
case(gpio::IN): {
result = gpiod_line_request_input(lineHandle, consumer.c_str());
if (result < 0) {
sif::error << "LinuxLibgpioIF::configureGpios: Failed to request line "
<< lineNum << " from GPIO instance with ID: " << gpioId << std::endl;
gpiod_line_release(lineHandle);
return RETURN_FAILED;
}
break;
}
default: {
sif::error << "LinuxLibgpioIF::configureGpios: Invalid direction specified"
<< std::endl;
return GPIO_INVALID_INSTANCE;
}
}
/**
* Write line handle to GPIO configuration instance so it can later be used to set or
* read states of GPIOs.
*/
regularGpio->lineHandle = lineHandle;
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::pullHigh(gpioId_t gpioId) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) {
sif::warning << "LinuxLibgpioIF::pullHigh: Unknown GPIO ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
return driveGpio(gpioId, dynamic_cast<GpiodRegular*>(gpioMapIter->second), 1);
}
else {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE,
1, gpioCallback->callbackArgs);
return RETURN_OK;
}
return GPIO_TYPE_FAILURE;
}
ReturnValue_t LinuxLibgpioIF::pullLow(gpioId_t gpioId) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) {
sif::warning << "LinuxLibgpioIF::pullLow: Unknown GPIO ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
return driveGpio(gpioId, dynamic_cast<GpiodRegular*>(gpioMapIter->second), 0);
}
else {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE,
0, gpioCallback->callbackArgs);
return RETURN_OK;
}
return GPIO_TYPE_FAILURE;
}
ReturnValue_t LinuxLibgpioIF::driveGpio(gpioId_t gpioId,
GpiodRegular* regularGpio, unsigned int logicLevel) {
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
int result = gpiod_line_set_value(regularGpio->lineHandle, logicLevel);
if (result < 0) {
sif::warning << "LinuxLibgpioIF::driveGpio: Failed to pull GPIO with ID " << gpioId <<
" to logic level " << logicLevel << std::endl;
return DRIVE_GPIO_FAILURE;
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::readGpio(gpioId_t gpioId, int* gpioState) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()){
sif::warning << "LinuxLibgpioIF::readGpio: Unknown GPIOD ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
GpiodRegular* regularGpio = dynamic_cast<GpiodRegular*>(gpioMapIter->second);
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
*gpioState = gpiod_line_get_value(regularGpio->lineHandle);
}
else {
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::checkForConflicts(GpioMap& mapToAdd){
ReturnValue_t status = HasReturnvaluesIF::RETURN_OK;
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
for(auto& gpioConfig: mapToAdd) {
switch(gpioConfig.second->gpioType) {
case(gpio::GpioTypes::GPIO_REGULAR): {
auto regularGpio = dynamic_cast<GpiodRegular*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Check for conflicts and remove duplicates if necessary */
result = checkForConflictsRegularGpio(gpioConfig.first, regularGpio, mapToAdd);
if(result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
}
case(gpio::GpioTypes::CALLBACK): {
auto callbackGpio = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(callbackGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Check for conflicts and remove duplicates if necessary */
result = checkForConflictsCallbackGpio(gpioConfig.first, callbackGpio, mapToAdd);
if(result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
}
default: {
}
}
}
return status;
}
ReturnValue_t LinuxLibgpioIF::checkForConflictsRegularGpio(gpioId_t gpioIdToCheck,
GpiodRegular* gpioToCheck, GpioMap& mapToAdd) {
/* Cross check with private map */
gpioMapIter = gpioMap.find(gpioIdToCheck);
if(gpioMapIter != gpioMap.end()) {
if(gpioMapIter->second->gpioType != gpio::GpioTypes::GPIO_REGULAR) {
sif::warning << "LinuxLibgpioIF::checkForConflicts: ID already exists for different "
"GPIO type" << gpioIdToCheck << ". Removing duplicate." << std::endl;
mapToAdd.erase(gpioIdToCheck);
return HasReturnvaluesIF::RETURN_OK;
}
auto ownRegularGpio = dynamic_cast<GpiodRegular*>(gpioMapIter->second);
if(ownRegularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Remove element from map to add because a entry for this GPIO
already exists */
sif::warning << "LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO definition"
<< " detected. Duplicate will be removed from map to add." << std::endl;
mapToAdd.erase(gpioIdToCheck);
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::checkForConflictsCallbackGpio(gpioId_t gpioIdToCheck,
GpioCallback *callbackGpio, GpioMap& mapToAdd) {
/* Cross check with private map */
gpioMapIter = gpioMap.find(gpioIdToCheck);
if(gpioMapIter != gpioMap.end()) {
if(gpioMapIter->second->gpioType != gpio::GpioTypes::CALLBACK) {
sif::warning << "LinuxLibgpioIF::checkForConflicts: ID already exists for different "
"GPIO type" << gpioIdToCheck << ". Removing duplicate." << std::endl;
mapToAdd.erase(gpioIdToCheck);
return HasReturnvaluesIF::RETURN_OK;
}
/* Remove element from map to add because a entry for this GPIO
already exists */
sif::warning << "LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO definition"
<< " detected. Duplicate will be removed from map to add." << std::endl;
mapToAdd.erase(gpioIdToCheck);
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,77 @@
#ifndef LINUX_GPIO_LINUXLIBGPIOIF_H_
#define LINUX_GPIO_LINUXLIBGPIOIF_H_
#include "../../common/gpio/GpioIF.h"
#include <returnvalues/classIds.h>
#include <fsfw/objectmanager/SystemObject.h>
class GpioCookie;
/**
* @brief This class implements the GpioIF for a linux based system. The
* implementation is based on the libgpiod lib which requires linux 4.8
* or higher.
* @note The Petalinux SDK from Xilinx supports libgpiod since Petalinux
* 2019.1.
*/
class LinuxLibgpioIF : public GpioIF, public SystemObject {
public:
static const uint8_t gpioRetvalId = CLASS_ID::HAL_GPIO;
static constexpr ReturnValue_t UNKNOWN_GPIO_ID =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 1);
static constexpr ReturnValue_t DRIVE_GPIO_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 2);
static constexpr ReturnValue_t GPIO_TYPE_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 3);
static constexpr ReturnValue_t GPIO_INVALID_INSTANCE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 4);
LinuxLibgpioIF(object_id_t objectId);
virtual ~LinuxLibgpioIF();
ReturnValue_t addGpios(GpioCookie* gpioCookie) override;
ReturnValue_t pullHigh(gpioId_t gpioId) override;
ReturnValue_t pullLow(gpioId_t gpioId) override;
ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) override;
private:
/* Holds the information and configuration of all used GPIOs */
GpioUnorderedMap gpioMap;
GpioUnorderedMapIter gpioMapIter;
/**
* @brief This functions drives line of a GPIO specified by the GPIO ID.
*
* @param gpioId The GPIO ID of the GPIO to drive.
* @param logiclevel The logic level to set. O or 1.
*/
ReturnValue_t driveGpio(gpioId_t gpioId, GpiodRegular* regularGpio, unsigned int logiclevel);
ReturnValue_t configureRegularGpio(gpioId_t gpioId, GpiodRegular* regularGpio);
/**
* @brief This function checks if GPIOs are already registered and whether
* there exists a conflict in the GPIO configuration. E.g. the
* direction.
*
* @param mapToAdd The GPIOs which shall be added to the gpioMap.
*
* @return RETURN_OK if successful, otherwise RETURN_FAILED
*/
ReturnValue_t checkForConflicts(GpioMap& mapToAdd);
ReturnValue_t checkForConflictsRegularGpio(gpioId_t gpiodId, GpiodRegular* regularGpio,
GpioMap& mapToAdd);
ReturnValue_t checkForConflictsCallbackGpio(gpioId_t gpiodId, GpioCallback* regularGpio,
GpioMap& mapToAdd);
/**
* @brief Performs the initial configuration of all GPIOs specified in the GpioMap mapToAdd.
*/
ReturnValue_t configureGpios(GpioMap& mapToAdd);
};
#endif /* LINUX_GPIO_LINUXLIBGPIOIF_H_ */

View File

@ -0,0 +1,205 @@
#include "fsfw/hal/linux/i2c/I2cComIF.h"
#include "fsfw/hal/linux/utility.h"
#include "fsfw/hal/linux/UnixFileGuard.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>
#include <errno.h>
#include <cstring>
I2cComIF::I2cComIF(object_id_t objectId): SystemObject(objectId){
}
I2cComIF::~I2cComIF() {}
ReturnValue_t I2cComIF::initializeInterface(CookieIF* cookie) {
address_t i2cAddress;
std::string deviceFile;
if(cookie == nullptr) {
sif::error << "I2cComIF::initializeInterface: Invalid cookie!" << std::endl;
return NULLPOINTER;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::initializeInterface: Invalid I2C cookie!" << std::endl;
return NULLPOINTER;
}
i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if(i2cDeviceMapIter == i2cDeviceMap.end()) {
size_t maxReplyLen = i2cCookie->getMaxReplyLen();
I2cInstance i2cInstance = {std::vector<uint8_t>(maxReplyLen), 0};
auto statusPair = i2cDeviceMap.emplace(i2cAddress, i2cInstance);
if (not statusPair.second) {
sif::error << "I2cComIF::initializeInterface: Failed to insert device with address " <<
i2cAddress << "to I2C device " << "map" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
sif::error << "I2cComIF::initializeInterface: Device with address " << i2cAddress <<
"already in use" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t I2cComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if(sendData == nullptr) {
sif::error << "I2cComIF::sendMessage: Send Data is nullptr"
<< std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
if(sendLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::sendMessage: Invalid I2C Cookie!" << std::endl;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::sendMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::sendMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK){
return result;
}
if (write(fd, sendData, sendLen) != (int)sendLen) {
sif::error << "I2cComIF::sendMessage: Failed to send data to I2C "
"device with error code " << errno << ". Error description: "
<< strerror(errno) << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::requestReceiveMessage(CookieIF *cookie,
size_t requestLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if (requestLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::requestReceiveMessage: Invalid I2C Cookie!" << std::endl;
i2cDeviceMapIter->second.replyLen = 0;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::requestReceiveMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
i2cDeviceMapIter->second.replyLen = 0;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::requestReceiveMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK){
i2cDeviceMapIter->second.replyLen = 0;
return result;
}
uint8_t* replyBuffer = i2cDeviceMapIter->second.replyBuffer.data();
int readLen = read(fd, replyBuffer, requestLen);
if (readLen != static_cast<int>(requestLen)) {
#if FSFW_VERBOSE_LEVEL >= 1 and FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::requestReceiveMessage: Reading from I2C "
<< "device failed with error code " << errno <<". Description"
<< " of error: " << strerror(errno) << std::endl;
sif::error << "I2cComIF::requestReceiveMessage: Read only " << readLen << " from "
<< requestLen << " bytes" << std::endl;
#endif
i2cDeviceMapIter->second.replyLen = 0;
sif::debug << "I2cComIF::requestReceiveMessage: Read " << readLen << " of " << requestLen << " bytes" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
i2cDeviceMapIter->second.replyLen = requestLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t* size) {
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::readReceivedMessage: Invalid I2C Cookie!" << std::endl;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::readReceivedMessage: i2cAddress of Cookie not "
<< "found in i2cDeviceMap" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = i2cDeviceMapIter->second.replyBuffer.data();
*size = i2cDeviceMapIter->second.replyLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::openDevice(std::string deviceFile,
address_t i2cAddress, int* fileDescriptor) {
if (ioctl(*fileDescriptor, I2C_SLAVE, i2cAddress) < 0) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "I2cComIF: Specifying target device failed with error code " << errno << "."
<< std::endl;
sif::warning << "Error description " << strerror(errno) << std::endl;
#else
sif::printWarning("I2cComIF: Specifying target device failed with error code %d.\n");
sif::printWarning("Error description: %s\n", strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,61 @@
#ifndef LINUX_I2C_I2COMIF_H_
#define LINUX_I2C_I2COMIF_H_
#include "I2cCookie.h"
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <unordered_map>
#include <vector>
/**
* @brief This is the communication interface for I2C devices connected
* to a system running a Linux OS.
*
* @note The Xilinx Linux kernel might not support to read more than 255 bytes at once.
*
* @author J. Meier
*/
class I2cComIF: public DeviceCommunicationIF, public SystemObject {
public:
I2cComIF(object_id_t objectId);
virtual ~I2cComIF();
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
private:
struct I2cInstance {
std::vector<uint8_t> replyBuffer;
size_t replyLen;
};
using I2cDeviceMap = std::unordered_map<address_t, I2cInstance>;
using I2cDeviceMapIter = I2cDeviceMap::iterator;
/* In this map all i2c devices will be registered with their address and
* the appropriate file descriptor will be stored */
I2cDeviceMap i2cDeviceMap;
I2cDeviceMapIter i2cDeviceMapIter;
/**
* @brief This function opens an I2C device and binds the opened file
* to a specific I2C address.
* @param deviceFile The name of the device file. E.g. i2c-0
* @param i2cAddress The address of the i2c slave device.
* @param fileDescriptor Pointer to device descriptor.
* @return RETURN_OK if successful, otherwise RETURN_FAILED.
*/
ReturnValue_t openDevice(std::string deviceFile,
address_t i2cAddress, int* fileDescriptor);
};
#endif /* LINUX_I2C_I2COMIF_H_ */

View File

@ -0,0 +1,20 @@
#include "fsfw/hal/linux/i2c/I2cCookie.h"
I2cCookie::I2cCookie(address_t i2cAddress_, size_t maxReplyLen_,
std::string deviceFile_) :
i2cAddress(i2cAddress_), maxReplyLen(maxReplyLen_), deviceFile(deviceFile_) {
}
address_t I2cCookie::getAddress() const {
return i2cAddress;
}
size_t I2cCookie::getMaxReplyLen() const {
return maxReplyLen;
}
std::string I2cCookie::getDeviceFile() const {
return deviceFile;
}
I2cCookie::~I2cCookie() {}

View File

@ -0,0 +1,38 @@
#ifndef LINUX_I2C_I2CCOOKIE_H_
#define LINUX_I2C_I2CCOOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <string>
/**
* @brief Cookie for the i2cDeviceComIF.
*
* @author J. Meier
*/
class I2cCookie: public CookieIF {
public:
/**
* @brief Constructor for the I2C cookie.
* @param i2cAddress_ The i2c address of the target device.
* @param maxReplyLen_ The maximum expected length of a reply from the
* target device.
* @param devicFile_ The device file specifying the i2c interface to use. E.g. "/dev/i2c-0".
*/
I2cCookie(address_t i2cAddress_, size_t maxReplyLen_,
std::string deviceFile_);
virtual ~I2cCookie();
address_t getAddress() const;
size_t getMaxReplyLen() const;
std::string getDeviceFile() const;
private:
address_t i2cAddress = 0;
size_t maxReplyLen = 0;
std::string deviceFile;
};
#endif /* LINUX_I2C_I2CCOOKIE_H_ */

View File

@ -0,0 +1,38 @@
#include "fsfw/FSFW.h"
#include "fsfw/hal/linux/rpi/GpioRPi.h"
#include "fsfw/hal/common/gpio/GpioCookie.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
ReturnValue_t gpio::createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue) {
if(cookie == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
GpiodRegular* config = new GpiodRegular();
/* Default chipname for Raspberry Pi. There is still gpiochip1 for expansion, but most users
will not need this */
config->chipname = "gpiochip0";
config->consumer = consumer;
config->direction = direction;
config->initValue = initValue;
/* Sanity check for the BCM pins before assigning it */
if(bcmPin > 27) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "createRpiGpioConfig: BCM pin " << bcmPin << " invalid!" << std::endl;
#else
sif::printError("createRpiGpioConfig: BCM pin %d invalid!\n", bcmPin);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
config->lineNum = bcmPin;
cookie->addGpio(gpioId, config);
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -2,7 +2,6 @@
#define BSP_RPI_GPIO_GPIORPI_H_
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "../../common/gpio/gpioDefinitions.h"
class GpioCookie;
@ -21,7 +20,7 @@ namespace gpio {
* @return
*/
ReturnValue_t createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue);
} // namespace gpio
std::string consumer, gpio::Direction direction, int initValue);
}
#endif /* BSP_RPI_GPIO_GPIORPI_H_ */

View File

@ -0,0 +1,398 @@
#include "fsfw/FSFW.h"
#include "fsfw/hal/linux/spi/SpiComIF.h"
#include "fsfw/hal/linux/spi/SpiCookie.h"
#include "fsfw/hal/linux/utility.h"
#include "fsfw/hal/linux/UnixFileGuard.h"
#include <fsfw/ipc/MutexFactory.h>
#include <fsfw/globalfunctions/arrayprinter.h>
#include <linux/spi/spidev.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <cerrno>
#include <cstring>
/* Can be used for low-level debugging of the SPI bus */
#ifndef FSFW_HAL_LINUX_SPI_WIRETAPPING
#define FSFW_HAL_LINUX_SPI_WIRETAPPING 0
#endif
SpiComIF::SpiComIF(object_id_t objectId, GpioIF* gpioComIF):
SystemObject(objectId), gpioComIF(gpioComIF) {
if(gpioComIF == nullptr) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::SpiComIF: GPIO communication interface invalid!" << std::endl;
#else
sif::printError("SpiComIF::SpiComIF: GPIO communication interface invalid!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
}
spiMutex = MutexFactory::instance()->createMutex();
}
ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) {
int retval = 0;
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
address_t spiAddress = spiCookie->getSpiAddress();
auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) {
size_t bufferSize = spiCookie->getMaxBufferSize();
SpiInstance spiInstance(bufferSize);
auto statusPair = spiDeviceMap.emplace(spiAddress, spiInstance);
if (not statusPair.second) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: Failed to insert device with address " <<
spiAddress << "to SPI device map" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: Failed to insert device with address "
"%lu to SPI device map\n", static_cast<unsigned long>(spiAddress));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
/* Now we emplaced the read buffer in the map, we still need to assign that location
to the SPI driver transfer struct */
spiCookie->assignReadBuffer(statusPair.first->second.replyBuffer.data());
}
else {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: SPI address already exists!" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: SPI address already exists!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
/* Pull CS high in any case to be sure that device is inactive */
gpioId_t gpioId = spiCookie->getChipSelectPin();
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
}
size_t spiSpeed = 0;
spi::SpiModes spiMode = spi::SpiModes::MODE_0;
SpiCookie::UncommonParameters params;
spiCookie->getSpiParameters(spiMode, spiSpeed, &params);
int fileDescriptor = 0;
UnixFileGuard fileHelper(spiCookie->getSpiDevice(), &fileDescriptor, O_RDWR,
"SpiComIF::initializeInterface: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
/* These flags are rather uncommon */
if(params.threeWireSpi or params.noCs or params.csHigh) {
uint32_t currentMode = 0;
retval = ioctl(fileDescriptor, SPI_IOC_RD_MODE32, &currentMode);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not read full mode!");
}
if(params.threeWireSpi) {
currentMode |= SPI_3WIRE;
}
if(params.noCs) {
/* Some drivers like the Raspberry Pi ignore this flag in any case */
currentMode |= SPI_NO_CS;
}
if(params.csHigh) {
currentMode |= SPI_CS_HIGH;
}
/* Write adapted mode */
retval = ioctl(fileDescriptor, SPI_IOC_WR_MODE32, &currentMode);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not write full mode!");
}
}
if(params.lsbFirst) {
retval = ioctl(fileDescriptor, SPI_IOC_WR_LSB_FIRST, &params.lsbFirst);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initializeInterface: Setting LSB first failed");
}
}
if(params.bitsPerWord != 8) {
retval = ioctl(fileDescriptor, SPI_IOC_WR_BITS_PER_WORD, &params.bitsPerWord);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initializeInterface: "
"Could not write bits per word!");
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
if(spiCookie == nullptr) {
return NULLPOINTER;
}
if(sendLen > spiCookie->getMaxBufferSize()) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Too much data sent, send length" << sendLen <<
"larger than maximum buffer length" << spiCookie->getMaxBufferSize() << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Too much data sent, send length %lu larger "
"than maximum buffer length %lu!\n", static_cast<unsigned long>(sendLen),
static_cast<unsigned long>(spiCookie->getMaxBufferSize()));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return DeviceCommunicationIF::TOO_MUCH_DATA;
}
if(spiCookie->getComIfMode() == spi::SpiComIfModes::REGULAR) {
result = performRegularSendOperation(spiCookie, sendData, sendLen);
}
else if(spiCookie->getComIfMode() == spi::SpiComIfModes::CALLBACK) {
spi::send_callback_function_t sendFunc = nullptr;
void* funcArgs = nullptr;
spiCookie->getCallback(&sendFunc, &funcArgs);
if(sendFunc != nullptr) {
result = sendFunc(this, spiCookie, sendData, sendLen, funcArgs);
}
}
return result;
}
ReturnValue_t SpiComIF::performRegularSendOperation(SpiCookie *spiCookie, const uint8_t *sendData,
size_t sendLen) {
address_t spiAddress = spiCookie->getSpiAddress();
auto iter = spiDeviceMap.find(spiAddress);
if(iter != spiDeviceMap.end()) {
spiCookie->assignReadBuffer(iter->second.replyBuffer.data());
}
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
int retval = 0;
/* Prepare transfer */
int fileDescriptor = 0;
std::string device = spiCookie->getSpiDevice();
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::sendMessage: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return OPENING_FILE_FAILED;
}
spi::SpiModes spiMode = spi::SpiModes::MODE_0;
uint32_t spiSpeed = 0;
spiCookie->getSpiParameters(spiMode, spiSpeed, nullptr);
setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed);
spiCookie->assignWriteBuffer(sendData);
spiCookie->assignTransferSize(sendLen);
bool fullDuplex = spiCookie->isFullDuplex();
gpioId_t gpioId = spiCookie->getChipSelectPin();
/* Pull SPI CS low. For now, no support for active high given */
if(gpioId != gpio::NO_GPIO) {
result = spiMutex->lockMutex(timeoutType, timeoutMs);
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to lock mutex" << std::endl;
#endif
return result;
}
gpioComIF->pullLow(gpioId);
}
/* Execute transfer */
if(fullDuplex) {
/* Initiate a full duplex SPI transfer. */
retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), spiCookie->getTransferStructHandle());
if(retval < 0) {
utility::handleIoctlError("SpiComIF::sendMessage: ioctl error.");
result = FULL_DUPLEX_TRANSFER_FAILED;
}
#if FSFW_HAL_LINUX_SPI_WIRETAPPING == 1
performSpiWiretapping(spiCookie);
#endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */
}
else {
/* We write with a blocking half-duplex transfer here */
if (write(fileDescriptor, sendData, sendLen) != static_cast<ssize_t>(sendLen)) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Half-Duplex write operation failed!" <<
std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Half-Duplex write operation failed!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
result = HALF_DUPLEX_TRANSFER_FAILED;
}
}
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
result = spiMutex->unlockMutex();
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to unlock mutex" << std::endl;
#endif
return result;
}
}
return result;
}
ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
if(spiCookie->isFullDuplex()) {
return HasReturnvaluesIF::RETURN_OK;
}
return performHalfDuplexReception(spiCookie);
}
ReturnValue_t SpiComIF::performHalfDuplexReception(SpiCookie* spiCookie) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
std::string device = spiCookie->getSpiDevice();
int fileDescriptor = 0;
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR,
"SpiComIF::requestReceiveMessage: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return OPENING_FILE_FAILED;
}
uint8_t* rxBuf = nullptr;
size_t readSize = spiCookie->getCurrentTransferSize();
result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
gpioId_t gpioId = spiCookie->getChipSelectPin();
if(gpioId != gpio::NO_GPIO) {
result = spiMutex->lockMutex(timeoutType, timeoutMs);
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::getSendSuccess: Failed to lock mutex" << std::endl;
#endif
return result;
}
gpioComIF->pullLow(gpioId);
}
if(read(fileDescriptor, rxBuf, readSize) != static_cast<ssize_t>(readSize)) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Half-Duplex read operation failed!" << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Half-Duplex read operation failed!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
result = HALF_DUPLEX_TRANSFER_FAILED;
}
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
result = spiMutex->unlockMutex();
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::getSendSuccess: Failed to unlock mutex" << std::endl;
#endif
return result;
}
}
return result;
}
ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
uint8_t* rxBuf = nullptr;
ReturnValue_t result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
*buffer = rxBuf;
*size = spiCookie->getCurrentTransferSize();
return HasReturnvaluesIF::RETURN_OK;
}
MutexIF* SpiComIF::getMutex(MutexIF::TimeoutType* timeoutType, uint32_t* timeoutMs) {
if(timeoutType != nullptr) {
*timeoutType = this->timeoutType;
}
if(timeoutMs != nullptr) {
*timeoutMs = this->timeoutMs;
}
return spiMutex;
}
void SpiComIF::performSpiWiretapping(SpiCookie* spiCookie) {
if(spiCookie == nullptr) {
return;
}
size_t dataLen = spiCookie->getTransferStructHandle()->len;
uint8_t* dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->tx_buf);
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Sent SPI data: " << std::endl;
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
sif::info << "Received SPI data: " << std::endl;
#else
sif::printInfo("Sent SPI data: \n");
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
sif::printInfo("Received SPI data: \n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->rx_buf);
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
}
ReturnValue_t SpiComIF::getReadBuffer(address_t spiAddress, uint8_t** buffer) {
if(buffer == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = iter->second.replyBuffer.data();
return HasReturnvaluesIF::RETURN_OK;
}
GpioIF* SpiComIF::getGpioInterface() {
return gpioComIF;
}
void SpiComIF::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) {
int retval = ioctl(spiFd, SPI_IOC_WR_MODE, reinterpret_cast<uint8_t*>(&mode));
if(retval != 0) {
utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI mode failed!");
}
retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if(retval != 0) {
utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI speed failed!");
}
}

View File

@ -0,0 +1,90 @@
#ifndef LINUX_SPI_SPICOMIF_H_
#define LINUX_SPI_SPICOMIF_H_
#include "spiDefinitions.h"
#include "returnvalues/classIds.h"
#include "fsfw/hal/common/gpio/GpioIF.h"
#include "fsfw/devicehandlers/DeviceCommunicationIF.h"
#include "fsfw/objectmanager/SystemObject.h"
#include <vector>
#include <unordered_map>
class SpiCookie;
/**
* @brief Encapsulates access to linux SPI driver for FSFW objects
* @details
* Right now, only full-duplex SPI is supported. Most device specific transfer properties
* are contained in the SPI cookie.
* @author R. Mueller
*/
class SpiComIF: public DeviceCommunicationIF, public SystemObject {
public:
static constexpr uint8_t spiRetvalId = CLASS_ID::HAL_SPI;
static constexpr ReturnValue_t OPENING_FILE_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 0);
/* Full duplex (ioctl) transfer failure */
static constexpr ReturnValue_t FULL_DUPLEX_TRANSFER_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 1);
/* Half duplex (read/write) transfer failure */
static constexpr ReturnValue_t HALF_DUPLEX_TRANSFER_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 2);
SpiComIF(object_id_t objectId, GpioIF* gpioComIF);
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
/**
* @brief This function returns the mutex which can be used to protect the spi bus when
* the chip select must be driven from outside of the com if.
*/
MutexIF* getMutex(MutexIF::TimeoutType* timeoutType = nullptr, uint32_t* timeoutMs = nullptr);
/**
* Perform a regular send operation using Linux iotcl. This is public so it can be used
* in functions like a user callback if special handling is only necessary for certain commands.
* @param spiCookie
* @param sendData
* @param sendLen
* @return
*/
ReturnValue_t performRegularSendOperation(SpiCookie* spiCookie, const uint8_t *sendData,
size_t sendLen);
GpioIF* getGpioInterface();
void setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed);
void performSpiWiretapping(SpiCookie* spiCookie);
ReturnValue_t getReadBuffer(address_t spiAddress, uint8_t** buffer);
private:
struct SpiInstance {
SpiInstance(size_t maxRecvSize): replyBuffer(std::vector<uint8_t>(maxRecvSize)) {}
std::vector<uint8_t> replyBuffer;
};
GpioIF* gpioComIF = nullptr;
MutexIF* spiMutex = nullptr;
MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING;
uint32_t timeoutMs = 20;
using SpiDeviceMap = std::unordered_map<address_t, SpiInstance>;
using SpiDeviceMapIter = SpiDeviceMap::iterator;
SpiDeviceMap spiDeviceMap;
ReturnValue_t performHalfDuplexReception(SpiCookie* spiCookie);
};
#endif /* LINUX_SPI_SPICOMIF_H_ */

View File

@ -0,0 +1,144 @@
#include "fsfw/hal/linux/spi/SpiCookie.h"
SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed):
SpiCookie(spi::SpiComIfModes::REGULAR, spiAddress, chipSelect, spiDev, maxSize, spiMode,
spiSpeed, nullptr, nullptr) {
}
SpiCookie::SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxSize,
spi::SpiModes spiMode, uint32_t spiSpeed):
SpiCookie(spiAddress, gpio::NO_GPIO, spiDev, maxSize, spiMode, spiSpeed) {
}
SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void *args):
SpiCookie(spi::SpiComIfModes::CALLBACK, spiAddress, chipSelect, spiDev, maxSize,
spiMode, spiSpeed, callback, args) {
}
SpiCookie::SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect,
std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void* args):
spiAddress(spiAddress), chipSelectPin(chipSelect), spiDevice(spiDev),
comIfMode(comIfMode), maxSize(maxSize), spiMode(spiMode), spiSpeed(spiSpeed),
sendCallback(callback), callbackArgs(args) {
}
spi::SpiComIfModes SpiCookie::getComIfMode() const {
return this->comIfMode;
}
void SpiCookie::getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed,
UncommonParameters* parameters) const {
spiMode = this->spiMode;
spiSpeed = this->spiSpeed;
if(parameters != nullptr) {
parameters->threeWireSpi = uncommonParameters.threeWireSpi;
parameters->lsbFirst = uncommonParameters.lsbFirst;
parameters->noCs = uncommonParameters.noCs;
parameters->bitsPerWord = uncommonParameters.bitsPerWord;
parameters->csHigh = uncommonParameters.csHigh;
}
}
gpioId_t SpiCookie::getChipSelectPin() const {
return chipSelectPin;
}
size_t SpiCookie::getMaxBufferSize() const {
return maxSize;
}
address_t SpiCookie::getSpiAddress() const {
return spiAddress;
}
std::string SpiCookie::getSpiDevice() const {
return spiDevice;
}
void SpiCookie::setThreeWireSpi(bool enable) {
uncommonParameters.threeWireSpi = enable;
}
void SpiCookie::setLsbFirst(bool enable) {
uncommonParameters.lsbFirst = enable;
}
void SpiCookie::setNoCs(bool enable) {
uncommonParameters.noCs = enable;
}
void SpiCookie::setBitsPerWord(uint8_t bitsPerWord) {
uncommonParameters.bitsPerWord = bitsPerWord;
}
void SpiCookie::setCsHigh(bool enable) {
uncommonParameters.csHigh = enable;
}
void SpiCookie::activateCsDeselect(bool deselectCs, uint16_t delayUsecs) {
spiTransferStruct.cs_change = deselectCs;
spiTransferStruct.delay_usecs = delayUsecs;
}
void SpiCookie::assignReadBuffer(uint8_t* rx) {
if(rx != nullptr) {
spiTransferStruct.rx_buf = reinterpret_cast<__u64>(rx);
}
}
void SpiCookie::assignWriteBuffer(const uint8_t* tx) {
if(tx != nullptr) {
spiTransferStruct.tx_buf = reinterpret_cast<__u64>(tx);
}
}
void SpiCookie::setCallbackMode(spi::send_callback_function_t callback,
void *args) {
this->comIfMode = spi::SpiComIfModes::CALLBACK;
this->sendCallback = callback;
this->callbackArgs = args;
}
void SpiCookie::setCallbackArgs(void *args) {
this->callbackArgs = args;
}
spi_ioc_transfer* SpiCookie::getTransferStructHandle() {
return &spiTransferStruct;
}
void SpiCookie::setFullOrHalfDuplex(bool halfDuplex) {
this->halfDuplex = halfDuplex;
}
bool SpiCookie::isFullDuplex() const {
return not this->halfDuplex;
}
void SpiCookie::assignTransferSize(size_t transferSize) {
spiTransferStruct.len = transferSize;
}
size_t SpiCookie::getCurrentTransferSize() const {
return spiTransferStruct.len;
}
void SpiCookie::setSpiSpeed(uint32_t newSpeed) {
this->spiSpeed = newSpeed;
}
void SpiCookie::setSpiMode(spi::SpiModes newMode) {
this->spiMode = newMode;
}
void SpiCookie::getCallback(spi::send_callback_function_t *callback,
void **args) {
*callback = this->sendCallback;
*args = this->callbackArgs;
}

View File

@ -0,0 +1,185 @@
#ifndef LINUX_SPI_SPICOOKIE_H_
#define LINUX_SPI_SPICOOKIE_H_
#include "spiDefinitions.h"
#include "../../common/gpio/gpioDefinitions.h"
#include <fsfw/devicehandlers/CookieIF.h>
#include <linux/spi/spidev.h>
/**
* @brief This cookie class is passed to the SPI communication interface
* @details
* This cookie contains device specific properties like speed and SPI mode or the SPI transfer
* struct required by the Linux SPI driver. It also contains a handle to a GPIO interface
* to perform slave select switching when necessary.
*
* The user can specify gpio::NO_GPIO as the GPIO ID or use a custom send callback to meet
* special requirements like expander slave select switching (e.g. GPIO or I2C expander)
* or special timing related requirements.
*/
class SpiCookie: public CookieIF {
public:
/**
* Each SPI device will have a corresponding cookie. The cookie is used by the communication
* interface and contains device specific information like the largest expected size to be
* sent and received and the GPIO pin used to toggle the SPI slave select pin.
* @param spiAddress
* @param chipSelect Chip select. gpio::NO_GPIO can be used for hardware slave selects.
* @param spiDev
* @param maxSize
*/
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed);
/**
* Like constructor above, but without a dedicated GPIO CS. Can be used for hardware
* slave select or if CS logic is performed with decoders.
*/
SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxReplySize,
spi::SpiModes spiMode, uint32_t spiSpeed);
/**
* Use the callback mode of the SPI communication interface. The user can pass the callback
* function here or by using the setter function #setCallbackMode
*/
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, const size_t maxSize,
spi::SpiModes spiMode, uint32_t spiSpeed, spi::send_callback_function_t callback,
void *args);
/**
* Get the callback function
* @param callback
* @param args
*/
void getCallback(spi::send_callback_function_t* callback, void** args);
address_t getSpiAddress() const;
std::string getSpiDevice() const;
gpioId_t getChipSelectPin() const;
size_t getMaxBufferSize() const;
spi::SpiComIfModes getComIfMode() const;
/** Enables changing SPI speed at run-time */
void setSpiSpeed(uint32_t newSpeed);
/** Enables changing the SPI mode at run-time */
void setSpiMode(spi::SpiModes newMode);
/**
* Set the SPI to callback mode and assigns the user supplied callback and an argument
* passed to the callback.
* @param callback
* @param args
*/
void setCallbackMode(spi::send_callback_function_t callback, void* args);
/**
* Can be used to set the callback arguments and a later point than initialization.
* @param args
*/
void setCallbackArgs(void* args);
/**
* True if SPI transfers should be performed in full duplex mode
* @return
*/
bool isFullDuplex() const;
/**
* Set transfer type to full duplex or half duplex. Full duplex is the default setting,
* ressembling common SPI hardware implementation with shift registers, where read and writes
* happen simultaneosly.
* @param fullDuplex
*/
void setFullOrHalfDuplex(bool halfDuplex);
/**
* This needs to be called to specify where the SPI driver writes to or reads from.
* @param readLocation
* @param writeLocation
*/
void assignReadBuffer(uint8_t* rx);
void assignWriteBuffer(const uint8_t* tx);
/**
* Assign size for the next transfer.
* @param transferSize
*/
void assignTransferSize(size_t transferSize);
size_t getCurrentTransferSize() const;
struct UncommonParameters {
uint8_t bitsPerWord = 8;
bool noCs = false;
bool csHigh = false;
bool threeWireSpi = false;
/* MSB first is more common */
bool lsbFirst = false;
};
/**
* Can be used to explicitely disable hardware chip select.
* Some drivers like the Raspberry Pi Linux driver will not use hardware chip select by default
* (see https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md)
* @param enable
*/
void setNoCs(bool enable);
void setThreeWireSpi(bool enable);
void setLsbFirst(bool enable);
void setCsHigh(bool enable);
void setBitsPerWord(uint8_t bitsPerWord);
void getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed,
UncommonParameters* parameters = nullptr) const;
/**
* See spidev.h cs_change and delay_usecs
* @param deselectCs
* @param delayUsecs
*/
void activateCsDeselect(bool deselectCs, uint16_t delayUsecs);
spi_ioc_transfer* getTransferStructHandle();
private:
/**
* Internal constructor which initializes every field
* @param spiAddress
* @param chipSelect
* @param spiDev
* @param maxSize
* @param spiMode
* @param spiSpeed
* @param callback
* @param args
*/
SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect,
std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void* args);
size_t currentTransferSize = 0;
address_t spiAddress;
gpioId_t chipSelectPin;
std::string spiDevice;
spi::SpiComIfModes comIfMode;
// Required for regular mode
const size_t maxSize;
spi::SpiModes spiMode;
uint32_t spiSpeed;
bool halfDuplex = false;
// Required for callback mode
spi::send_callback_function_t sendCallback = nullptr;
void* callbackArgs = nullptr;
struct spi_ioc_transfer spiTransferStruct = {};
UncommonParameters uncommonParameters;
};
#endif /* LINUX_SPI_SPICOOKIE_H_ */

View File

@ -1,25 +1,28 @@
#ifndef LINUX_SPI_SPIDEFINITONS_H_
#define LINUX_SPI_SPIDEFINITONS_H_
#include "../../common/gpio/gpioDefinitions.h"
#include "../../common/spi/spiCommon.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include <linux/spi/spidev.h>
#include <cstdint>
#include "../../common/gpio/gpioDefinitions.h"
#include "../../common/spi/spiCommon.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
class SpiCookie;
class SpiComIF;
namespace spi {
enum SpiComIfModes { REGULAR, CALLBACK };
enum SpiComIfModes {
REGULAR,
CALLBACK
};
using send_callback_function_t = ReturnValue_t (*)(SpiComIF* comIf, SpiCookie* cookie,
const uint8_t* sendData, size_t sendLen,
void* args);
} // namespace spi
using send_callback_function_t = ReturnValue_t (*) (SpiComIF* comIf, SpiCookie *cookie,
const uint8_t *sendData, size_t sendLen, void* args);
}
#endif /* LINUX_SPI_SPIDEFINITONS_H_ */

View File

@ -0,0 +1,500 @@
#include "fsfw/hal/linux/uart/UartComIF.h"
#include "OBSWConfig.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include <cstring>
#include <fcntl.h>
#include <errno.h>
#include <termios.h>
#include <unistd.h>
UartComIF::UartComIF(object_id_t objectId): SystemObject(objectId){
}
UartComIF::~UartComIF() {}
ReturnValue_t UartComIF::initializeInterface(CookieIF* cookie) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
if(cookie == nullptr) {
return NULLPOINTER;
}
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if (uartCookie == nullptr) {
sif::error << "UartComIF::initializeInterface: Invalid UART Cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if(uartDeviceMapIter == uartDeviceMap.end()) {
int fileDescriptor = configureUartPort(uartCookie);
if (fileDescriptor < 0) {
return RETURN_FAILED;
}
size_t maxReplyLen = uartCookie->getMaxReplyLen();
UartElements uartElements = {fileDescriptor, std::vector<uint8_t>(maxReplyLen), 0};
auto status = uartDeviceMap.emplace(deviceFile, uartElements);
if (status.second == false) {
sif::warning << "UartComIF::initializeInterface: Failed to insert device " <<
deviceFile << "to UART device map" << std::endl;
return RETURN_FAILED;
}
}
else {
sif::warning << "UartComIF::initializeInterface: UART device " << deviceFile <<
" already in use" << std::endl;
return RETURN_FAILED;
}
return RETURN_OK;
}
int UartComIF::configureUartPort(UartCookie* uartCookie) {
struct termios options = {};
std::string deviceFile = uartCookie->getDeviceFile();
int fd = open(deviceFile.c_str(), O_RDWR);
if (fd < 0) {
sif::warning << "UartComIF::configureUartPort: Failed to open uart " << deviceFile <<
"with error code " << errno << strerror(errno) << std::endl;
return fd;
}
/* Read in existing settings */
if(tcgetattr(fd, &options) != 0) {
sif::warning << "UartComIF::configureUartPort: Error " << errno << "from tcgetattr: "
<< strerror(errno) << std::endl;
return fd;
}
setParityOptions(&options, uartCookie);
setStopBitOptions(&options, uartCookie);
setDatasizeOptions(&options, uartCookie);
setFixedOptions(&options);
setUartMode(&options, *uartCookie);
if(uartCookie->getInputShouldBeFlushed()) {
tcflush(fd, TCIFLUSH);
}
/* Sets uart to non-blocking mode. Read returns immediately when there are no data available */
options.c_cc[VTIME] = 0;
options.c_cc[VMIN] = 0;
configureBaudrate(&options, uartCookie);
/* Save option settings */
if (tcsetattr(fd, TCSANOW, &options) != 0) {
sif::warning << "UartComIF::configureUartPort: Failed to set options with error " <<
errno << ": " << strerror(errno);
return fd;
}
return fd;
}
void UartComIF::setParityOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear parity bit */
options->c_cflag &= ~PARENB;
switch (uartCookie->getParity()) {
case Parity::EVEN:
options->c_cflag |= PARENB;
options->c_cflag &= ~PARODD;
break;
case Parity::ODD:
options->c_cflag |= PARENB;
options->c_cflag |= PARODD;
break;
default:
break;
}
}
void UartComIF::setStopBitOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear stop field. Sets stop bit to one bit */
options->c_cflag &= ~CSTOPB;
switch (uartCookie->getStopBits()) {
case StopBits::TWO_STOP_BITS:
options->c_cflag |= CSTOPB;
break;
default:
break;
}
}
void UartComIF::setDatasizeOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear size bits */
options->c_cflag &= ~CSIZE;
switch (uartCookie->getBitsPerWord()) {
case 5:
options->c_cflag |= CS5;
break;
case 6:
options->c_cflag |= CS6;
break;
case 7:
options->c_cflag |= CS7;
break;
case 8:
options->c_cflag |= CS8;
break;
default:
sif::warning << "UartComIF::setDatasizeOptions: Invalid size specified" << std::endl;
break;
}
}
void UartComIF::setFixedOptions(struct termios* options) {
/* Disable RTS/CTS hardware flow control */
options->c_cflag &= ~CRTSCTS;
/* Turn on READ & ignore ctrl lines (CLOCAL = 1) */
options->c_cflag |= CREAD | CLOCAL;
/* Disable echo */
options->c_lflag &= ~ECHO;
/* Disable erasure */
options->c_lflag &= ~ECHOE;
/* Disable new-line echo */
options->c_lflag &= ~ECHONL;
/* Disable interpretation of INTR, QUIT and SUSP */
options->c_lflag &= ~ISIG;
/* Turn off s/w flow ctrl */
options->c_iflag &= ~(IXON | IXOFF | IXANY);
/* Disable any special handling of received bytes */
options->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL);
/* Prevent special interpretation of output bytes (e.g. newline chars) */
options->c_oflag &= ~OPOST;
/* Prevent conversion of newline to carriage return/line feed */
options->c_oflag &= ~ONLCR;
}
void UartComIF::configureBaudrate(struct termios* options, UartCookie* uartCookie) {
switch (uartCookie->getBaudrate()) {
case 50:
cfsetispeed(options, B50);
cfsetospeed(options, B50);
break;
case 75:
cfsetispeed(options, B75);
cfsetospeed(options, B75);
break;
case 110:
cfsetispeed(options, B110);
cfsetospeed(options, B110);
break;
case 134:
cfsetispeed(options, B134);
cfsetospeed(options, B134);
break;
case 150:
cfsetispeed(options, B150);
cfsetospeed(options, B150);
break;
case 200:
cfsetispeed(options, B200);
cfsetospeed(options, B200);
break;
case 300:
cfsetispeed(options, B300);
cfsetospeed(options, B300);
break;
case 600:
cfsetispeed(options, B600);
cfsetospeed(options, B600);
break;
case 1200:
cfsetispeed(options, B1200);
cfsetospeed(options, B1200);
break;
case 1800:
cfsetispeed(options, B1800);
cfsetospeed(options, B1800);
break;
case 2400:
cfsetispeed(options, B2400);
cfsetospeed(options, B2400);
break;
case 4800:
cfsetispeed(options, B4800);
cfsetospeed(options, B4800);
break;
case 9600:
cfsetispeed(options, B9600);
cfsetospeed(options, B9600);
break;
case 19200:
cfsetispeed(options, B19200);
cfsetospeed(options, B19200);
break;
case 38400:
cfsetispeed(options, B38400);
cfsetospeed(options, B38400);
break;
case 57600:
cfsetispeed(options, B57600);
cfsetospeed(options, B57600);
break;
case 115200:
cfsetispeed(options, B115200);
cfsetospeed(options, B115200);
break;
case 230400:
cfsetispeed(options, B230400);
cfsetospeed(options, B230400);
break;
case 460800:
cfsetispeed(options, B460800);
cfsetospeed(options, B460800);
break;
default:
sif::warning << "UartComIF::configureBaudrate: Baudrate not supported" << std::endl;
break;
}
}
ReturnValue_t UartComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
int fd = 0;
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
if(sendData == nullptr) {
sif::debug << "UartComIF::sendMessage: Send Data is nullptr" << std::endl;
return RETURN_FAILED;
}
if(sendLen == 0) {
return RETURN_OK;
}
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::sendMessasge: Invalid UART Cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::sendMessage: Device file " << deviceFile <<
"not in UART map" << std::endl;
return RETURN_FAILED;
}
fd = uartDeviceMapIter->second.fileDescriptor;
if (write(fd, sendData, sendLen) != (int)sendLen) {
sif::error << "UartComIF::sendMessage: Failed to send data with error code " <<
errno << ": Error description: " << strerror(errno) << std::endl;
return RETURN_FAILED;
}
return RETURN_OK;
}
ReturnValue_t UartComIF::getSendSuccess(CookieIF *cookie) {
return RETURN_OK;
}
ReturnValue_t UartComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::requestReceiveMessage: Invalid Uart Cookie!" << std::endl;
return NULLPOINTER;
}
UartModes uartMode = uartCookie->getUartMode();
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if(uartMode == UartModes::NON_CANONICAL and requestLen == 0) {
return RETURN_OK;
}
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::requestReceiveMessage: Device file " << deviceFile
<< " not in uart map" << std::endl;
return RETURN_FAILED;
}
if (uartMode == UartModes::CANONICAL) {
return handleCanonicalRead(*uartCookie, uartDeviceMapIter, requestLen);
}
else if (uartMode == UartModes::NON_CANONICAL) {
return handleNoncanonicalRead(*uartCookie, uartDeviceMapIter, requestLen);
}
else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t UartComIF::handleCanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
uint8_t maxReadCycles = uartCookie.getReadCycles();
uint8_t currentReadCycles = 0;
int bytesRead = 0;
size_t currentBytesRead = 0;
size_t maxReplySize = uartCookie.getMaxReplyLen();
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
do {
size_t allowedReadSize = 0;
if(currentBytesRead >= maxReplySize) {
// Overflow risk. Emit warning, trigger event and break. If this happens,
// the reception buffer is not large enough or data is not polled often enough.
#if OBSW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
#else
sif::printWarning("UartComIF::requestReceiveMessage: "
"Next read would cause overflow!");
#endif
#endif
result = UART_RX_BUFFER_TOO_SMALL;
break;
}
else {
allowedReadSize = maxReplySize - currentBytesRead;
}
bytesRead = read(fd, bufferPtr, allowedReadSize);
if (bytesRead < 0) {
return RETURN_FAILED;
}
else if(bytesRead > 0) {
iter->second.replyLen += bytesRead;
bufferPtr += bytesRead;
currentBytesRead += bytesRead;
}
currentReadCycles++;
} while(bytesRead > 0 and currentReadCycles < maxReadCycles);
return result;
}
ReturnValue_t UartComIF::handleNoncanonicalRead(UartCookie &uartCookie, UartDeviceMapIter &iter,
size_t requestLen) {
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
// Size check to prevent buffer overflow
if(requestLen > uartCookie.getMaxReplyLen()) {
#if OBSW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
#else
sif::printWarning("UartComIF::requestReceiveMessage: "
"Next read would cause overflow!");
#endif
#endif
return UART_RX_BUFFER_TOO_SMALL;
}
int bytesRead = read(fd, bufferPtr, requestLen);
if (bytesRead < 0) {
return RETURN_FAILED;
}
else if (bytesRead != static_cast<int>(requestLen)) {
if(uartCookie.isReplySizeFixed()) {
sif::warning << "UartComIF::requestReceiveMessage: Only read " << bytesRead <<
" of " << requestLen << " bytes" << std::endl;
return RETURN_FAILED;
}
}
iter->second.replyLen = bytesRead;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t UartComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t* size) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::readReceivedMessage: Invalid uart cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::readReceivedMessage: Device file " << deviceFile <<
" not in uart map" << std::endl;
return RETURN_FAILED;
}
*buffer = uartDeviceMapIter->second.replyBuffer.data();
*size = uartDeviceMapIter->second.replyLen;
/* Length is reset to 0 to prevent reading the same data twice */
uartDeviceMapIter->second.replyLen = 0;
return RETURN_OK;
}
ReturnValue_t UartComIF::flushUartRxBuffer(CookieIF *cookie) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::warning << "UartComIF::flushUartRxBuffer: Invalid uart cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
int fd = uartDeviceMapIter->second.fileDescriptor;
tcflush(fd, TCIFLUSH);
return RETURN_OK;
}
ReturnValue_t UartComIF::flushUartTxBuffer(CookieIF *cookie) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::warning << "UartComIF::flushUartTxBuffer: Invalid uart cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
int fd = uartDeviceMapIter->second.fileDescriptor;
tcflush(fd, TCOFLUSH);
return RETURN_OK;
}
ReturnValue_t UartComIF::flushUartTxAndRxBuf(CookieIF *cookie) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::warning << "UartComIF::flushUartTxAndRxBuf: Invalid uart cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
int fd = uartDeviceMapIter->second.fileDescriptor;
tcflush(fd, TCIOFLUSH);
return RETURN_OK;
}
void UartComIF::setUartMode(struct termios *options, UartCookie &uartCookie) {
UartModes uartMode = uartCookie.getUartMode();
if(uartMode == UartModes::NON_CANONICAL) {
/* Disable canonical mode */
options->c_lflag &= ~ICANON;
}
else if(uartMode == UartModes::CANONICAL) {
options->c_lflag |= ICANON;
}
}

View File

@ -0,0 +1,125 @@
#ifndef BSP_Q7S_COMIF_UARTCOMIF_H_
#define BSP_Q7S_COMIF_UARTCOMIF_H_
#include "UartCookie.h"
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <unordered_map>
#include <vector>
/**
* @brief This is the communication interface to access serial ports on linux based operating
* systems.
*
* @details The implementation follows the instructions from https://blog.mbedded.ninja/programming/
* operating-systems/linux/linux-serial-ports-using-c-cpp/#disabling-canonical-mode
*
* @author J. Meier
*/
class UartComIF: public DeviceCommunicationIF, public SystemObject {
public:
static constexpr uint8_t uartRetvalId = CLASS_ID::HAL_UART;
static constexpr ReturnValue_t UART_READ_FAILURE =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 1);
static constexpr ReturnValue_t UART_READ_SIZE_MISSMATCH =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 2);
static constexpr ReturnValue_t UART_RX_BUFFER_TOO_SMALL =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 3);
UartComIF(object_id_t objectId);
virtual ~UartComIF();
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
/**
* @brief This function discards all data received but not read in the UART buffer.
*/
ReturnValue_t flushUartRxBuffer(CookieIF *cookie);
/**
* @brief This function discards all data in the transmit buffer of the UART driver.
*/
ReturnValue_t flushUartTxBuffer(CookieIF *cookie);
/**
* @brief This function discards both data in the transmit and receive buffer of the UART.
*/
ReturnValue_t flushUartTxAndRxBuf(CookieIF *cookie);
private:
using UartDeviceFile_t = std::string;
struct UartElements {
int fileDescriptor;
std::vector<uint8_t> replyBuffer;
/** Number of bytes read will be written to this variable */
size_t replyLen;
};
using UartDeviceMap = std::unordered_map<UartDeviceFile_t, UartElements>;
using UartDeviceMapIter = UartDeviceMap::iterator;
/**
* The uart devie map stores informations of initialized uart ports.
*/
UartDeviceMap uartDeviceMap;
/**
* @brief This function opens and configures a uart device by using the information stored
* in the uart cookie.
* @param uartCookie Pointer to uart cookie with information about the uart. Contains the
* uart device file, baudrate, parity, stopbits etc.
* @return The file descriptor of the configured uart.
*/
int configureUartPort(UartCookie* uartCookie);
/**
* @brief This function adds the parity settings to the termios options struct.
*
* @param options Pointer to termios options struct which will be modified to enable or disable
* parity checking.
* @param uartCookie Pointer to uart cookie containing the information about the desired
* parity settings.
*
*/
void setParityOptions(struct termios* options, UartCookie* uartCookie);
void setStopBitOptions(struct termios* options, UartCookie* uartCookie);
/**
* @brief This function sets options which are not configurable by the uartCookie.
*/
void setFixedOptions(struct termios* options);
/**
* @brief With this function the datasize settings are added to the termios options struct.
*/
void setDatasizeOptions(struct termios* options, UartCookie* uartCookie);
/**
* @brief This functions adds the baudrate specified in the uartCookie to the termios options
* struct.
*/
void configureBaudrate(struct termios* options, UartCookie* uartCookie);
void setUartMode(struct termios* options, UartCookie& uartCookie);
ReturnValue_t handleCanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
ReturnValue_t handleNoncanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
};
#endif /* BSP_Q7S_COMIF_UARTCOMIF_H_ */

View File

@ -0,0 +1,97 @@
#include "fsfw/hal/linux/uart/UartCookie.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
UartCookie::UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen):
handlerId(handlerId), deviceFile(deviceFile), uartMode(uartMode), baudrate(baudrate),
maxReplyLen(maxReplyLen) {
}
UartCookie::~UartCookie() {}
uint32_t UartCookie::getBaudrate() const {
return baudrate;
}
size_t UartCookie::getMaxReplyLen() const {
return maxReplyLen;
}
std::string UartCookie::getDeviceFile() const {
return deviceFile;
}
void UartCookie::setParityOdd() {
parity = Parity::ODD;
}
void UartCookie::setParityEven() {
parity = Parity::EVEN;
}
Parity UartCookie::getParity() const {
return parity;
}
void UartCookie::setBitsPerWord(uint8_t bitsPerWord_) {
switch(bitsPerWord_) {
case 5:
case 6:
case 7:
case 8:
break;
default:
sif::debug << "UartCookie::setBitsPerWord: Invalid bits per word specified" << std::endl;
return;
}
bitsPerWord = bitsPerWord_;
}
uint8_t UartCookie::getBitsPerWord() const {
return bitsPerWord;
}
StopBits UartCookie::getStopBits() const {
return stopBits;
}
void UartCookie::setTwoStopBits() {
stopBits = StopBits::TWO_STOP_BITS;
}
void UartCookie::setOneStopBit() {
stopBits = StopBits::ONE_STOP_BIT;
}
UartModes UartCookie::getUartMode() const {
return uartMode;
}
void UartCookie::setReadCycles(uint8_t readCycles) {
this->readCycles = readCycles;
}
void UartCookie::setToFlushInput(bool enable) {
this->flushInput = enable;
}
uint8_t UartCookie::getReadCycles() const {
return readCycles;
}
bool UartCookie::getInputShouldBeFlushed() {
return this->flushInput;
}
object_id_t UartCookie::getHandlerId() const {
return this->handlerId;
}
void UartCookie::setNoFixedSizeReply() {
replySizeFixed = false;
}
bool UartCookie::isReplySizeFixed() {
return replySizeFixed;
}

View File

@ -0,0 +1,121 @@
#ifndef SAM9G20_COMIF_COOKIES_UART_COOKIE_H_
#define SAM9G20_COMIF_COOKIES_UART_COOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/objectmanager/SystemObjectIF.h>
#include <string>
enum class Parity {
NONE,
EVEN,
ODD
};
enum class StopBits {
ONE_STOP_BIT,
TWO_STOP_BITS
};
enum class UartModes {
CANONICAL,
NON_CANONICAL
};
/**
* @brief Cookie for the UartComIF. There are many options available to configure the UART driver.
* The constructor only requests for common options like the baudrate. Other options can
* be set by member functions.
*
* @author J. Meier
*/
class UartCookie: public CookieIF {
public:
/**
* @brief Constructor for the uart cookie.
* @param deviceFile The device file specifying the uart to use, e.g. "/dev/ttyPS1"
* @param uartMode Specify the UART mode. The canonical mode should be used if the
* messages are separated by a delimited character like '\n'. See the
* termios documentation for more information
* @param baudrate The baudrate to use for input and output. Possible Baudrates are: 50,
* 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, B19200,
* 38400, 57600, 115200, 230400, 460800
* @param maxReplyLen The maximum size an object using this cookie expects
* @details
* Default configuration: No parity
* 8 databits (number of bits transfered with one uart frame)
* One stop bit
*/
UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen);
virtual ~UartCookie();
uint32_t getBaudrate() const;
size_t getMaxReplyLen() const;
std::string getDeviceFile() const;
Parity getParity() const;
uint8_t getBitsPerWord() const;
StopBits getStopBits() const;
UartModes getUartMode() const;
object_id_t getHandlerId() const;
/**
* The UART ComIF will only perform a specified number of read cycles for the canonical mode.
* The user can specify how many of those read cycles are performed for one device handler
* communication cycle. An example use-case would be to read all available GPS NMEA strings
* at once.
* @param readCycles
*/
void setReadCycles(uint8_t readCycles);
uint8_t getReadCycles() const;
/**
* Allows to flush the data which was received but has not been read yet. This is useful
* to discard obsolete data at software startup.
*/
void setToFlushInput(bool enable);
bool getInputShouldBeFlushed();
/**
* Functions two enable parity checking.
*/
void setParityOdd();
void setParityEven();
/**
* Function two set number of bits per UART frame.
*/
void setBitsPerWord(uint8_t bitsPerWord_);
/**
* Function to specify the number of stopbits.
*/
void setTwoStopBits();
void setOneStopBit();
/**
* Calling this function prevents the UartComIF to return failed if not all requested bytes
* could be read. This is required by a device handler when the size of a reply is not known.
*/
void setNoFixedSizeReply();
bool isReplySizeFixed();
private:
const object_id_t handlerId;
std::string deviceFile;
const UartModes uartMode;
bool flushInput = false;
uint32_t baudrate;
size_t maxReplyLen = 0;
Parity parity = Parity::NONE;
uint8_t bitsPerWord = 8;
uint8_t readCycles = 1;
StopBits stopBits = StopBits::ONE_STOP_BIT;
bool replySizeFixed = true;
};
#endif

View File

@ -0,0 +1,26 @@
#include "fsfw/FSFW.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "fsfw/hal/linux/utility.h"
#include <cerrno>
#include <cstring>
void utility::handleIoctlError(const char* const customPrintout) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
if(customPrintout != nullptr) {
sif::warning << customPrintout << std::endl;
}
sif::warning << "handleIoctlError: Error code " << errno << ", "<< strerror(errno) <<
std::endl;
#else
if(customPrintout != nullptr) {
sif::printWarning("%s\n", customPrintout);
}
sif::printWarning("handleIoctlError: Error code %d, %s\n", errno, strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
}

View File

@ -0,0 +1,558 @@
#include "fsfw/hal/stm32h7/devicetest/GyroL3GD20H.h"
#include "fsfw/hal/stm32h7/spi/mspInit.h"
#include "fsfw/hal/stm32h7/spi/spiDefinitions.h"
#include "fsfw/hal/stm32h7/spi/spiCore.h"
#include "fsfw/hal/stm32h7/spi/spiInterrupts.h"
#include "fsfw/hal/stm32h7/spi/stm32h743ziSpi.h"
#include "fsfw/tasks/TaskFactory.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h7xx_hal_rcc.h"
#include <cstring>
alignas(32) std::array<uint8_t, GyroL3GD20H::recvBufferSize> GyroL3GD20H::rxBuffer;
alignas(32) std::array<uint8_t, GyroL3GD20H::txBufferSize>
GyroL3GD20H::txBuffer __attribute__((section(".dma_buffer")));
TransferStates transferState = TransferStates::IDLE;
spi::TransferModes GyroL3GD20H::transferMode = spi::TransferModes::POLLING;
GyroL3GD20H::GyroL3GD20H(SPI_HandleTypeDef *spiHandle, spi::TransferModes transferMode_):
spiHandle(spiHandle) {
txDmaHandle = new DMA_HandleTypeDef();
rxDmaHandle = new DMA_HandleTypeDef();
spi::setSpiHandle(spiHandle);
spi::assignSpiUserArgs(spi::SpiBus::SPI_1, spiHandle);
transferMode = transferMode_;
if(transferMode == spi::TransferModes::DMA) {
mspCfg = new spi::MspDmaConfigStruct();
auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct*>(mspCfg);
spi::setDmaHandles(txDmaHandle, rxDmaHandle);
spi::h743zi::standardDmaCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS,
IrqPriorities::HIGHEST_FREERTOS, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiDmaMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::INTERRUPT) {
mspCfg = new spi::MspIrqConfigStruct();
auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct*>(mspCfg);
spi::h743zi::standardInterruptCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiIrqMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::POLLING) {
mspCfg = new spi::MspPollingConfigStruct();
auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct*>(mspCfg);
spi::h743zi::standardPollingCfg(*typedCfg);
spi::setSpiPollingMspFunctions(typedCfg);
}
spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, nullptr);
spi::assignTransferErrorCallback(&spiTransferErrorCallback, nullptr);
GPIO_InitTypeDef chipSelect = {};
__HAL_RCC_GPIOD_CLK_ENABLE();
chipSelect.Pin = GPIO_PIN_14;
chipSelect.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(GPIOD, &chipSelect);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
}
GyroL3GD20H::~GyroL3GD20H() {
delete txDmaHandle;
delete rxDmaHandle;
if(mspCfg != nullptr) {
delete mspCfg;
}
}
ReturnValue_t GyroL3GD20H::initialize() {
// Configure the SPI peripheral
spiHandle->Instance = SPI1;
spiHandle->Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), 3900000);
spiHandle->Init.Direction = SPI_DIRECTION_2LINES;
spi::assignSpiMode(spi::SpiModes::MODE_3, *spiHandle);
spiHandle->Init.DataSize = SPI_DATASIZE_8BIT;
spiHandle->Init.FirstBit = SPI_FIRSTBIT_MSB;
spiHandle->Init.TIMode = SPI_TIMODE_DISABLE;
spiHandle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spiHandle->Init.CRCPolynomial = 7;
spiHandle->Init.CRCLength = SPI_CRC_LENGTH_8BIT;
spiHandle->Init.NSS = SPI_NSS_SOFT;
spiHandle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
// Recommended setting to avoid glitches
spiHandle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spiHandle->Init.Mode = SPI_MODE_MASTER;
if(HAL_SPI_Init(spiHandle) != HAL_OK) {
sif::printWarning("Error initializing SPI\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
delete mspCfg;
transferState = TransferStates::WAIT;
sif::printInfo("GyroL3GD20H::performOperation: Reading WHO AM I register\n");
txBuffer[0] = WHO_AM_I_REG | STM_READ_MASK;
txBuffer[1] = 0;
switch(transferMode) {
case(spi::TransferModes::DMA): {
return handleDmaTransferInit();
}
case(spi::TransferModes::INTERRUPT): {
return handleInterruptTransferInit();
}
case(spi::TransferModes::POLLING): {
return handlePollingTransferInit();
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::performOperation() {
switch(transferMode) {
case(spi::TransferModes::DMA): {
return handleDmaSensorRead();
}
case(spi::TransferModes::POLLING): {
return handlePollingSensorRead();
}
case(spi::TransferModes::INTERRUPT): {
return handleInterruptSensorRead();
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleDmaTransferInit() {
/* Clean D-cache */
/* Make sure the address is 32-byte aligned and add 32-bytes to length,
in case it overlaps cacheline */
// See https://community.st.com/s/article/FAQ-DMA-is-not-working-on-STM32H7-devices
HAL_StatusTypeDef result = performDmaTransfer(2);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("GyroL3GD20H::initialize: Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::initialize: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("Transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
result = performDmaTransfer(6);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
sif::printInfo("GyroL3GD20H::initialize: Configuration transfer success\n");
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
result = performDmaTransfer(6);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleDmaSensorRead() {
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_StatusTypeDef result = performDmaTransfer(15);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printDebug("GyroL3GD20H::handleDmaSensorRead: Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
handleSensorReadout();
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::handleDmaSensorRead: Sensor read failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
HAL_StatusTypeDef GyroL3GD20H::performDmaTransfer(size_t sendSize) {
transferState = TransferStates::WAIT;
#if STM_USE_PERIPHERAL_TX_BUFFER_MPU_PROTECTION == 0
SCB_CleanDCache_by_Addr((uint32_t*)(((uint32_t)txBuffer.data()) & ~(uint32_t)0x1F),
txBuffer.size()+32);
#endif
// Start SPI transfer via DMA
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
return HAL_SPI_TransmitReceive_DMA(spiHandle, txBuffer.data(), rxBuffer.data(), sendSize);
}
ReturnValue_t GyroL3GD20H::handlePollingTransferInit() {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 2, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
sif::printInfo("GyroL3GD20H::initialize: Polling transfer success\n");
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::performOperation: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handlePollingSensorRead() {
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 15, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
handleSensorReadout();
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleInterruptTransferInit() {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 2)) {
case(HAL_OK): {
sif::printInfo("GyroL3GD20H::initialize: Interrupt transfer success\n");
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::initialize: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
transferState = TransferStates::WAIT;
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
transferState = TransferStates::WAIT;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleInterruptSensorRead() {
transferState = TransferStates::WAIT;
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 15)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
handleSensorReadout();
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Sensor read failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void GyroL3GD20H::prepareConfigRegs(uint8_t* configRegs) {
// Enable sensor
configRegs[0] = 0b00001111;
configRegs[1] = 0b00000000;
configRegs[2] = 0b00000000;
// Big endian select
configRegs[3] = 0b01000000;
configRegs[4] = 0b00000000;
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK;
std::memcpy(txBuffer.data() + 1, configRegs, 5);
}
uint8_t GyroL3GD20H::readRegPolling(uint8_t reg) {
uint8_t rxBuf[2] = {};
uint8_t txBuf[2] = {};
txBuf[0] = reg | STM_READ_MASK;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuf, rxBuf, 2, 1000);
if(result) {};
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
return rxBuf[1];
}
void GyroL3GD20H::handleSensorReadout() {
uint8_t statusReg = rxBuffer[8];
int16_t gyroXRaw = rxBuffer[9] << 8 | rxBuffer[10];
float gyroX = static_cast<float>(gyroXRaw) * 0.00875;
int16_t gyroYRaw = rxBuffer[11] << 8 | rxBuffer[12];
float gyroY = static_cast<float>(gyroYRaw) * 0.00875;
int16_t gyroZRaw = rxBuffer[13] << 8 | rxBuffer[14];
float gyroZ = static_cast<float>(gyroZRaw) * 0.00875;
sif::printInfo("Status register: 0b" BYTE_TO_BINARY_PATTERN "\n", BYTE_TO_BINARY(statusReg));
sif::printInfo("Gyro X: %f\n", gyroX);
sif::printInfo("Gyro Y: %f\n", gyroY);
sif::printInfo("Gyro Z: %f\n", gyroZ);
}
void GyroL3GD20H::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args) {
transferState = TransferStates::SUCCESS;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
if(GyroL3GD20H::transferMode == spi::TransferModes::DMA) {
// Invalidate cache prior to access by CPU
SCB_InvalidateDCache_by_Addr ((uint32_t *)GyroL3GD20H::rxBuffer.data(),
GyroL3GD20H::recvBufferSize);
}
}
/**
* @brief SPI error callbacks.
* @param hspi: SPI handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void GyroL3GD20H::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args) {
transferState = TransferStates::FAILURE;
}

View File

@ -0,0 +1,70 @@
#ifndef FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_
#define FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_spi.h"
#include "../spi/mspInit.h"
#include "../spi/spiDefinitions.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
#include <array>
enum class TransferStates {
IDLE,
WAIT,
SUCCESS,
FAILURE
};
class GyroL3GD20H {
public:
GyroL3GD20H(SPI_HandleTypeDef* spiHandle, spi::TransferModes transferMode);
~GyroL3GD20H();
ReturnValue_t initialize();
ReturnValue_t performOperation();
private:
const uint8_t WHO_AM_I_REG = 0b00001111;
const uint8_t STM_READ_MASK = 0b10000000;
const uint8_t STM_AUTO_INCREMENT_MASK = 0b01000000;
const uint8_t EXPECTED_WHO_AM_I_VAL = 0b11010111;
const uint8_t CTRL_REG_1 = 0b00100000;
const uint32_t L3G_RANGE = 245;
SPI_HandleTypeDef* spiHandle;
static spi::TransferModes transferMode;
static constexpr size_t recvBufferSize = 32 * 10;
static std::array<uint8_t, recvBufferSize> rxBuffer;
static constexpr size_t txBufferSize = 32;
static std::array<uint8_t, txBufferSize> txBuffer;
ReturnValue_t handleDmaTransferInit();
ReturnValue_t handlePollingTransferInit();
ReturnValue_t handleInterruptTransferInit();
ReturnValue_t handleDmaSensorRead();
HAL_StatusTypeDef performDmaTransfer(size_t sendSize);
ReturnValue_t handlePollingSensorRead();
ReturnValue_t handleInterruptSensorRead();
uint8_t readRegPolling(uint8_t reg);
static void spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args);
static void spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args);
void prepareConfigRegs(uint8_t* configRegs);
void handleSensorReadout();
DMA_HandleTypeDef* txDmaHandle = {};
DMA_HandleTypeDef* rxDmaHandle = {};
spi::MspCfgBase* mspCfg = {};
};
#endif /* FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_ */

View File

@ -0,0 +1,84 @@
#include <fsfw/hal/stm32h7/dma.h>
#include <cstdint>
#include <cstddef>
user_handler_t DMA_1_USER_HANDLERS[8];
user_args_t DMA_1_USER_ARGS[8];
user_handler_t DMA_2_USER_HANDLERS[8];
user_args_t DMA_2_USER_ARGS[8];
void dma::assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx,
user_handler_t user_handler, user_args_t user_args) {
if(dma_idx == DMA_1) {
DMA_1_USER_HANDLERS[stream_idx] = user_handler;
DMA_1_USER_ARGS[stream_idx] = user_args;
}
else if(dma_idx == DMA_2) {
DMA_2_USER_HANDLERS[stream_idx] = user_handler;
DMA_2_USER_ARGS[stream_idx] = user_args;
}
}
// The interrupt handlers in the format required for the IRQ vector table
/* Do not change these function names! They need to be exactly equal to the name of the functions
defined in the startup_stm32h743xx.s files! */
#define GENERIC_DMA_IRQ_HANDLER(DMA_IDX, STREAM_IDX) \
if(DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX] != NULL) { \
DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX](DMA_##DMA_IDX##_USER_ARGS[STREAM_IDX]); \
return; \
} \
Default_Handler() \
extern"C" void DMA1_Stream0_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 0);
}
extern"C" void DMA1_Stream1_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 1);
}
extern"C" void DMA1_Stream2_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 2);
}
extern"C" void DMA1_Stream3_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 3);
}
extern"C" void DMA1_Stream4_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 4);
}
extern"C" void DMA1_Stream5_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 5);
}
extern"C" void DMA1_Stream6_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 6);
}
extern"C" void DMA1_Stream7_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 7);
}
extern"C" void DMA2_Stream0_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 0);
}
extern"C" void DMA2_Stream1_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 1);
}
extern"C" void DMA2_Stream2_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 2);
}
extern"C" void DMA2_Stream3_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 3);
}
extern"C" void DMA2_Stream4_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 4);
}
extern"C" void DMA2_Stream5_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 5);
}
extern"C" void DMA2_Stream6_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 6);
}
extern"C" void DMA2_Stream7_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 7);
}

View File

@ -5,26 +5,31 @@
extern "C" {
#endif
#include <cstdint>
#include "interrupts.h"
#include <cstdint>
namespace dma {
enum DMAType { TX = 0, RX = 1 };
enum DMAType {
TX = 0,
RX = 1
};
enum DMAIndexes : uint8_t { DMA_1 = 1, DMA_2 = 2 };
enum DMAIndexes: uint8_t {
DMA_1 = 1,
DMA_2 = 2
};
enum DMAStreams {
STREAM_0 = 0,
STREAM_1 = 1,
STREAM_2 = 2,
STREAM_3 = 3,
STREAM_4 = 4,
STREAM_5 = 5,
STREAM_6 = 6,
STREAM_7 = 7,
};
STREAM_0 = 0,
STREAM_1 = 1,
STREAM_2 = 2,
STREAM_3 = 3,
STREAM_4 = 4,
STREAM_5 = 5,
STREAM_6 = 6,
STREAM_7 = 7,
} ;
/**
* Assign user interrupt handlers for DMA streams, allowing to pass an
@ -32,10 +37,10 @@ enum DMAStreams {
* @param user_handler
* @param user_args
*/
void assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx, user_handler_t user_handler,
user_args_t user_args);
void assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx,
user_handler_t user_handler, user_args_t user_args);
} // namespace dma
}
#ifdef __cplusplus
}

Some files were not shown because too many files have changed in this diff Show More