7 Commits

Author SHA1 Message Date
db471e313c Merge branch 'improve_cds_short_impl' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-20 16:29:21 +01:00
6154ce6299 Merge branch 'add_cuc_time_impl' into all_features 2022-12-20 16:28:31 +01:00
2756670efe cargo fmt
Some checks failed
Rust/spacepackets/pipeline/head There was a failure building this commit
2022-12-19 17:01:56 +01:00
eb5ace0658 Merge branch 'main' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-19 16:36:33 +01:00
b9cd08cefe Merge branch 'main' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-19 11:03:46 +01:00
0073db95f9 Merge branch 'add_cuc_time_impl' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-19 00:01:28 +01:00
251fcdd6c8 Merge branch 'add_cuc_time_impl' into all_features
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
2022-12-18 16:23:25 +01:00
38 changed files with 2009 additions and 13727 deletions

View File

@ -20,21 +20,6 @@ jobs:
command: check
args: --release
msrv:
name: Check with MSRV
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
with:
toolchain: 1.61.0
override: true
profile: minimal
- uses: actions-rs/cargo@v1
with:
command: check
args: --release
cross-check:
name: Check Cross
runs-on: ubuntu-latest
@ -73,21 +58,6 @@ jobs:
command: fmt
args: --all -- --check
check-doc:
name: Check Documentation Build
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly
override: true
profile: minimal
- uses: actions-rs/cargo@v1
with:
command: doc
args: --all-features
clippy:
name: Clippy
runs-on: ubuntu-latest

7
.gitignore vendored
View File

@ -1,7 +0,0 @@
# Rust
/target
/Cargo.lock
# CLion
/.idea/*
!/.idea/runConfigurations

View File

@ -1,19 +0,0 @@
<component name="ProjectRunConfigurationManager">
<configuration default="false" name="Check" type="CargoCommandRunConfiguration" factoryName="Cargo Command">
<option name="command" value="check --all-features" />
<option name="workingDirectory" value="file://$PROJECT_DIR$" />
<option name="emulateTerminal" value="false" />
<option name="channel" value="DEFAULT" />
<option name="requiredFeatures" value="true" />
<option name="allFeatures" value="true" />
<option name="withSudo" value="false" />
<option name="buildTarget" value="REMOTE" />
<option name="backtrace" value="SHORT" />
<envs />
<option name="isRedirectInput" value="false" />
<option name="redirectInputPath" value="" />
<method v="2">
<option name="CARGO.BUILD_TASK_PROVIDER" enabled="true" />
</method>
</configuration>
</component>

View File

@ -1,19 +0,0 @@
<component name="ProjectRunConfigurationManager">
<configuration default="false" name="Test" type="CargoCommandRunConfiguration" factoryName="Cargo Command" nameIsGenerated="true">
<option name="command" value="test" />
<option name="workingDirectory" value="file://$PROJECT_DIR$" />
<option name="emulateTerminal" value="false" />
<option name="channel" value="DEFAULT" />
<option name="requiredFeatures" value="true" />
<option name="allFeatures" value="true" />
<option name="withSudo" value="false" />
<option name="buildTarget" value="REMOTE" />
<option name="backtrace" value="SHORT" />
<envs />
<option name="isRedirectInput" value="false" />
<option name="redirectInputPath" value="" />
<method v="2">
<option name="CARGO.BUILD_TASK_PROVIDER" enabled="true" />
</method>
</configuration>
</component>

View File

@ -8,322 +8,6 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
# [unreleased]
# [v0.9.0] 2024-02-07
## Added
- `CcsdsPacket`, `PusPacket` and `GenericPusTmSecondaryHeader` implementation for
`PusTmZeroCopyWriter`.
- Additional length checks for `PusTmZeroCopyWriter`.
## Changed
- `PusTmZeroCopyWriter`: Added additional timestamp length argument for `new` constructor.
## Fixed
- Typo: `PUC_TM_MIN_HEADER_LEN` -> `PUS_TM_MIN_HEADER_LEN`
# [v0.8.1] 2024-02-05
## Fixed
- Added `pub` visibility for `PacketSequenceCtrl::const_new`.
# [v0.8.0] 2024-02-05
## Added
- Added `len_written` and `to_vec` methods to the `TimeWriter` trait.
# [v0.7.0] 2024-02-01
# [v0.7.0-beta.4] 2024-01-23
## Fixed
- `MetadataPduCreator`: The serialization function shifted the closure requested information
to the wrong position (first reserved bit) inside the raw content field.
# [v0.7.0-beta.3] 2023-12-06
## Added
- Add `WritablePduPacket` trait which is a common trait of all CFDP PDU implementations.
- Add `CfdpPdu` trait which exposes fields and attributes common to all CFDP PDUs.
- Add `GenericTlv` and `WritableTlv` trait as abstractions for the various TLV types.
## Fixed
- Set the direction field inside the PDU header field correctly explicitely for all CFDP PDU
packets.
## Changed
- Split up `FinishedPdu`into `FinishedPduCreator` and `FinishedPduReader` to expose specialized
APIs.
- Split up `MetadataPdu`into `MetadataPduCreator` and `MetadataPduReader` to expose specialized
APIs.
- Cleaned up CUC time implementation. Added `width` and `counter` getter methods.
- Renamed `SerializablePusPacket` to `WritablePusPacket`.
- Renamed `UnsignedPfc` to `PfcUnsigned` and `RealPfc` to `PfcReal`.
- Renamed `WritablePduPacket.written_len` and `SerializablePusPacket.len_packed` to `len_written`.
- Introduce custom implementation of `PartialEq` for `CommonPduConfig` which only compares the
values for the source entity ID, destination entity ID and transaction sequence number field to
allow those fields to have different widths.
- Removed the `PusError::RawDataTooShort` variant which is already covered by
`PusError::ByteConversionError` variant.
- Ranamed `TlvLvError::ByteConversionError` to `TlvLvError::ByteConversion`.
- Renamed `PusError::IncorrectCrc` to `PusError::ChecksumFailure`.
- Some more struct variant changes for error enumerations.
## Removed
- `PusError::NoRawData` variant.
- `cfdp::LenInBytes` which was not used.
# [v0.7.0-beta.2] 2023-09-26
## Added
- `PacketId` trait impls: `Ord`, `PartialOrd` and `Hash`
- `SerializablePusPacket` trait: Add `to_vec` method with default implementation.
# [v0.7.0-beta.1] 2023-08-28
- Bump `zerocopy` dependency to v0.7.0
## Changed
- The `Tlv` and `Lv` API return `&[u8]` instead of `Option<&[u8]>`.
- `ByteConversionError` error variants `ToSliceTooSmall` and `FromSliceTooSmall` are struct
variants now. `SizeMissmatch` was removed appropriately.
- `UnsignedByteFieldError` error variants `ValueTooLargeForWidth` and `InvalidWidth` are struct
variants now.
- `TimestampError` error variant `InvalidTimeCode` is struct variant now.
## Added
- Added `raw_data` API for `Tlv` and `Lv` to retrieve the whole `Lv`/`Tlv` slice if the object
was created from a raw bytestream.
- Added `MsgToUserTlv` helper class which wraps a regular `Tlv` and adds some useful functionality.
- `UnsignedByteField` and `GenericUnsignedByteField` `new` methods are `const` now.
- `PduError` variants which contained a tuple variant with multiple fields were converted to a
struct variant.
# Added
- Added `pdu_datafield_len` getter function for `PduHeader`
## Removed
- `SizeMissmatch` because it is not required for the `ByteConversionError` error enumeration
anymore.
# [v0.7.0-beta.0] 2023-08-16
- Moved MSRV from v1.60 to v1.61.
## Changed
- `PusPacket` trait: `user_data` now returns `&[u8]` instead of `Option<&[u8]>`. Empty user data
can simply be an empty slice.
- Moved ECSS TC components from `tc` to `ecss.tc`.
- Moved ECSS TM components from `tm` to `ecss.tm`.
- Converted `PusTc` class to more specialized `PusTcCreator` and `PusTcReader`
classes. The old `PusTc` class is deprecated now.
- Converted `PusTm` class to more specialized `PusTmCreator` and `PusTmReader`
classes. The old `PusTm` class is deprecated now.
- Implement `Display` and `Error` for `StdTimestampError` properly.
- Remove some redundant `Error` suffixes for enum error variants.
- `CommonPduConfig`: `new_with_defaults` replaced by `new_with_byte_fields`.
## Added
- `source_data` and `app_data` API provided for PUS TM and PUS TC reader classes. These simply
call `user_data` but are also in line with the PUS packet standard names for those fields.
- Added new marker trait `IsPusTelemetry` implemented by `PusTmCreator` and `PusTmReader`.
- Added new marker trait `IsPusTelecommand` implemented by `PusTcCreator` and `PusTcReader`.
- `metadata_param` getter method for the `MetadataPdu` object.
- `Default` impl for CFDP `ChecksumType`
- `Default` impl for CFDP `CommonPduConfig`
## Fixed
- All `MetadataGenericParam` fields are now public.
- New setter method `set_source_and_dest_id` for `CommonPduConfig`.
# [v0.6.0] 2023-07-06
## Added
- Added new `util` module which contains the following (new) helper modules:
- `UnsignedEnum` trait as an abstraction for unsigned byte fields with variable lengths. It is
not tied to the ECSS PFC value like the `EcssEnumeration` trait. The method to retrieve
the size of the unsigned enumeration in bytes is now called `size`.
- `GenericUnsignedByteField<TYPE>` and helper typedefs `UnsignedU8`, `UnsignedU16`, `UnsignedU32`
and `UnsignedU64` as helper types implementing `UnsignedEnum`
- `UnsignedByteField` as a type-erased helper.
- Initial CFDP support: Added PDU packet implementation.
- Added `SerializablePusPacket` as a generic abstraction for PUS packets which are
writable.
- Added new `PusTmZeroCopyWriter` class which allows to set fields on a raw TM packet,
which might be more efficient that modification and re-writing a packet with the
`PusTm` object.
## Changed
- The `EcssEnumeration` now requires the `UnsignedEnum` trait and only adds the `pfc` method to it.
- Renamed `byte_width` usages to `size` (part of new `UnsignedEnum` trait)
- Moved `ecss::CRC_CCITT_FALSE` CRC constant to the root module. This CRC type is not just used by
the PUS standard, but by the CCSDS Telecommand standard and the CFDP standard as well.
# [v0.5.4] 2023-02-12
## Added
- `Clone` trait requirement for `time::cds::ProvidesDaysLen` trait.
- Added `Copy` and `Clone` derives for `DaysLen16Bits` and `DaysLen24Bits`.
# [v0.5.3] 2023-02-05
## Added
- `num_enum` dependency to avoid boilerplate code for primtive to enum conversions, for example
for the PUS subservices.
- `ecss.event` module containing a `Subservice` enum.
- `ecss.verification` module containing a `Subservice` enum.
- `ecss.scheduling` module containing a `Subservice` enum and some other helper enumerations.
- `ecss.hk` module containing a `Subservice` enum.
## Changed
- Added missing Service IDs to `ecss.PusServiceId` and marked in `#[non_exhaustive]`.
## Fixed
- `time.UnixTimestamp`: All constructors and `From` conversions now use the `new` constructor,
which should cause a correct conversion of 0 subsecond milliseconds to a `None` value.
# [v0.5.2] 2023-01-26
## Added
- Added `.gitignore`.
## Fixed
- Correct implementation of Trait `PartialEq` for `PusTc` and `PusTm`. The previous auto-derivation
were incorrect because they also compared fields unrelated to the raw byte representation.
## Changed
- Renamed `PusTc` `raw` method to `raw_bytes` and add better docs to avoid confusion.
Deprecate `raw` to avoid breaking change.
- Added `raw_bytes` method to `PusTm`.
# [v0.5.1] 2023-01-22
## Added
- `time::cds::TimeProvider`
- Add `Ord` and `PartialOrd`, use custom `PartialEq` impl to account for precision correctly.
- Add `precision_as_ns` function which converts microsecond and picosecond precision values
into nanoseconds.
- Add conversion trait to convert `cds::TimeProvider<DaysLen16Bits>` into
`cds::TimeProvider<DaysLen24Bits>` and vice-versa.
- `time::UnixTimestamp`
- Add `Ord` and `PartialOrd` implementations.
- Add `Add<Duration>` and `AddAssign<Duration>` implementations.
## Fixed
- `time::cds::TimeProvider`: Fixed a bug where subsecond milliseconds were not accounted for
when the provider has no submillisecond precision.
# [v0.5.0] 2023-01-20
The timestamp of `PusTm` is now optional. See Added and Changed section for details.
## Added
- `PusTmSecondaryHeader`: New `new_simple_no_timestamp` API to create secondary header without
timestamp.
- `PusTm`: Add `new_simple_no_timestamp` method to create TM without timestamp
- New `UnixTimestamp` abstraction which contains the unix seconds as an `i64`
and an optional subsecond millisecond counter (`u16`)
- `MS_PER_DAY` constant.
- CUC: Added `from_date_time` and `from_unix_stamp` constructors for time provider.
- CUC: Add `Add<Duration>` and `AddAssign<Duration>` impl for time provider.
### CDS time module
- Implement `Add<Duration>` and `AddAssign<Duration>` for time providers, which allows
easily adding offsets to the providers.
- Implement `TryFrom<DateTime<Utc>>` for time providers.
- `get_dyn_time_provider_from_bytes`: Requires `alloc` support and returns
the correct `TimeProvider` instance wrapped as a boxed trait object
`Box<DynCdsTimeProvider>` by checking the length of days field.
- Added constructor function to create the time provider
from `chrono::DateTime<Utc>` and a generic UNIX timestamp (`i64` seconds
and subsecond milliseconds).
- `MAX_DAYS_24_BITS` which contains maximum value which can be supplied
to the days field of a CDS time provider with 24 bits days field width.
- New `CdsTimestamp` trait which encapsulates common fields for all CDS time providers.
- `from_unix_secs_with_u24_days` and `from_unix_secs_with_u16_days` which create
the time provider from a `UnixTimestamp` reference.
- `from_dt_with_u16_days`, `from_dt_with_u24_days` and their `..._us_precision` and
`..._ps_precision` variants which allow to create time providers from
a `chrono::DateTime<Utc>`.
- Add `from_bytes_with_u24_days` and `from_bytes_with_u16_days` associated methods
## Changed
- (breaking) `unix_epoch_to_ccsds_epoch`: Expect and return `i64` instead of `u64` now.
- (breaking) `ccsds_epoch_to_unix_epoch`: Expect and return `i64` instead of `u64` now.
- (breaking) `PusTmSecondaryHeader`: Timestamp is optional now, which translates to a
timestamp of size 0.
- (breaking): `PusTm`: Renamed `time_stamp` method to `timestamp`, also returns
`Optional<&'src_data [u8]>` now.
- (breaking): `PusTmSecondaryHeader`: Renamed `time_stamp` field to `timestamp` for consistency.
- (breaking): Renamed `from_now_with_u24_days_and_us_prec` to `from_now_with_u24_days_us_precision`.
Also did the same for the `u16` variant.
- (breaking): Renamed `from_now_with_u24_days_and_ps_prec` to `from_now_with_u24_days_ps_precision`.
Also did the same for the `u16` variant.
- `CcsdsTimeProvider` trait (breaking):
- Add new `unix_stamp` method returning the new `UnixTimeStamp` struct.
- Add new `subsecond_millis` method returning counter `Option<u16>`.
- Default impl for `unix_stamp` which re-uses `subsecond_millis` and
existing `unix_seconds` method.
- `TimestampError` (breaking): Add `DateBeforeCcsdsEpoch` error type
because new CDS API allow supplying invalid date times before CCSDS epoch.
Make `TimestampError` with `#[non_exhaustive]` attribute to prevent
future breakages if new error variants are added.
# [v0.4.2] 14.01.2023
## Fixed
- CDS timestamp: Fixed another small logic error for stamp creation from the current
time with picosecond precision.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/8
# [v0.4.1] 14.01.2023
## Fixed
- CDS timestamp: The conversion function from the current time were buggy
when specifying picoseconds precision, which could lead to overflow
multiplications and/or incorrect precision fields.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/7
# [v0.4.0] 10.01.2023
## Fixed
- Remove `Default` derive on CDS time provider. This can lead to uninitialized preamble fields.
## Changed
- `serde` support is now optional and behind the `serde` feature.
@ -339,14 +23,13 @@ The timestamp of `PusTm` is now optional. See Added and Changed section for deta
## Added
- `SpHeader` getter function `sp_header` added for `PusTc`
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/6
CUC PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/4/files
- Added PFC enumerations: `ecss::UnsignedPfc` and `ecss::RealPfc`.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/5
- Added `std::error::Error` implementation for all error enumerations if the `std` feature
is enabled.
- CUC timestamp implementation as specified in CCSDS 301.0-B-4 section 3.2.
PR: https://egit.irs.uni-stuttgart.de/rust/spacepackets/pulls/4/files
- ACII timestamps as specified in CCSDS 301.0-B-4 section 3.5.
- Added MSRV in `Cargo.toml` with the `rust-version` field set to Rust 1.60.
- `serde` `Serialize` and `Deserialize` added to all types.

View File

@ -1,8 +1,8 @@
[package]
name = "spacepackets"
version = "0.9.0"
version = "0.3.1"
edition = "2021"
rust-version = "1.61"
rust-version = "1.60"
authors = ["Robin Mueller <muellerr@irs.uni-stuttgart.de>"]
description = "Generic implementations for various CCSDS and ECSS packet standards"
homepage = "https://egit.irs.uni-stuttgart.de/rust/spacepackets"
@ -13,23 +13,12 @@ categories = ["aerospace", "aerospace::space-protocols", "no-std", "hardware-sup
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
crc = "3"
delegate = ">=0.8, <0.11"
[dependencies.zerocopy]
version = "0.7"
features = ["derive"]
[dependencies.thiserror]
version = "1"
optional = true
[dependencies.num_enum]
version = ">0.5, <=0.7"
default-features = false
zerocopy = "0.6"
crc = "3.0"
delegate = "0.8"
[dependencies.serde]
version = "1"
version = "1.0"
optional = true
default-features = false
features = ["derive"]
@ -43,14 +32,14 @@ version = "0.2"
default-features = false
[dev-dependencies.postcard]
version = "1"
version = "1.0"
[features]
default = ["std"]
std = ["chrono/std", "chrono/clock", "alloc", "thiserror"]
std = ["chrono/std", "chrono/clock", "alloc"]
serde = ["dep:serde", "chrono/serde"]
alloc = ["postcard/alloc", "chrono/alloc"]
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "doc_cfg", "--generate-link-to-definition"]
rustdoc-args = ["--cfg", "doc_cfg"]

2
NOTICE
View File

@ -1,3 +1,3 @@
Generic implementations for various CCSDS and ECSS packet standards.
This software contains code developed at the University of Stuttgart's Institute of Space Systems.
This software contains code developed at the University of Stuttgart.

View File

@ -1,7 +1,6 @@
[![Crates.io](https://img.shields.io/crates/v/spacepackets)](https://crates.io/crates/spacepackets)
[![docs.rs](https://img.shields.io/docsrs/spacepackets)](https://docs.rs/spacepackets)
[![ci](https://github.com/us-irs/spacepackets-rs/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/us-irs/spacepackets-rs/actions/workflows/ci.yml)
[![coverage](https://shields.io/endpoint?url=https://absatsw.irs.uni-stuttgart.de/projects/spacepackets/coverage-rs/latest/coverage.json)](https://absatsw.irs.uni-stuttgart.de/projects/spacepackets/coverage-rs/latest/index.html)
ECSS and CCSDS Spacepackets
======
@ -14,15 +13,11 @@ Currently, this includes the following components:
- Space Packet implementation according to
[CCSDS Blue Book 133.0-B-2](https://public.ccsds.org/Pubs/133x0b2e1.pdf)
- CCSDS File Delivery Protocol (CFDP) packet implementations according to
[CCSDS Blue Book 727.0-B-5](https://public.ccsds.org/Pubs/727x0b5.pdf)
- PUS Telecommand and PUS Telemetry implementation according to the
[ECSS-E-ST-70-41C standard](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
- CUC (CCSDS Unsegmented Time Code) implementation according to
[CCSDS 301.0-B-4 3.2](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
- CDS (CCSDS Day Segmented Time Code) implementation according to
- CDS Short Time Code implementation according to
[CCSDS 301.0-B-4 3.3](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
- Some helper types to support ASCII timecodes as specified in
- Some helper types to support ASCII timecodes ad specified in
[CCSDS 301.0-B-4 3.5](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
# Features
@ -48,16 +43,3 @@ deserializing them with an appropriate `serde` provider like
You can check the [documentation](https://docs.rs/spacepackets) of individual modules for various
usage examples.
# Coverage
Coverage was generated using [`grcov`](https://github.com/mozilla/grcov). If you have not done so
already, install the `llvm-tools-preview`:
```sh
rustup component add llvm-tools-preview
cargo install grcov --locked
```
After that, you can simply run `coverage.py` to test the project with coverage. You can optionally
supply the `--open` flag to open the coverage report in your webbrowser.

View File

@ -6,20 +6,10 @@ RUN apt-get update
RUN apt-get --yes upgrade
# tzdata is a dependency, won't install otherwise
ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get --yes install rsync curl
# set CROSS_CONTAINER_IN_CONTAINER to inform `cross` that it is executed from within a container
ENV CROSS_CONTAINER_IN_CONTAINER=true
RUN rustup install nightly && \
rustup target add thumbv7em-none-eabihf armv7-unknown-linux-gnueabihf && \
rustup component add rustfmt clippy llvm-tools-preview
RUN curl -sSL https://github.com/mozilla/grcov/releases/download/v0.8.19/grcov-x86_64-unknown-linux-gnu.tar.bz2 | tar -xj --directory /usr/local/bin
# SSH stuff to allow deployment to doc server
RUN adduser --uid 114 jenkins
# Add documentation server to known hosts
RUN echo "|1|/LzCV4BuTmTb2wKnD146l9fTKgQ=|NJJtVjvWbtRt8OYqFgcYRnMQyVw= ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBNL8ssTonYtgiR/6RRlSIK9WU1ywOcJmxFTLcEblAwH7oifZzmYq3XRfwXrgfMpylEfMFYfCU8JRqtmi19xc21A=" >> /etc/ssh/ssh_known_hosts
RUN echo "|1|CcBvBc3EG03G+XM5rqRHs6gK/Gg=|oGeJQ+1I8NGI2THIkJsW92DpTzs= ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBNL8ssTonYtgiR/6RRlSIK9WU1ywOcJmxFTLcEblAwH7oifZzmYq3XRfwXrgfMpylEfMFYfCU8JRqtmi19xc21A=" >> /etc/ssh/ssh_known_hosts
# TODO: installing cross is problematic, permission issues
RUN rustup target add thumbv7em-none-eabihf armv7-unknown-linux-gnueabihf && \
rustup component add rustfmt clippy

106
automation/Jenkinsfile vendored
View File

@ -1,78 +1,42 @@
pipeline {
agent {
dockerfile {
dir 'automation'
reuseNode true
args '--network host'
agent {
dockerfile {
dir 'automation'
reuseNode true
}
}
}
stages {
stage('Rust Toolchain Info') {
steps {
sh 'rustc --version'
}
}
stage('Clippy') {
steps {
sh 'cargo clippy'
}
}
stage('Docs') {
steps {
sh 'cargo +nightly doc --all-features'
stages {
stage('Clippy') {
steps {
sh 'cargo clippy'
}
}
stage('Rustfmt') {
steps {
sh 'cargo fmt'
}
}
stage('Test') {
steps {
sh 'cargo test'
}
}
stage('Check') {
steps {
sh 'cargo check'
}
}
stage('Check Cross Embedded Bare Metal') {
steps {
sh 'cargo check --target thumbv7em-none-eabihf --no-default-features'
}
}
stage('Check Cross Embedded Linux') {
steps {
sh 'cargo check --target armv7-unknown-linux-gnueabihf'
}
}
}
stage('Rustfmt') {
steps {
sh 'cargo fmt --all --check'
}
}
stage('Test') {
steps {
sh 'cargo test --all-features'
}
}
stage('Check with all features') {
steps {
sh 'cargo check --all-features'
}
}
stage('Check with no features') {
steps {
sh 'cargo check --no-default-features'
}
}
stage('Check Cross Embedded Bare Metal') {
steps {
sh 'cargo check --target thumbv7em-none-eabihf --no-default-features'
}
}
stage('Check Cross Embedded Linux') {
steps {
sh 'cargo check --target armv7-unknown-linux-gnueabihf'
}
}
stage('Run test with Coverage') {
when {
anyOf {
branch 'main';
branch pattern: 'cov-deployment*'
}
}
steps {
withEnv(['RUSTFLAGS=-Cinstrument-coverage', 'LLVM_PROFILE_FILE=target/coverage/%p-%m.profraw']) {
echo "Executing tests with coverage"
sh 'cargo clean'
sh 'cargo test --all-features'
sh 'grcov . -s . --binary-path ./target/debug -t html --branch --ignore-not-existing -o ./target/debug/coverage/'
sshagent(credentials: ['documentation-buildfix']) {
// Deploy to Apache webserver
sh 'rsync --mkpath -r --delete ./target/debug/coverage/ buildfix@documentation.irs.uni-stuttgart.de:/projects/spacepackets/coverage-rs/latest/'
}
}
}
}
}
}

View File

@ -1,54 +0,0 @@
#!/usr/bin/env python3
import os
import logging
import argparse
import webbrowser
_LOGGER = logging.getLogger()
def generate_cov_report(open_report: bool, format: str):
logging.basicConfig(level=logging.INFO)
os.environ["RUSTFLAGS"] = "-Cinstrument-coverage"
os.environ["LLVM_PROFILE_FILE"] = "target/coverage/%p-%m.profraw"
_LOGGER.info("Executing tests with coverage")
os.system("cargo test --all-features")
out_path = "./target/debug/coverage"
if format == "lcov":
out_path = "./target/debug/lcov.info"
os.system(
f"grcov . -s . --binary-path ./target/debug/ -t {format} --branch --ignore-not-existing "
f"-o {out_path}"
)
if format == "lcov":
os.system(
"genhtml -o ./target/debug/coverage/ --show-details --highlight --ignore-errors source "
"--legend ./target/debug/lcov.info"
)
if open_report:
coverage_report_path = os.path.abspath("./target/debug/coverage/index.html")
webbrowser.open_new_tab(coverage_report_path)
_LOGGER.info("Done")
def main():
parser = argparse.ArgumentParser(
description="Generate coverage report and optionally open it in a browser"
)
parser.add_argument(
"--open", action="store_true", help="Open the coverage report in a browser"
)
parser.add_argument(
"--format",
choices=["html", "lcov"],
default="html",
help="Choose report format (html or lcov)",
)
args = parser.parse_args()
generate_cov_report(args.open, args.format)
if __name__ == "__main__":
main()

View File

@ -1,22 +0,0 @@
Checklist for new releases
=======
# Pre-Release
1. Make sure any new modules are documented sufficiently enough and check docs with
`cargo +nightly doc --all-features --config 'rustdocflags=["--cfg", "doc_cfg"]' --open`.
2. Bump version specifier in `Cargo.toml`.
3. Update `CHANGELOG.md`: Convert `unreleased` section into version section with date and add new
`unreleased` section.
4. Run `cargo test --all-features`.
5. Run `cargo fmt` and `cargo clippy`. Check `cargo msrv` against MSRV in `Cargo.toml`.
6. Wait for CI/CD results for EGit and Github. These also check cross-compilation for bare-metal
targets.
# Release
1. `cargo publish`
# Post-Release
1. Create a new release on `EGit` based on the release branch.

View File

@ -1,335 +0,0 @@
//! Generic CFDP length-value (LV) abstraction as specified in CFDP 5.1.8.
use crate::cfdp::TlvLvError;
use crate::ByteConversionError;
use core::str::Utf8Error;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::string::String;
pub const MIN_LV_LEN: usize = 1;
/// Generic CFDP length-value (LV) abstraction as specified in CFDP 5.1.8.
///
/// Please note that this class is zero-copy and does not generate a copy of the value data for
/// both the regular [Self::new] constructor and the [Self::from_bytes] constructor.
///
/// # Lifetimes
/// * `data`: If the LV is generated from a raw bytestream, this will be the lifetime of
/// the raw bytestream. If the LV is generated from a raw slice or a similar data reference,
/// this will be the lifetime of that data reference.
#[derive(Debug, Copy, Clone, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Lv<'data> {
data: &'data [u8],
// If the LV was generated from a raw bytestream, this will contain the start of the
// full LV.
pub(crate) raw_data: Option<&'data [u8]>,
}
impl PartialEq for Lv<'_> {
fn eq(&self, other: &Self) -> bool {
self.data == other.data
}
}
pub(crate) fn generic_len_check_data_serialization(
buf: &[u8],
data_len: usize,
min_overhead: usize,
) -> Result<(), ByteConversionError> {
if buf.len() < data_len + min_overhead {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: data_len + min_overhead,
});
}
Ok(())
}
pub(crate) fn generic_len_check_deserialization(
buf: &[u8],
min_overhead: usize,
) -> Result<(), ByteConversionError> {
if buf.len() < min_overhead {
return Err(ByteConversionError::FromSliceTooSmall {
found: buf.len(),
expected: min_overhead,
});
}
Ok(())
}
impl<'data> Lv<'data> {
pub fn new(data: &[u8]) -> Result<Lv, TlvLvError> {
if data.len() > u8::MAX as usize {
return Err(TlvLvError::DataTooLarge(data.len()));
}
Ok(Lv {
data,
raw_data: None,
})
}
/// Creates a LV with an empty value field.
pub fn new_empty() -> Lv<'data> {
Lv {
data: &[],
raw_data: None,
}
}
/// Helper function to build a string LV. This is especially useful for the file or directory
/// path LVs
pub fn new_from_str(str_slice: &str) -> Result<Lv, TlvLvError> {
Self::new(str_slice.as_bytes())
}
/// Helper function to build a string LV. This is especially useful for the file or directory
/// path LVs
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn new_from_string(string: &'data String) -> Result<Lv<'data>, TlvLvError> {
Self::new(string.as_bytes())
}
/// Returns the length of the value part, not including the length byte.
pub fn len_value(&self) -> usize {
self.data.len()
}
/// Returns the full raw length, including the length byte.
pub fn len_full(&self) -> usize {
self.len_value() + 1
}
/// Checks whether the value field is empty.
pub fn is_empty(&self) -> bool {
self.data.len() == 0
}
pub fn value(&self) -> &[u8] {
self.data
}
/// If the LV was generated from a raw bytestream using [Self::from_bytes], the raw start
/// of the LV can be retrieved with this method.
pub fn raw_data(&self) -> Option<&[u8]> {
self.raw_data
}
/// Convenience function to extract the value as a [str]. This is useful if the LV is
/// known to contain a [str], for example being a file name.
pub fn value_as_str(&self) -> Option<Result<&'data str, Utf8Error>> {
if self.is_empty() {
return None;
}
Some(core::str::from_utf8(self.data))
}
/// Writes the LV to a raw buffer. Please note that the first byte will contain the length
/// of the value, but the values may not exceed a length of [u8::MAX].
pub fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
generic_len_check_data_serialization(buf, self.len_value(), MIN_LV_LEN)?;
Ok(self.write_to_be_bytes_no_len_check(buf))
}
/// Reads a LV from a raw buffer.
pub fn from_bytes(buf: &'data [u8]) -> Result<Lv<'data>, ByteConversionError> {
generic_len_check_deserialization(buf, MIN_LV_LEN)?;
Self::from_be_bytes_no_len_check(buf)
}
pub(crate) fn write_to_be_bytes_no_len_check(&self, buf: &mut [u8]) -> usize {
if self.is_empty() {
buf[0] = 0;
return MIN_LV_LEN;
}
// Length check in constructor ensures the length always has a valid value.
buf[0] = self.data.len() as u8;
buf[MIN_LV_LEN..self.data.len() + MIN_LV_LEN].copy_from_slice(self.data);
MIN_LV_LEN + self.data.len()
}
pub(crate) fn from_be_bytes_no_len_check(
buf: &'data [u8],
) -> Result<Lv<'data>, ByteConversionError> {
let value_len = buf[0] as usize;
generic_len_check_deserialization(buf, value_len + MIN_LV_LEN)?;
Ok(Self {
data: &buf[MIN_LV_LEN..MIN_LV_LEN + value_len],
raw_data: Some(buf),
})
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use alloc::string::ToString;
use crate::cfdp::TlvLvError;
use crate::ByteConversionError;
use std::string::String;
#[test]
fn test_basic() {
let lv_data: [u8; 4] = [1, 2, 3, 4];
let lv_res = Lv::new(&lv_data);
assert!(lv_res.is_ok());
let lv = lv_res.unwrap();
assert!(!lv.value().is_empty());
let val = lv.value();
assert_eq!(val[0], 1);
assert_eq!(val[1], 2);
assert_eq!(val[2], 3);
assert_eq!(val[3], 4);
assert!(!lv.is_empty());
assert_eq!(lv.len_full(), 5);
assert_eq!(lv.len_value(), 4);
}
#[test]
fn test_empty() {
let lv_empty = Lv::new_empty();
assert_eq!(lv_empty.len_value(), 0);
assert_eq!(lv_empty.len_full(), 1);
assert!(lv_empty.is_empty());
let mut buf: [u8; 4] = [0xff; 4];
let res = lv_empty.write_to_be_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 1);
assert_eq!(buf[0], 0);
}
#[test]
fn test_serialization() {
let lv_data: [u8; 4] = [1, 2, 3, 4];
let lv_res = Lv::new(&lv_data);
assert!(lv_res.is_ok());
let lv = lv_res.unwrap();
let mut buf: [u8; 16] = [0; 16];
let res = lv.write_to_be_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, 5);
assert_eq!(buf[0], 4);
assert_eq!(buf[1], 1);
assert_eq!(buf[2], 2);
assert_eq!(buf[3], 3);
assert_eq!(buf[4], 4);
}
#[test]
fn test_deserialization() {
let mut buf: [u8; 16] = [0; 16];
buf[0] = 4;
buf[1] = 1;
buf[2] = 2;
buf[3] = 3;
buf[4] = 4;
let lv = Lv::from_bytes(&buf);
assert!(lv.is_ok());
let lv = lv.unwrap();
assert!(!lv.is_empty());
assert_eq!(lv.len_value(), 4);
assert_eq!(lv.len_full(), 5);
assert!(lv.raw_data().is_some());
assert_eq!(lv.raw_data().unwrap(), buf);
let val = lv.value();
assert_eq!(val[0], 1);
assert_eq!(val[1], 2);
assert_eq!(val[2], 3);
assert_eq!(val[3], 4);
}
#[test]
fn test_deserialization_empty() {
let buf: [u8; 2] = [0; 2];
let lv_empty = Lv::from_bytes(&buf);
assert!(lv_empty.is_ok());
let lv_empty = lv_empty.unwrap();
assert!(lv_empty.is_empty());
}
#[test]
fn test_data_too_large() {
let data_big: [u8; u8::MAX as usize + 1] = [0; u8::MAX as usize + 1];
let lv = Lv::new(&data_big);
assert!(lv.is_err());
let error = lv.unwrap_err();
if let TlvLvError::DataTooLarge(size) = error {
assert_eq!(size, u8::MAX as usize + 1);
assert_eq!(
error.to_string(),
"data with size 256 larger than allowed 255 bytes"
);
} else {
panic!("invalid exception {:?}", error)
}
}
#[test]
fn test_serialization_buf_too_small() {
let mut buf: [u8; 3] = [0; 3];
let lv_data: [u8; 4] = [1, 2, 3, 4];
let lv = Lv::new(&lv_data).unwrap();
let res = lv.write_to_be_bytes(&mut buf);
assert!(res.is_err());
let error = res.unwrap_err();
if let ByteConversionError::ToSliceTooSmall { found, expected } = error {
assert_eq!(expected, 5);
assert_eq!(found, 3);
} else {
panic!("invalid error {}", error);
}
}
#[test]
fn test_deserialization_buf_too_small() {
let mut buf: [u8; 3] = [0; 3];
buf[0] = 4;
let res = Lv::from_bytes(&buf);
assert!(res.is_err());
let error = res.unwrap_err();
if let ByteConversionError::FromSliceTooSmall { found, expected } = error {
assert_eq!(found, 3);
assert_eq!(expected, 5);
} else {
panic!("invalid error {}", error);
}
}
fn verify_test_str_lv(lv: Lv) {
let mut buf: [u8; 16] = [0; 16];
let res = lv.write_to_be_bytes(&mut buf);
assert!(res.is_ok());
let res = res.unwrap();
assert_eq!(res, 8 + 1);
assert_eq!(buf[0], 8);
assert_eq!(buf[1], b't');
assert_eq!(buf[2], b'e');
assert_eq!(buf[3], b's');
assert_eq!(buf[4], b't');
assert_eq!(buf[5], b'.');
assert_eq!(buf[6], b'b');
assert_eq!(buf[7], b'i');
assert_eq!(buf[8], b'n');
}
#[test]
fn test_str_helper() {
let test_str = "test.bin";
let str_lv = Lv::new_from_str(test_str);
assert!(str_lv.is_ok());
verify_test_str_lv(str_lv.unwrap());
}
#[test]
fn test_string_helper() {
let string = String::from("test.bin");
let str_lv = Lv::new_from_string(&string);
assert!(str_lv.is_ok());
verify_test_str_lv(str_lv.unwrap());
}
}

View File

@ -1,292 +0,0 @@
//! Low-level CCSDS File Delivery Protocol (CFDP) support according to [CCSDS 727.0-B-5](https://public.ccsds.org/Pubs/727x0b5.pdf).
use crate::ByteConversionError;
use core::fmt::{Display, Formatter};
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::error::Error;
pub mod lv;
pub mod pdu;
pub mod tlv;
/// This is the name of the standard this module is based on.
pub const CFDP_VERSION_2_NAME: &str = "CCSDS 727.0-B-5";
/// Currently, only this version is supported.
pub const CFDP_VERSION_2: u8 = 0b001;
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum PduType {
FileDirective = 0,
FileData = 1,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Direction {
TowardsReceiver = 0,
TowardsSender = 1,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum TransmissionMode {
Acknowledged = 0,
Unacknowledged = 1,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum CrcFlag {
NoCrc = 0,
WithCrc = 1,
}
impl From<bool> for CrcFlag {
fn from(value: bool) -> Self {
if value {
return CrcFlag::WithCrc;
}
CrcFlag::NoCrc
}
}
impl From<CrcFlag> for bool {
fn from(value: CrcFlag) -> Self {
if value == CrcFlag::WithCrc {
return true;
}
false
}
}
/// Always 0 and ignored for File Directive PDUs (CCSDS 727.0-B-5 P.75)
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum SegmentMetadataFlag {
NotPresent = 0,
Present = 1,
}
/// Always 0 and ignored for File Directive PDUs (CCSDS 727.0-B-5 P.75)
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum SegmentationControl {
NoRecordBoundaryPreservation = 0,
WithRecordBoundaryPreservation = 1,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum FaultHandlerCode {
NoticeOfCancellation = 0b0001,
NoticeOfSuspension = 0b0010,
IgnoreError = 0b0011,
AbandonTransaction = 0b0100,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum ConditionCode {
/// This is not an error condition for which a faulty handler override can be specified
NoError = 0b0000,
PositiveAckLimitReached = 0b0001,
KeepAliveLimitReached = 0b0010,
InvalidTransmissionMode = 0b0011,
FilestoreRejection = 0b0100,
FileChecksumFailure = 0b0101,
FileSizeError = 0b0110,
NakLimitReached = 0b0111,
InactivityDetected = 0b1000,
CheckLimitReached = 0b1001,
UnsupportedChecksumType = 0b1011,
/// Not an actual fault condition for which fault handler overrides can be specified
SuspendRequestReceived = 0b1110,
/// Not an actual fault condition for which fault handler overrides can be specified
CancelRequestReceived = 0b1111,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum LargeFileFlag {
/// 32 bit maximum file size and FSS size
Normal = 0,
/// 64 bit maximum file size and FSS size
Large = 1,
}
/// Transaction status for the ACK PDU field according to chapter 5.2.4 of the CFDP standard.
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum TransactionStatus {
/// Transaction is not currently active and the CFDP implementation does not retain a
/// transaction history.
Undefined = 0b00,
Active = 0b01,
/// Transaction was active in the past and was terminated.
Terminated = 0b10,
/// The CFDP implementation does retain a tranaction history, and the transaction is not and
/// never was active at this entity.
Unrecognized = 0b11,
}
/// Checksum types according to the
/// [SANA Checksum Types registry](https://sanaregistry.org/r/checksum_identifiers/)
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum ChecksumType {
/// Modular legacy checksum
Modular = 0,
Crc32Proximity1 = 1,
Crc32C = 2,
/// Polynomial: 0x4C11DB7. Preferred checksum for now.
Crc32 = 3,
NullChecksum = 15,
}
impl Default for ChecksumType {
fn default() -> Self {
Self::NullChecksum
}
}
pub const NULL_CHECKSUM_U32: [u8; 4] = [0; 4];
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum TlvLvError {
DataTooLarge(usize),
ByteConversion(ByteConversionError),
/// First value: Found value. Second value: Expected value if there is one.
InvalidTlvTypeField {
found: u8,
expected: Option<u8>,
},
/// Logically invalid value length detected. The value length may not exceed 255 bytes.
/// Depending on the concrete TLV type, the value length may also be logically invalid.
InvalidValueLength(usize),
/// Only applies to filestore requests and responses. Second name was missing where one is
/// expected.
SecondNameMissing,
/// Invalid action code for filestore requests or responses.
InvalidFilestoreActionCode(u8),
}
impl From<ByteConversionError> for TlvLvError {
fn from(value: ByteConversionError) -> Self {
Self::ByteConversion(value)
}
}
impl Display for TlvLvError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
TlvLvError::DataTooLarge(data_len) => {
write!(
f,
"data with size {} larger than allowed {} bytes",
data_len,
u8::MAX
)
}
TlvLvError::ByteConversion(e) => {
write!(f, "tlv or lv byte conversion: {}", e)
}
TlvLvError::InvalidTlvTypeField { found, expected } => {
write!(
f,
"invalid TLV type field, found {found}, expected {expected:?}"
)
}
TlvLvError::InvalidValueLength(len) => {
write!(f, "invalid value length {len}")
}
TlvLvError::SecondNameMissing => {
write!(f, "second name missing for filestore request or response")
}
TlvLvError::InvalidFilestoreActionCode(raw) => {
write!(f, "invalid filestore action code with raw value {raw}")
}
}
}
}
#[cfg(feature = "std")]
impl Error for TlvLvError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
TlvLvError::ByteConversion(e) => Some(e),
_ => None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "serde")]
use crate::tests::generic_serde_test;
#[test]
fn test_crc_from_bool() {
assert_eq!(CrcFlag::from(false), CrcFlag::NoCrc);
}
#[test]
fn test_crc_flag_to_bool() {
let is_true: bool = CrcFlag::WithCrc.into();
assert!(is_true);
let is_false: bool = CrcFlag::NoCrc.into();
assert!(!is_false);
}
#[test]
fn test_default_checksum_type() {
let checksum = ChecksumType::default();
assert_eq!(checksum, ChecksumType::NullChecksum);
}
#[test]
fn test_fault_handler_code_from_u8() {
let fault_handler_code_raw = FaultHandlerCode::NoticeOfSuspension as u8;
let fault_handler_code = FaultHandlerCode::try_from(fault_handler_code_raw).unwrap();
assert_eq!(fault_handler_code, FaultHandlerCode::NoticeOfSuspension);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_impl_pdu_type() {
generic_serde_test(PduType::FileData);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_impl_direction() {
generic_serde_test(Direction::TowardsReceiver);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_impl_transmission_mode() {
generic_serde_test(TransmissionMode::Unacknowledged);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_fault_handler_code() {
generic_serde_test(FaultHandlerCode::NoticeOfCancellation);
}
}

View File

@ -1,334 +0,0 @@
use crate::{
cfdp::{ConditionCode, CrcFlag, Direction, TransactionStatus},
ByteConversionError,
};
use super::{
add_pdu_crc, generic_length_checks_pdu_deserialization, CfdpPdu, FileDirectiveType, PduError,
PduHeader, WritablePduPacket,
};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// ACK PDU abstraction.
///
/// For more information, refer to CFDP chapter 5.2.4.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct AckPdu {
pdu_header: PduHeader,
directive_code_of_acked_pdu: FileDirectiveType,
condition_code: ConditionCode,
transaction_status: TransactionStatus,
}
impl AckPdu {
pub fn new(
mut pdu_header: PduHeader,
directive_code_of_acked_pdu: FileDirectiveType,
condition_code: ConditionCode,
transaction_status: TransactionStatus,
) -> Result<Self, PduError> {
if directive_code_of_acked_pdu == FileDirectiveType::EofPdu {
pdu_header.pdu_conf.direction = Direction::TowardsSender;
} else if directive_code_of_acked_pdu == FileDirectiveType::FinishedPdu {
pdu_header.pdu_conf.direction = Direction::TowardsReceiver;
} else {
return Err(PduError::InvalidDirectiveType {
found: directive_code_of_acked_pdu as u8,
expected: None,
});
}
// Force correct direction flag.
let mut ack_pdu = Self {
pdu_header,
directive_code_of_acked_pdu,
condition_code,
transaction_status,
};
ack_pdu.pdu_header.pdu_datafield_len = ack_pdu.calc_pdu_datafield_len() as u16;
Ok(ack_pdu)
}
pub fn new_for_eof_pdu(
pdu_header: PduHeader,
condition_code: ConditionCode,
transaction_status: TransactionStatus,
) -> Self {
// Unwrap okay here, [new] can only fail on invalid directive codes.
Self::new(
pdu_header,
FileDirectiveType::EofPdu,
condition_code,
transaction_status,
)
.unwrap()
}
pub fn new_for_finished_pdu(
pdu_header: PduHeader,
condition_code: ConditionCode,
transaction_status: TransactionStatus,
) -> Self {
// Unwrap okay here, [new] can only fail on invalid directive codes.
Self::new(
pdu_header,
FileDirectiveType::FinishedPdu,
condition_code,
transaction_status,
)
.unwrap()
}
pub fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
pub fn directive_code_of_acked_pdu(&self) -> FileDirectiveType {
self.directive_code_of_acked_pdu
}
pub fn condition_code(&self) -> ConditionCode {
self.condition_code
}
pub fn transaction_status(&self) -> TransactionStatus {
self.transaction_status
}
fn calc_pdu_datafield_len(&self) -> usize {
if self.crc_flag() == CrcFlag::WithCrc {
return 5;
}
3
}
pub fn from_bytes(buf: &[u8]) -> Result<AckPdu, PduError> {
let (pdu_header, mut current_idx) = PduHeader::from_bytes(buf)?;
let full_len_without_crc = pdu_header.verify_length_and_checksum(buf)?;
generic_length_checks_pdu_deserialization(buf, current_idx + 3, full_len_without_crc)?;
let directive_type = FileDirectiveType::try_from(buf[current_idx]).map_err(|_| {
PduError::InvalidDirectiveType {
found: buf[current_idx],
expected: Some(FileDirectiveType::AckPdu),
}
})?;
if directive_type != FileDirectiveType::AckPdu {
return Err(PduError::WrongDirectiveType {
found: directive_type,
expected: FileDirectiveType::AckPdu,
});
}
current_idx += 1;
let acked_directive_type =
FileDirectiveType::try_from(buf[current_idx] >> 4).map_err(|_| {
PduError::InvalidDirectiveType {
found: buf[current_idx],
expected: None,
}
})?;
if acked_directive_type != FileDirectiveType::EofPdu
&& acked_directive_type != FileDirectiveType::FinishedPdu
{
return Err(PduError::InvalidDirectiveType {
found: acked_directive_type as u8,
expected: None,
});
}
current_idx += 1;
let condition_code = ConditionCode::try_from((buf[current_idx] >> 4) & 0b1111)
.map_err(|_| PduError::InvalidConditionCode((buf[current_idx] >> 4) & 0b1111))?;
let transaction_status = TransactionStatus::try_from(buf[current_idx] & 0b11).unwrap();
Self::new(
pdu_header,
acked_directive_type,
condition_code,
transaction_status,
)
}
}
impl CfdpPdu for AckPdu {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
Some(FileDirectiveType::AckPdu)
}
}
impl WritablePduPacket for AckPdu {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, PduError> {
let expected_len = self.len_written();
if buf.len() < expected_len {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: expected_len,
}
.into());
}
let mut current_idx = self.pdu_header.write_to_bytes(buf)?;
buf[current_idx] = FileDirectiveType::AckPdu as u8;
current_idx += 1;
buf[current_idx] = (self.directive_code_of_acked_pdu as u8) << 4;
if self.directive_code_of_acked_pdu == FileDirectiveType::FinishedPdu {
// This is the directive subtype code. It needs to be set to 0b0001 if the ACK PDU
// acknowledges a Finished PDU, and to 0b0000 otherwise.
buf[current_idx] |= 0b0001;
}
current_idx += 1;
buf[current_idx] = ((self.condition_code as u8) << 4) | (self.transaction_status as u8);
current_idx += 1;
if self.crc_flag() == CrcFlag::WithCrc {
current_idx = add_pdu_crc(buf, current_idx);
}
Ok(current_idx)
}
fn len_written(&self) -> usize {
self.pdu_header.header_len() + self.calc_pdu_datafield_len()
}
}
#[cfg(test)]
mod tests {
use crate::cfdp::{
pdu::tests::{common_pdu_conf, verify_raw_header, TEST_DEST_ID, TEST_SEQ_NUM, TEST_SRC_ID},
LargeFileFlag, PduType, TransmissionMode,
};
use super::*;
#[cfg(feature = "serde")]
use crate::tests::generic_serde_test;
fn verify_state(ack_pdu: &AckPdu, expected_crc_flag: CrcFlag, expected_dir: Direction) {
assert_eq!(ack_pdu.condition_code(), ConditionCode::NoError);
assert_eq!(ack_pdu.transaction_status(), TransactionStatus::Active);
assert_eq!(ack_pdu.crc_flag(), expected_crc_flag);
assert_eq!(ack_pdu.file_flag(), LargeFileFlag::Normal);
assert_eq!(ack_pdu.pdu_type(), PduType::FileDirective);
assert_eq!(
ack_pdu.file_directive_type(),
Some(FileDirectiveType::AckPdu)
);
assert_eq!(ack_pdu.transmission_mode(), TransmissionMode::Acknowledged);
assert_eq!(ack_pdu.direction(), expected_dir);
assert_eq!(ack_pdu.source_id(), TEST_SRC_ID.into());
assert_eq!(ack_pdu.dest_id(), TEST_DEST_ID.into());
assert_eq!(ack_pdu.transaction_seq_num(), TEST_SEQ_NUM.into());
}
#[test]
fn test_basic() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let ack_pdu = AckPdu::new(
pdu_header,
FileDirectiveType::FinishedPdu,
ConditionCode::NoError,
TransactionStatus::Active,
)
.expect("creating ACK PDU failed");
assert_eq!(
ack_pdu.directive_code_of_acked_pdu(),
FileDirectiveType::FinishedPdu
);
verify_state(&ack_pdu, CrcFlag::NoCrc, Direction::TowardsReceiver);
}
fn generic_serialization_test(
condition_code: ConditionCode,
transaction_status: TransactionStatus,
) {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let ack_pdu = AckPdu::new_for_finished_pdu(pdu_header, condition_code, transaction_status);
let mut buf: [u8; 64] = [0; 64];
let res = ack_pdu.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, ack_pdu.len_written());
verify_raw_header(ack_pdu.pdu_header(), &buf);
assert_eq!(buf[7], FileDirectiveType::AckPdu as u8);
assert_eq!((buf[8] >> 4) & 0b1111, FileDirectiveType::FinishedPdu as u8);
assert_eq!(buf[8] & 0b1111, 0b0001);
assert_eq!(buf[9] >> 4 & 0b1111, condition_code as u8);
assert_eq!(buf[9] & 0b11, transaction_status as u8);
assert_eq!(written, 10);
}
#[test]
fn test_serialization_no_error() {
generic_serialization_test(ConditionCode::NoError, TransactionStatus::Active);
}
#[test]
fn test_serialization_fs_error() {
generic_serialization_test(ConditionCode::FileSizeError, TransactionStatus::Terminated);
}
#[test]
fn test_deserialization() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let ack_pdu = AckPdu::new_for_finished_pdu(
pdu_header,
ConditionCode::NoError,
TransactionStatus::Active,
);
let ack_vec = ack_pdu.to_vec().unwrap();
let ack_deserialized =
AckPdu::from_bytes(&ack_vec).expect("ACK PDU deserialization failed");
assert_eq!(ack_deserialized, ack_pdu);
}
#[test]
fn test_with_crc() {
let pdu_conf = common_pdu_conf(CrcFlag::WithCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let ack_pdu = AckPdu::new_for_finished_pdu(
pdu_header,
ConditionCode::NoError,
TransactionStatus::Active,
);
let ack_vec = ack_pdu.to_vec().unwrap();
assert_eq!(ack_vec.len(), ack_pdu.len_written());
assert_eq!(ack_vec.len(), 12);
let ack_deserialized =
AckPdu::from_bytes(&ack_vec).expect("ACK PDU deserialization failed");
assert_eq!(ack_deserialized, ack_pdu);
}
#[test]
fn test_for_eof_pdu() {
let pdu_conf = common_pdu_conf(CrcFlag::WithCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let ack_pdu = AckPdu::new_for_eof_pdu(
pdu_header,
ConditionCode::NoError,
TransactionStatus::Active,
);
assert_eq!(
ack_pdu.directive_code_of_acked_pdu(),
FileDirectiveType::EofPdu
);
verify_state(&ack_pdu, CrcFlag::WithCrc, Direction::TowardsSender);
}
#[test]
#[cfg(feature = "serde")]
fn test_ack_pdu_serialization() {
let pdu_conf = common_pdu_conf(CrcFlag::WithCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let ack_pdu = AckPdu::new_for_eof_pdu(
pdu_header,
ConditionCode::NoError,
TransactionStatus::Active,
);
generic_serde_test(ack_pdu);
}
}

View File

@ -1,297 +0,0 @@
use crate::cfdp::pdu::{
add_pdu_crc, generic_length_checks_pdu_deserialization, read_fss_field, write_fss_field,
FileDirectiveType, PduError, PduHeader,
};
use crate::cfdp::tlv::{EntityIdTlv, WritableTlv};
use crate::cfdp::{ConditionCode, CrcFlag, Direction, LargeFileFlag};
use crate::ByteConversionError;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use super::{CfdpPdu, WritablePduPacket};
/// Finished PDU abstraction.
///
/// For more information, refer to CFDP chapter 5.2.2.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct EofPdu {
pdu_header: PduHeader,
condition_code: ConditionCode,
file_checksum: u32,
file_size: u64,
fault_location: Option<EntityIdTlv>,
}
impl EofPdu {
pub fn new_no_error(mut pdu_header: PduHeader, file_checksum: u32, file_size: u64) -> Self {
// Force correct direction flag.
pdu_header.pdu_conf.direction = Direction::TowardsReceiver;
let mut eof_pdu = Self {
pdu_header,
condition_code: ConditionCode::NoError,
file_checksum,
file_size,
fault_location: None,
};
eof_pdu.pdu_header.pdu_datafield_len = eof_pdu.calc_pdu_datafield_len() as u16;
eof_pdu
}
pub fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
pub fn condition_code(&self) -> ConditionCode {
self.condition_code
}
pub fn file_checksum(&self) -> u32 {
self.file_checksum
}
pub fn file_size(&self) -> u64 {
self.file_size
}
fn calc_pdu_datafield_len(&self) -> usize {
// One directive type octet, 4 bits condition code, 4 spare bits.
let mut len = 2 + core::mem::size_of::<u32>() + 4;
if self.pdu_header.pdu_conf.file_flag == LargeFileFlag::Large {
len += 4;
}
if let Some(fault_location) = self.fault_location {
len += fault_location.len_full();
}
if self.crc_flag() == CrcFlag::WithCrc {
len += 2;
}
len
}
pub fn from_bytes(buf: &[u8]) -> Result<EofPdu, PduError> {
let (pdu_header, mut current_idx) = PduHeader::from_bytes(buf)?;
let full_len_without_crc = pdu_header.verify_length_and_checksum(buf)?;
let is_large_file = pdu_header.pdu_conf.file_flag == LargeFileFlag::Large;
let mut min_expected_len = 2 + 4 + 4;
if is_large_file {
min_expected_len += 4;
}
generic_length_checks_pdu_deserialization(buf, min_expected_len, full_len_without_crc)?;
let directive_type = FileDirectiveType::try_from(buf[current_idx]).map_err(|_| {
PduError::InvalidDirectiveType {
found: buf[current_idx],
expected: Some(FileDirectiveType::EofPdu),
}
})?;
if directive_type != FileDirectiveType::EofPdu {
return Err(PduError::WrongDirectiveType {
found: directive_type,
expected: FileDirectiveType::EofPdu,
});
}
current_idx += 1;
let condition_code = ConditionCode::try_from((buf[current_idx] >> 4) & 0b1111)
.map_err(|_| PduError::InvalidConditionCode((buf[current_idx] >> 4) & 0b1111))?;
current_idx += 1;
let file_checksum =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
current_idx += 4;
let (fss_field_len, file_size) =
read_fss_field(pdu_header.pdu_conf.file_flag, &buf[current_idx..]);
current_idx += fss_field_len;
let mut fault_location = None;
if condition_code != ConditionCode::NoError && current_idx < full_len_without_crc {
fault_location = Some(EntityIdTlv::from_bytes(&buf[current_idx..])?);
}
Ok(Self {
pdu_header,
condition_code,
file_checksum,
file_size,
fault_location,
})
}
}
impl CfdpPdu for EofPdu {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
Some(FileDirectiveType::EofPdu)
}
}
impl WritablePduPacket for EofPdu {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, PduError> {
let expected_len = self.len_written();
if buf.len() < expected_len {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: expected_len,
}
.into());
}
let mut current_idx = self.pdu_header.write_to_bytes(buf)?;
buf[current_idx] = FileDirectiveType::EofPdu as u8;
current_idx += 1;
buf[current_idx] = (self.condition_code as u8) << 4;
current_idx += 1;
buf[current_idx..current_idx + 4].copy_from_slice(&self.file_checksum.to_be_bytes());
current_idx += 4;
current_idx += write_fss_field(
self.pdu_header.pdu_conf.file_flag,
self.file_size,
&mut buf[current_idx..],
)?;
if let Some(fault_location) = self.fault_location {
current_idx += fault_location.write_to_bytes(buf)?;
}
if self.crc_flag() == CrcFlag::WithCrc {
current_idx = add_pdu_crc(buf, current_idx);
}
Ok(current_idx)
}
fn len_written(&self) -> usize {
self.pdu_header.header_len() + self.calc_pdu_datafield_len()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cfdp::pdu::tests::{
common_pdu_conf, verify_raw_header, TEST_DEST_ID, TEST_SEQ_NUM, TEST_SRC_ID,
};
use crate::cfdp::pdu::{FileDirectiveType, PduHeader};
use crate::cfdp::{ConditionCode, CrcFlag, LargeFileFlag, PduType, TransmissionMode};
#[cfg(feature = "serde")]
use crate::tests::generic_serde_test;
fn verify_state(&eof_pdu: &EofPdu, file_flag: LargeFileFlag) {
assert_eq!(eof_pdu.file_checksum(), 0x01020304);
assert_eq!(eof_pdu.file_size(), 12);
assert_eq!(eof_pdu.condition_code(), ConditionCode::NoError);
assert_eq!(eof_pdu.crc_flag(), CrcFlag::NoCrc);
assert_eq!(eof_pdu.file_flag(), file_flag);
assert_eq!(eof_pdu.pdu_type(), PduType::FileDirective);
assert_eq!(
eof_pdu.file_directive_type(),
Some(FileDirectiveType::EofPdu)
);
assert_eq!(eof_pdu.transmission_mode(), TransmissionMode::Acknowledged);
assert_eq!(eof_pdu.direction(), Direction::TowardsReceiver);
assert_eq!(eof_pdu.source_id(), TEST_SRC_ID.into());
assert_eq!(eof_pdu.dest_id(), TEST_DEST_ID.into());
assert_eq!(eof_pdu.transaction_seq_num(), TEST_SEQ_NUM.into());
}
#[test]
fn test_basic() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let eof_pdu = EofPdu::new_no_error(pdu_header, 0x01020304, 12);
assert_eq!(eof_pdu.len_written(), pdu_header.header_len() + 2 + 4 + 4);
verify_state(&eof_pdu, LargeFileFlag::Normal);
}
#[test]
fn test_serialization() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let eof_pdu = EofPdu::new_no_error(pdu_header, 0x01020304, 12);
let mut buf: [u8; 64] = [0; 64];
let res = eof_pdu.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(written, eof_pdu.len_written());
verify_raw_header(eof_pdu.pdu_header(), &buf);
let mut current_idx = eof_pdu.pdu_header().header_len();
buf[current_idx] = FileDirectiveType::EofPdu as u8;
current_idx += 1;
assert_eq!(
(buf[current_idx] >> 4) & 0b1111,
ConditionCode::NoError as u8
);
current_idx += 1;
assert_eq!(
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap()),
0x01020304
);
current_idx += 4;
assert_eq!(
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap()),
12
);
current_idx += 4;
assert_eq!(current_idx, written);
}
#[test]
fn test_deserialization() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let eof_pdu = EofPdu::new_no_error(pdu_header, 0x01020304, 12);
let mut buf: [u8; 64] = [0; 64];
eof_pdu.write_to_bytes(&mut buf).unwrap();
let eof_read_back = EofPdu::from_bytes(&buf);
if let Err(e) = eof_read_back {
panic!("deserialization failed with: {e}")
}
let eof_read_back = eof_read_back.unwrap();
assert_eq!(eof_read_back, eof_pdu);
}
#[test]
fn test_write_to_vec() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let eof_pdu = EofPdu::new_no_error(pdu_header, 0x01020304, 12);
let mut buf: [u8; 64] = [0; 64];
let written = eof_pdu.write_to_bytes(&mut buf).unwrap();
let pdu_vec = eof_pdu.to_vec().unwrap();
assert_eq!(buf[0..written], pdu_vec);
}
#[test]
fn test_with_crc() {
let pdu_conf = common_pdu_conf(CrcFlag::WithCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let eof_pdu = EofPdu::new_no_error(pdu_header, 0x01020304, 12);
let mut buf: [u8; 64] = [0; 64];
let written = eof_pdu.write_to_bytes(&mut buf).unwrap();
assert_eq!(written, eof_pdu.len_written());
let eof_from_raw = EofPdu::from_bytes(&buf).expect("creating EOF PDU failed");
assert_eq!(eof_from_raw, eof_pdu);
buf[written - 1] -= 1;
let crc: u16 = ((buf[written - 2] as u16) << 8) as u16 | buf[written - 1] as u16;
let error = EofPdu::from_bytes(&buf).unwrap_err();
if let PduError::ChecksumError(e) = error {
assert_eq!(e, crc);
} else {
panic!("expected crc error");
}
}
#[test]
fn test_with_large_file_flag() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Large);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let eof_pdu = EofPdu::new_no_error(pdu_header, 0x01020304, 12);
verify_state(&eof_pdu, LargeFileFlag::Large);
assert_eq!(eof_pdu.len_written(), pdu_header.header_len() + 2 + 8 + 4);
}
#[test]
#[cfg(feature = "serde")]
fn test_eof_serde() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let eof_pdu = EofPdu::new_no_error(pdu_header, 0x01020304, 12);
generic_serde_test(eof_pdu);
}
}

View File

@ -1,485 +0,0 @@
use crate::cfdp::pdu::{
add_pdu_crc, generic_length_checks_pdu_deserialization, read_fss_field, write_fss_field,
PduError, PduHeader,
};
use crate::cfdp::{CrcFlag, LargeFileFlag, PduType, SegmentMetadataFlag};
use crate::ByteConversionError;
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use super::{CfdpPdu, FileDirectiveType, WritablePduPacket};
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum RecordContinuationState {
NoStartNoEnd = 0b00,
StartWithoutEnd = 0b01,
EndWithoutStart = 0b10,
StartAndEnd = 0b11,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct SegmentMetadata<'seg_meta> {
record_continuation_state: RecordContinuationState,
metadata: Option<&'seg_meta [u8]>,
}
impl<'seg_meta> SegmentMetadata<'seg_meta> {
pub fn new(
record_continuation_state: RecordContinuationState,
metadata: Option<&'seg_meta [u8]>,
) -> Option<Self> {
if let Some(metadata) = metadata {
if metadata.len() > 2_usize.pow(6) - 1 {
return None;
}
}
Some(Self {
record_continuation_state,
metadata,
})
}
pub fn record_continuation_state(&self) -> RecordContinuationState {
self.record_continuation_state
}
pub fn metadata(&self) -> Option<&'seg_meta [u8]> {
self.metadata
}
pub fn written_len(&self) -> usize {
// Map empty metadata to 0 and slice to its length.
1 + self.metadata.map_or(0, |meta| meta.len())
}
pub(crate) fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
if buf.len() < self.written_len() {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: self.written_len(),
});
}
buf[0] = ((self.record_continuation_state as u8) << 6)
| self.metadata.map_or(0, |meta| meta.len() as u8);
if let Some(metadata) = self.metadata {
buf[1..1 + metadata.len()].copy_from_slice(metadata)
}
Ok(self.written_len())
}
pub(crate) fn from_bytes(buf: &'seg_meta [u8]) -> Result<Self, ByteConversionError> {
if buf.is_empty() {
return Err(ByteConversionError::FromSliceTooSmall {
found: buf.len(),
expected: 2,
});
}
let mut metadata = None;
let seg_metadata_len = (buf[0] & 0b111111) as usize;
if seg_metadata_len > 0 {
metadata = Some(&buf[1..1 + seg_metadata_len]);
}
Ok(Self {
// Can't fail, only 2 bits
record_continuation_state: RecordContinuationState::try_from((buf[0] >> 6) & 0b11)
.unwrap(),
metadata,
})
}
}
/// File Data PDU abstraction.
///
/// For more information, refer to CFDP chapter 5.3.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct FileDataPdu<'seg_meta, 'file_data> {
pdu_header: PduHeader,
#[cfg_attr(feature = "serde", serde(borrow))]
segment_metadata: Option<SegmentMetadata<'seg_meta>>,
offset: u64,
file_data: &'file_data [u8],
}
impl<'seg_meta, 'file_data> FileDataPdu<'seg_meta, 'file_data> {
pub fn new_with_seg_metadata(
pdu_header: PduHeader,
segment_metadata: SegmentMetadata<'seg_meta>,
offset: u64,
file_data: &'file_data [u8],
) -> Self {
Self::new_generic(pdu_header, Some(segment_metadata), offset, file_data)
}
pub fn new_no_seg_metadata(
pdu_header: PduHeader,
offset: u64,
file_data: &'file_data [u8],
) -> Self {
Self::new_generic(pdu_header, None, offset, file_data)
}
pub fn new_generic(
mut pdu_header: PduHeader,
segment_metadata: Option<SegmentMetadata<'seg_meta>>,
offset: u64,
file_data: &'file_data [u8],
) -> Self {
pdu_header.pdu_type = PduType::FileData;
if segment_metadata.is_some() {
pdu_header.seg_metadata_flag = SegmentMetadataFlag::Present;
}
let mut pdu = Self {
pdu_header,
segment_metadata,
offset,
file_data,
};
pdu.pdu_header.pdu_datafield_len = pdu.calc_pdu_datafield_len() as u16;
pdu
}
fn calc_pdu_datafield_len(&self) -> usize {
let mut len = core::mem::size_of::<u32>();
if self.pdu_header.pdu_conf.file_flag == LargeFileFlag::Large {
len += 4;
}
if self.segment_metadata.is_some() {
len += self.segment_metadata.as_ref().unwrap().written_len()
}
len += self.file_data.len();
if self.crc_flag() == CrcFlag::WithCrc {
len += 2;
}
len
}
pub fn offset(&self) -> u64 {
self.offset
}
pub fn file_data(&self) -> &'file_data [u8] {
self.file_data
}
pub fn segment_metadata(&self) -> Option<&SegmentMetadata> {
self.segment_metadata.as_ref()
}
pub fn from_bytes<'buf: 'seg_meta + 'file_data>(buf: &'buf [u8]) -> Result<Self, PduError> {
let (pdu_header, mut current_idx) = PduHeader::from_bytes(buf)?;
let full_len_without_crc = pdu_header.verify_length_and_checksum(buf)?;
let min_expected_len = current_idx + core::mem::size_of::<u32>();
generic_length_checks_pdu_deserialization(buf, min_expected_len, full_len_without_crc)?;
let mut segment_metadata = None;
if pdu_header.seg_metadata_flag == SegmentMetadataFlag::Present {
segment_metadata = Some(SegmentMetadata::from_bytes(&buf[current_idx..])?);
current_idx += segment_metadata.as_ref().unwrap().written_len();
}
let (fss, offset) = read_fss_field(pdu_header.pdu_conf.file_flag, &buf[current_idx..]);
current_idx += fss;
if current_idx > full_len_without_crc {
return Err(ByteConversionError::FromSliceTooSmall {
found: current_idx,
expected: full_len_without_crc,
}
.into());
}
Ok(Self {
pdu_header,
segment_metadata,
offset,
file_data: &buf[current_idx..full_len_without_crc],
})
}
}
impl CfdpPdu for FileDataPdu<'_, '_> {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
None
}
}
impl WritablePduPacket for FileDataPdu<'_, '_> {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, PduError> {
if buf.len() < self.len_written() {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: self.len_written(),
}
.into());
}
let mut current_idx = self.pdu_header.write_to_bytes(buf)?;
if self.segment_metadata.is_some() {
current_idx += self
.segment_metadata
.as_ref()
.unwrap()
.write_to_bytes(&mut buf[current_idx..])?;
}
current_idx += write_fss_field(
self.pdu_header.common_pdu_conf().file_flag,
self.offset,
&mut buf[current_idx..],
)?;
buf[current_idx..current_idx + self.file_data.len()].copy_from_slice(self.file_data);
current_idx += self.file_data.len();
if self.crc_flag() == CrcFlag::WithCrc {
current_idx = add_pdu_crc(buf, current_idx);
}
Ok(current_idx)
}
fn len_written(&self) -> usize {
self.pdu_header.header_len() + self.calc_pdu_datafield_len()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cfdp::pdu::tests::{TEST_DEST_ID, TEST_SEQ_NUM, TEST_SRC_ID};
use crate::cfdp::pdu::{CommonPduConfig, PduHeader};
use crate::cfdp::{Direction, SegmentMetadataFlag, SegmentationControl, TransmissionMode};
#[cfg(feature = "serde")]
use postcard::{from_bytes, to_allocvec};
#[test]
fn test_basic() {
let common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
let pdu_header = PduHeader::new_for_file_data_default(common_conf, 0);
let file_data: [u8; 4] = [1, 2, 3, 4];
let fd_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, 10, &file_data);
assert_eq!(fd_pdu.file_data(), file_data);
assert_eq!(fd_pdu.offset(), 10);
assert!(fd_pdu.segment_metadata().is_none());
assert_eq!(
fd_pdu.len_written(),
fd_pdu.pdu_header.header_len() + core::mem::size_of::<u32>() + 4
);
assert_eq!(fd_pdu.crc_flag(), CrcFlag::NoCrc);
assert_eq!(fd_pdu.file_flag(), LargeFileFlag::Normal);
assert_eq!(fd_pdu.pdu_type(), PduType::FileData);
assert_eq!(fd_pdu.file_directive_type(), None);
assert_eq!(fd_pdu.transmission_mode(), TransmissionMode::Acknowledged);
assert_eq!(fd_pdu.direction(), Direction::TowardsReceiver);
assert_eq!(fd_pdu.source_id(), TEST_SRC_ID.into());
assert_eq!(fd_pdu.dest_id(), TEST_DEST_ID.into());
assert_eq!(fd_pdu.transaction_seq_num(), TEST_SEQ_NUM.into());
}
#[test]
fn test_serialization() {
let common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
let pdu_header = PduHeader::new_for_file_data_default(common_conf, 0);
let file_data: [u8; 4] = [1, 2, 3, 4];
let fd_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, 10, &file_data);
let mut buf: [u8; 32] = [0; 32];
let res = fd_pdu.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
assert_eq!(
written,
fd_pdu.pdu_header.header_len() + core::mem::size_of::<u32>() + 4
);
let mut current_idx = fd_pdu.pdu_header.header_len();
let file_size = u32::from_be_bytes(
buf[fd_pdu.pdu_header.header_len()..fd_pdu.pdu_header.header_len() + 4]
.try_into()
.unwrap(),
);
current_idx += 4;
assert_eq!(file_size, 10);
assert_eq!(buf[current_idx], 1);
current_idx += 1;
assert_eq!(buf[current_idx], 2);
current_idx += 1;
assert_eq!(buf[current_idx], 3);
current_idx += 1;
assert_eq!(buf[current_idx], 4);
}
#[test]
fn test_write_to_vec() {
let common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
let pdu_header = PduHeader::new_for_file_data_default(common_conf, 0);
let file_data: [u8; 4] = [1, 2, 3, 4];
let fd_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, 10, &file_data);
let mut buf: [u8; 64] = [0; 64];
let written = fd_pdu.write_to_bytes(&mut buf).unwrap();
let pdu_vec = fd_pdu.to_vec().unwrap();
assert_eq!(buf[0..written], pdu_vec);
}
#[test]
fn test_deserialization() {
let common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
let pdu_header = PduHeader::new_for_file_data_default(common_conf, 0);
let file_data: [u8; 4] = [1, 2, 3, 4];
let fd_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, 10, &file_data);
let mut buf: [u8; 32] = [0; 32];
fd_pdu.write_to_bytes(&mut buf).unwrap();
let fd_pdu_read_back = FileDataPdu::from_bytes(&buf);
assert!(fd_pdu_read_back.is_ok());
let fd_pdu_read_back = fd_pdu_read_back.unwrap();
assert_eq!(fd_pdu_read_back, fd_pdu);
}
#[test]
fn test_with_crc() {
let mut common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
common_conf.crc_flag = true.into();
let pdu_header = PduHeader::new_for_file_data_default(common_conf, 0);
let file_data: [u8; 4] = [1, 2, 3, 4];
let fd_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, 10, &file_data);
let mut buf: [u8; 64] = [0; 64];
let written = fd_pdu.write_to_bytes(&mut buf).unwrap();
assert_eq!(written, fd_pdu.len_written());
let finished_pdu_from_raw = FileDataPdu::from_bytes(&buf).unwrap();
assert_eq!(finished_pdu_from_raw, fd_pdu);
buf[written - 1] -= 1;
let crc: u16 = ((buf[written - 2] as u16) << 8) | buf[written - 1] as u16;
let error = FileDataPdu::from_bytes(&buf).unwrap_err();
if let PduError::ChecksumError(e) = error {
assert_eq!(e, crc);
} else {
panic!("expected crc error");
}
}
#[test]
fn test_with_seg_metadata_serialization() {
let common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
let pdu_header = PduHeader::new_for_file_data(
common_conf,
0,
SegmentMetadataFlag::Present,
SegmentationControl::WithRecordBoundaryPreservation,
);
let file_data: [u8; 4] = [1, 2, 3, 4];
let seg_metadata: [u8; 4] = [4, 3, 2, 1];
let segment_meta =
SegmentMetadata::new(RecordContinuationState::StartAndEnd, Some(&seg_metadata))
.unwrap();
let fd_pdu = FileDataPdu::new_with_seg_metadata(pdu_header, segment_meta, 10, &file_data);
assert!(fd_pdu.segment_metadata().is_some());
assert_eq!(*fd_pdu.segment_metadata().unwrap(), segment_meta);
assert_eq!(
fd_pdu.len_written(),
fd_pdu.pdu_header.header_len()
+ 1
+ seg_metadata.len()
+ core::mem::size_of::<u32>()
+ 4
);
let mut buf: [u8; 32] = [0; 32];
fd_pdu
.write_to_bytes(&mut buf)
.expect("writing FD PDU failed");
let mut current_idx = fd_pdu.pdu_header.header_len();
assert_eq!(
RecordContinuationState::try_from((buf[current_idx] >> 6) & 0b11).unwrap(),
RecordContinuationState::StartAndEnd
);
assert_eq!((buf[current_idx] & 0b111111) as usize, seg_metadata.len());
current_idx += 1;
assert_eq!(buf[current_idx], 4);
current_idx += 1;
assert_eq!(buf[current_idx], 3);
current_idx += 1;
assert_eq!(buf[current_idx], 2);
current_idx += 1;
assert_eq!(buf[current_idx], 1);
current_idx += 1;
// Still verify that the rest is written correctly.
assert_eq!(
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap()),
10
);
current_idx += 4;
assert_eq!(buf[current_idx], 1);
current_idx += 1;
assert_eq!(buf[current_idx], 2);
current_idx += 1;
assert_eq!(buf[current_idx], 3);
current_idx += 1;
assert_eq!(buf[current_idx], 4);
current_idx += 1;
assert_eq!(current_idx, fd_pdu.len_written());
}
#[test]
fn test_with_seg_metadata_deserialization() {
let common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
let pdu_header = PduHeader::new_for_file_data(
common_conf,
0,
SegmentMetadataFlag::Present,
SegmentationControl::WithRecordBoundaryPreservation,
);
let file_data: [u8; 4] = [1, 2, 3, 4];
let seg_metadata: [u8; 4] = [4, 3, 2, 1];
let segment_meta =
SegmentMetadata::new(RecordContinuationState::StartAndEnd, Some(&seg_metadata))
.unwrap();
let fd_pdu = FileDataPdu::new_with_seg_metadata(pdu_header, segment_meta, 10, &file_data);
let mut buf: [u8; 32] = [0; 32];
fd_pdu
.write_to_bytes(&mut buf)
.expect("writing FD PDU failed");
let fd_pdu_read_back = FileDataPdu::from_bytes(&buf);
assert!(fd_pdu_read_back.is_ok());
let fd_pdu_read_back = fd_pdu_read_back.unwrap();
assert_eq!(fd_pdu_read_back, fd_pdu);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_serialization() {
let common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
let pdu_header = PduHeader::new_for_file_data_default(common_conf, 0);
let file_data: [u8; 4] = [1, 2, 3, 4];
let fd_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, 10, &file_data);
let output = to_allocvec(&fd_pdu).unwrap();
let output_converted_back: FileDataPdu = from_bytes(&output).unwrap();
assert_eq!(output_converted_back, fd_pdu);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_serialization_with_seg_metadata() {
let common_conf =
CommonPduConfig::new_with_byte_fields(TEST_SRC_ID, TEST_DEST_ID, TEST_SEQ_NUM).unwrap();
let pdu_header = PduHeader::new_for_file_data(
common_conf,
0,
SegmentMetadataFlag::Present,
SegmentationControl::WithRecordBoundaryPreservation,
);
let file_data: [u8; 4] = [1, 2, 3, 4];
let seg_metadata: [u8; 4] = [4, 3, 2, 1];
let segment_meta =
SegmentMetadata::new(RecordContinuationState::StartAndEnd, Some(&seg_metadata))
.unwrap();
let fd_pdu = FileDataPdu::new_with_seg_metadata(pdu_header, segment_meta, 10, &file_data);
let output = to_allocvec(&fd_pdu).unwrap();
let output_converted_back: FileDataPdu = from_bytes(&output).unwrap();
assert_eq!(output_converted_back, fd_pdu);
}
}

View File

@ -1,678 +0,0 @@
use crate::cfdp::pdu::{
add_pdu_crc, generic_length_checks_pdu_deserialization, FileDirectiveType, PduError, PduHeader,
};
use crate::cfdp::tlv::{
EntityIdTlv, FilestoreResponseTlv, GenericTlv, Tlv, TlvType, TlvTypeField, WritableTlv,
};
use crate::cfdp::{ConditionCode, CrcFlag, Direction, PduType, TlvLvError};
use crate::ByteConversionError;
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use super::{CfdpPdu, WritablePduPacket};
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum DeliveryCode {
Complete = 0,
Incomplete = 1,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum FileStatus {
DiscardDeliberately = 0b00,
DiscardedFsRejection = 0b01,
Retained = 0b10,
Unreported = 0b11,
}
/// Finished PDU abstraction.
///
/// For more information, refer to CFDP chapter 5.2.3.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct FinishedPduCreator<'fs_responses> {
pdu_header: PduHeader,
condition_code: ConditionCode,
delivery_code: DeliveryCode,
file_status: FileStatus,
fs_responses:
&'fs_responses [FilestoreResponseTlv<'fs_responses, 'fs_responses, 'fs_responses>],
fault_location: Option<EntityIdTlv>,
}
impl<'fs_responses> FinishedPduCreator<'fs_responses> {
/// Default finished PDU: No error (no fault location field) and no filestore responses.
pub fn new_default(
pdu_header: PduHeader,
delivery_code: DeliveryCode,
file_status: FileStatus,
) -> Self {
Self::new_generic(
pdu_header,
ConditionCode::NoError,
delivery_code,
file_status,
&[],
None,
)
}
pub fn new_with_error(
pdu_header: PduHeader,
condition_code: ConditionCode,
delivery_code: DeliveryCode,
file_status: FileStatus,
fault_location: EntityIdTlv,
) -> Self {
Self::new_generic(
pdu_header,
condition_code,
delivery_code,
file_status,
&[],
Some(fault_location),
)
}
pub fn new_generic(
mut pdu_header: PduHeader,
condition_code: ConditionCode,
delivery_code: DeliveryCode,
file_status: FileStatus,
fs_responses: &'fs_responses [FilestoreResponseTlv<
'fs_responses,
'fs_responses,
'fs_responses,
>],
fault_location: Option<EntityIdTlv>,
) -> Self {
pdu_header.pdu_type = PduType::FileDirective;
// Enforce correct direction bit.
pdu_header.pdu_conf.direction = Direction::TowardsSender;
let mut finished_pdu = Self {
pdu_header,
condition_code,
delivery_code,
file_status,
fs_responses,
fault_location,
};
finished_pdu.pdu_header.pdu_datafield_len = finished_pdu.calc_pdu_datafield_len() as u16;
finished_pdu
}
pub fn condition_code(&self) -> ConditionCode {
self.condition_code
}
pub fn delivery_code(&self) -> DeliveryCode {
self.delivery_code
}
pub fn file_status(&self) -> FileStatus {
self.file_status
}
// If there are no filestore responses, an empty slice will be returned.
pub fn filestore_responses(&self) -> &[FilestoreResponseTlv<'_, '_, '_>] {
self.fs_responses
}
pub fn fault_location(&self) -> Option<EntityIdTlv> {
self.fault_location
}
fn calc_pdu_datafield_len(&self) -> usize {
let mut datafield_len = 2;
for fs_response in self.fs_responses {
datafield_len += fs_response.len_full();
}
if let Some(fault_location) = self.fault_location {
datafield_len += fault_location.len_full();
}
if self.crc_flag() == CrcFlag::WithCrc {
datafield_len += 2;
}
datafield_len
}
}
impl CfdpPdu for FinishedPduCreator<'_> {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
Some(FileDirectiveType::FinishedPdu)
}
}
impl WritablePduPacket for FinishedPduCreator<'_> {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, PduError> {
let expected_len = self.len_written();
if buf.len() < expected_len {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: expected_len,
}
.into());
}
let mut current_idx = self.pdu_header.write_to_bytes(buf)?;
buf[current_idx] = FileDirectiveType::FinishedPdu as u8;
current_idx += 1;
buf[current_idx] = ((self.condition_code as u8) << 4)
| ((self.delivery_code as u8) << 2)
| self.file_status as u8;
current_idx += 1;
for fs_responses in self.fs_responses {
current_idx += fs_responses.write_to_bytes(&mut buf[current_idx..])?;
}
if let Some(fault_location) = self.fault_location {
current_idx += fault_location.write_to_bytes(&mut buf[current_idx..])?;
}
if self.crc_flag() == CrcFlag::WithCrc {
current_idx = add_pdu_crc(buf, current_idx);
}
Ok(current_idx)
}
fn len_written(&self) -> usize {
self.pdu_header.header_len() + self.calc_pdu_datafield_len()
}
}
/// Helper structure to loop through all filestore responses of a read Finished PDU. It should be
/// noted that iterators in Rust are not fallible, but the TLV creation can fail, for example if
/// the raw TLV data is invalid for some reason. In that case, the iterator will yield [None]
/// because there is no way to recover from this.
///
/// The user can accumulate the length of all TLVs yielded by the iterator and compare it against
/// the full length of the options to check whether the iterator was able to parse all TLVs
/// successfully.
pub struct FilestoreResponseIterator<'buf> {
responses_buf: &'buf [u8],
current_idx: usize,
}
impl<'buf> Iterator for FilestoreResponseIterator<'buf> {
type Item = FilestoreResponseTlv<'buf, 'buf, 'buf>;
fn next(&mut self) -> Option<Self::Item> {
if self.current_idx == self.responses_buf.len() {
return None;
}
let tlv = FilestoreResponseTlv::from_bytes(&self.responses_buf[self.current_idx..]);
// There are not really fallible iterators so we can't continue here..
if tlv.is_err() {
return None;
}
let tlv = tlv.unwrap();
self.current_idx += tlv.len_full();
Some(tlv)
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct FinishedPduReader<'buf> {
pdu_header: PduHeader,
condition_code: ConditionCode,
delivery_code: DeliveryCode,
file_status: FileStatus,
fs_responses_raw: &'buf [u8],
fault_location: Option<EntityIdTlv>,
}
impl<'buf> FinishedPduReader<'buf> {
/// Generates [Self] from a raw bytestream.
pub fn new(buf: &'buf [u8]) -> Result<Self, PduError> {
Self::from_bytes(buf)
}
/// Generates [Self] from a raw bytestream.
pub fn from_bytes(buf: &'buf [u8]) -> Result<Self, PduError> {
let (pdu_header, mut current_idx) = PduHeader::from_bytes(buf)?;
let full_len_without_crc = pdu_header.verify_length_and_checksum(buf)?;
let min_expected_len = current_idx + 2;
generic_length_checks_pdu_deserialization(buf, min_expected_len, full_len_without_crc)?;
let directive_type = FileDirectiveType::try_from(buf[current_idx]).map_err(|_| {
PduError::InvalidDirectiveType {
found: buf[current_idx],
expected: Some(FileDirectiveType::FinishedPdu),
}
})?;
if directive_type != FileDirectiveType::FinishedPdu {
return Err(PduError::WrongDirectiveType {
found: directive_type,
expected: FileDirectiveType::FinishedPdu,
});
}
current_idx += 1;
let condition_code = ConditionCode::try_from((buf[current_idx] >> 4) & 0b1111)
.map_err(|_| PduError::InvalidConditionCode((buf[current_idx] >> 4) & 0b1111))?;
// Unwrap is okay here for both of the following operations which can not fail.
let delivery_code = DeliveryCode::try_from((buf[current_idx] >> 2) & 0b1).unwrap();
let file_status = FileStatus::try_from(buf[current_idx] & 0b11).unwrap();
current_idx += 1;
let (fs_responses_raw, fault_location) =
Self::parse_tlv_fields(current_idx, full_len_without_crc, buf)?;
Ok(Self {
pdu_header,
condition_code,
delivery_code,
file_status,
fs_responses_raw,
fault_location,
})
}
pub fn fs_responses_raw(&self) -> &[u8] {
self.fs_responses_raw
}
pub fn fs_responses_iter(&self) -> FilestoreResponseIterator<'_> {
FilestoreResponseIterator {
responses_buf: self.fs_responses_raw,
current_idx: 0,
}
}
pub fn condition_code(&self) -> ConditionCode {
self.condition_code
}
pub fn delivery_code(&self) -> DeliveryCode {
self.delivery_code
}
pub fn file_status(&self) -> FileStatus {
self.file_status
}
pub fn fault_location(&self) -> Option<EntityIdTlv> {
self.fault_location
}
fn parse_tlv_fields(
mut current_idx: usize,
full_len_without_crc: usize,
buf: &[u8],
) -> Result<(&[u8], Option<EntityIdTlv>), PduError> {
let mut fs_responses: &[u8] = &[];
let mut fault_location = None;
let start_of_fs_responses = current_idx;
// There are leftover filestore response(s) and/or a fault location field.
while current_idx < full_len_without_crc {
let next_tlv = Tlv::from_bytes(&buf[current_idx..])?;
match next_tlv.tlv_type_field() {
TlvTypeField::Standard(tlv_type) => {
if tlv_type == TlvType::FilestoreResponse {
current_idx += next_tlv.len_full();
if current_idx == full_len_without_crc {
fs_responses = &buf[start_of_fs_responses..current_idx];
}
} else if tlv_type == TlvType::EntityId {
// At least one FS response is included.
if current_idx > start_of_fs_responses {
fs_responses = &buf[start_of_fs_responses..current_idx];
}
fault_location = Some(EntityIdTlv::from_bytes(&buf[current_idx..])?);
current_idx += fault_location.as_ref().unwrap().len_full();
// This is considered a configuration error: The entity ID has to be the
// last TLV, everything else would break the whole handling of the packet
// TLVs.
if current_idx != full_len_without_crc {
return Err(PduError::FormatError);
}
} else {
return Err(TlvLvError::InvalidTlvTypeField {
found: tlv_type.into(),
expected: Some(TlvType::FilestoreResponse.into()),
}
.into());
}
}
TlvTypeField::Custom(raw) => {
return Err(TlvLvError::InvalidTlvTypeField {
found: raw,
expected: None,
}
.into());
}
}
}
Ok((fs_responses, fault_location))
}
}
impl CfdpPdu for FinishedPduReader<'_> {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
Some(FileDirectiveType::FinishedPdu)
}
}
impl PartialEq<FinishedPduCreator<'_>> for FinishedPduReader<'_> {
fn eq(&self, other: &FinishedPduCreator<'_>) -> bool {
self.pdu_header == other.pdu_header
&& self.condition_code == other.condition_code
&& self.delivery_code == other.delivery_code
&& self.file_status == other.file_status
&& self.fault_location == other.fault_location
&& self
.fs_responses_iter()
.zip(other.filestore_responses().iter())
.all(|(a, b)| a == *b)
}
}
impl PartialEq<FinishedPduReader<'_>> for FinishedPduCreator<'_> {
fn eq(&self, other: &FinishedPduReader<'_>) -> bool {
other.eq(self)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cfdp::lv::Lv;
use crate::cfdp::pdu::tests::{
common_pdu_conf, verify_raw_header, TEST_DEST_ID, TEST_SEQ_NUM, TEST_SRC_ID,
};
use crate::cfdp::pdu::{FileDirectiveType, PduHeader};
use crate::cfdp::tlv::FilestoreResponseTlv;
use crate::cfdp::{ConditionCode, CrcFlag, Direction, LargeFileFlag, TransmissionMode};
fn generic_finished_pdu(
crc_flag: CrcFlag,
fss: LargeFileFlag,
delivery_code: DeliveryCode,
file_status: FileStatus,
) -> FinishedPduCreator<'static> {
let pdu_header = PduHeader::new_no_file_data(common_pdu_conf(crc_flag, fss), 0);
FinishedPduCreator::new_default(pdu_header, delivery_code, file_status)
}
#[test]
fn test_basic() {
let finished_pdu = generic_finished_pdu(
CrcFlag::NoCrc,
LargeFileFlag::Normal,
DeliveryCode::Complete,
FileStatus::Retained,
);
assert_eq!(finished_pdu.condition_code(), ConditionCode::NoError);
assert_eq!(
finished_pdu.pdu_header().pdu_conf.direction,
Direction::TowardsSender
);
assert_eq!(finished_pdu.delivery_code(), DeliveryCode::Complete);
assert_eq!(finished_pdu.file_status(), FileStatus::Retained);
assert_eq!(finished_pdu.filestore_responses(), &[]);
assert_eq!(finished_pdu.fault_location(), None);
assert_eq!(finished_pdu.pdu_header().pdu_datafield_len, 2);
assert_eq!(finished_pdu.crc_flag(), CrcFlag::NoCrc);
assert_eq!(finished_pdu.file_flag(), LargeFileFlag::Normal);
assert_eq!(finished_pdu.pdu_type(), PduType::FileDirective);
assert_eq!(
finished_pdu.file_directive_type(),
Some(FileDirectiveType::FinishedPdu)
);
assert_eq!(
finished_pdu.transmission_mode(),
TransmissionMode::Acknowledged
);
assert_eq!(finished_pdu.direction(), Direction::TowardsSender);
assert_eq!(finished_pdu.source_id(), TEST_SRC_ID.into());
assert_eq!(finished_pdu.dest_id(), TEST_DEST_ID.into());
assert_eq!(finished_pdu.transaction_seq_num(), TEST_SEQ_NUM.into());
}
fn generic_serialization_test_no_error(delivery_code: DeliveryCode, file_status: FileStatus) {
let finished_pdu = generic_finished_pdu(
CrcFlag::NoCrc,
LargeFileFlag::Normal,
delivery_code,
file_status,
);
let mut buf: [u8; 64] = [0; 64];
let written = finished_pdu.write_to_bytes(&mut buf);
assert!(written.is_ok());
let written = written.unwrap();
assert_eq!(written, 9);
assert_eq!(written, finished_pdu.len_written());
assert_eq!(written, finished_pdu.pdu_header().header_len() + 2);
assert_eq!(
finished_pdu.pdu_header().pdu_conf.direction,
Direction::TowardsSender
);
verify_raw_header(finished_pdu.pdu_header(), &buf);
let mut current_idx = finished_pdu.pdu_header().header_len();
assert_eq!(buf[current_idx], FileDirectiveType::FinishedPdu as u8);
current_idx += 1;
assert_eq!(
(buf[current_idx] >> 4) & 0b1111,
ConditionCode::NoError as u8
);
assert_eq!((buf[current_idx] >> 2) & 0b1, delivery_code as u8);
assert_eq!(buf[current_idx] & 0b11, file_status as u8);
assert_eq!(current_idx + 1, written);
}
#[test]
fn test_serialization_simple() {
generic_serialization_test_no_error(DeliveryCode::Complete, FileStatus::Retained);
}
#[test]
fn test_serialization_simple_2() {
generic_serialization_test_no_error(
DeliveryCode::Incomplete,
FileStatus::DiscardDeliberately,
);
}
#[test]
fn test_serialization_simple_3() {
generic_serialization_test_no_error(DeliveryCode::Incomplete, FileStatus::Unreported);
}
#[test]
fn test_write_to_vec() {
let finished_pdu = generic_finished_pdu(
CrcFlag::NoCrc,
LargeFileFlag::Normal,
DeliveryCode::Complete,
FileStatus::Retained,
);
let mut buf: [u8; 64] = [0; 64];
let written = finished_pdu.write_to_bytes(&mut buf).unwrap();
let pdu_vec = finished_pdu.to_vec().unwrap();
assert_eq!(buf[0..written], pdu_vec);
}
#[test]
fn test_deserialization_simple() {
let finished_pdu = generic_finished_pdu(
CrcFlag::NoCrc,
LargeFileFlag::Normal,
DeliveryCode::Complete,
FileStatus::Retained,
);
let mut buf: [u8; 64] = [0; 64];
finished_pdu.write_to_bytes(&mut buf).unwrap();
let read_back = FinishedPduReader::from_bytes(&buf);
assert!(read_back.is_ok());
let read_back = read_back.unwrap();
assert_eq!(finished_pdu, read_back);
// Use all getter functions here explicitely once.
assert_eq!(finished_pdu.pdu_header(), read_back.pdu_header());
assert_eq!(finished_pdu.condition_code(), read_back.condition_code());
assert_eq!(finished_pdu.fault_location(), read_back.fault_location());
assert_eq!(finished_pdu.file_status(), read_back.file_status());
assert_eq!(finished_pdu.delivery_code(), read_back.delivery_code());
}
#[test]
fn test_serialization_buf_too_small() {
let finished_pdu = generic_finished_pdu(
CrcFlag::NoCrc,
LargeFileFlag::Normal,
DeliveryCode::Complete,
FileStatus::Retained,
);
let mut buf: [u8; 8] = [0; 8];
let error = finished_pdu.write_to_bytes(&mut buf);
assert!(error.is_err());
if let PduError::ByteConversion(ByteConversionError::ToSliceTooSmall { found, expected }) =
error.unwrap_err()
{
assert_eq!(found, 8);
assert_eq!(expected, 9);
} else {
panic!("expected to_slice_too_small error");
}
}
#[test]
fn test_with_crc() {
let finished_pdu = generic_finished_pdu(
CrcFlag::WithCrc,
LargeFileFlag::Normal,
DeliveryCode::Complete,
FileStatus::Retained,
);
let mut buf: [u8; 64] = [0; 64];
let written = finished_pdu.write_to_bytes(&mut buf).unwrap();
assert_eq!(written, finished_pdu.len_written());
let finished_pdu_from_raw = FinishedPduReader::new(&buf).unwrap();
assert_eq!(finished_pdu, finished_pdu_from_raw);
buf[written - 1] -= 1;
let crc: u16 = ((buf[written - 2] as u16) << 8) as u16 | buf[written - 1] as u16;
let error = FinishedPduReader::new(&buf).unwrap_err();
if let PduError::ChecksumError(e) = error {
assert_eq!(e, crc);
} else {
panic!("expected crc error");
}
}
#[test]
fn test_with_fault_location() {
let pdu_header =
PduHeader::new_no_file_data(common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal), 0);
let finished_pdu = FinishedPduCreator::new_with_error(
pdu_header,
ConditionCode::NakLimitReached,
DeliveryCode::Incomplete,
FileStatus::DiscardDeliberately,
EntityIdTlv::new(TEST_DEST_ID.into()),
);
let finished_pdu_vec = finished_pdu.to_vec().unwrap();
assert_eq!(finished_pdu_vec.len(), 12);
assert_eq!(finished_pdu_vec[9], TlvType::EntityId.into());
assert_eq!(finished_pdu_vec[10], 1);
assert_eq!(finished_pdu_vec[11], TEST_DEST_ID.value());
assert_eq!(
finished_pdu.fault_location().unwrap().entity_id(),
&TEST_DEST_ID.into()
);
}
#[test]
fn test_deserialization_with_fault_location() {
let pdu_header =
PduHeader::new_no_file_data(common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal), 0);
let entity_id_tlv = EntityIdTlv::new(TEST_DEST_ID.into());
let finished_pdu = FinishedPduCreator::new_with_error(
pdu_header,
ConditionCode::NakLimitReached,
DeliveryCode::Incomplete,
FileStatus::DiscardDeliberately,
entity_id_tlv,
);
let finished_pdu_vec = finished_pdu.to_vec().unwrap();
let finished_pdu_deserialized = FinishedPduReader::from_bytes(&finished_pdu_vec).unwrap();
assert_eq!(finished_pdu, finished_pdu_deserialized);
}
#[test]
fn test_deserialization_with_fs_responses() {
let entity_id_tlv = EntityIdTlv::new(TEST_DEST_ID.into());
let first_name = "first.txt";
let first_name_lv = Lv::new_from_str(first_name).unwrap();
let fs_response_0 = FilestoreResponseTlv::new_no_filestore_message(
crate::cfdp::tlv::FilestoreActionCode::CreateFile,
0,
first_name_lv,
None,
)
.unwrap();
let fs_response_1 = FilestoreResponseTlv::new_no_filestore_message(
crate::cfdp::tlv::FilestoreActionCode::DeleteFile,
0,
first_name_lv,
None,
)
.unwrap();
let fs_responses = &[fs_response_0, fs_response_1];
let pdu_header =
PduHeader::new_no_file_data(common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal), 0);
let finished_pdu = FinishedPduCreator::new_generic(
pdu_header,
ConditionCode::NakLimitReached,
DeliveryCode::Incomplete,
FileStatus::DiscardDeliberately,
fs_responses,
Some(entity_id_tlv),
);
let finished_pdu_vec = finished_pdu.to_vec().unwrap();
let finished_pdu_deserialized = FinishedPduReader::from_bytes(&finished_pdu_vec).unwrap();
assert_eq!(finished_pdu_deserialized, finished_pdu);
}
#[test]
fn test_deserialization_with_fs_responses_and_fault_location() {
let first_name = "first.txt";
let first_name_lv = Lv::new_from_str(first_name).unwrap();
let fs_response_0 = FilestoreResponseTlv::new_no_filestore_message(
crate::cfdp::tlv::FilestoreActionCode::CreateFile,
0,
first_name_lv,
None,
)
.unwrap();
let fs_response_1 = FilestoreResponseTlv::new_no_filestore_message(
crate::cfdp::tlv::FilestoreActionCode::DeleteFile,
0,
first_name_lv,
None,
)
.unwrap();
let fs_responses = &[fs_response_0, fs_response_1];
let pdu_header =
PduHeader::new_no_file_data(common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal), 0);
let finished_pdu = FinishedPduCreator::new_generic(
pdu_header,
ConditionCode::NakLimitReached,
DeliveryCode::Incomplete,
FileStatus::DiscardDeliberately,
fs_responses,
None,
);
let finished_pdu_vec = finished_pdu.to_vec().unwrap();
let finished_pdu_deserialized = FinishedPduReader::from_bytes(&finished_pdu_vec).unwrap();
assert_eq!(finished_pdu_deserialized, finished_pdu);
}
}

View File

@ -1,768 +0,0 @@
use crate::cfdp::lv::Lv;
use crate::cfdp::pdu::{
add_pdu_crc, generic_length_checks_pdu_deserialization, read_fss_field, write_fss_field,
FileDirectiveType, PduError, PduHeader,
};
use crate::cfdp::tlv::{Tlv, WritableTlv};
use crate::cfdp::{ChecksumType, CrcFlag, Direction, LargeFileFlag, PduType};
use crate::ByteConversionError;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use super::{CfdpPdu, WritablePduPacket};
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MetadataGenericParams {
pub closure_requested: bool,
pub checksum_type: ChecksumType,
pub file_size: u64,
}
impl MetadataGenericParams {
pub fn new(closure_requested: bool, checksum_type: ChecksumType, file_size: u64) -> Self {
Self {
closure_requested,
checksum_type,
file_size,
}
}
}
pub fn build_metadata_opts_from_slice(
buf: &mut [u8],
tlvs: &[Tlv],
) -> Result<usize, ByteConversionError> {
let mut written = 0;
for tlv in tlvs {
written += tlv.write_to_bytes(&mut buf[written..])?;
}
Ok(written)
}
#[cfg(feature = "alloc")]
pub fn build_metadata_opts_from_vec(
buf: &mut [u8],
tlvs: &Vec<Tlv>,
) -> Result<usize, ByteConversionError> {
build_metadata_opts_from_slice(buf, tlvs.as_slice())
}
/// Metadata PDU creator abstraction.
///
/// This abstraction exposes a specialized API for creating metadata PDUs as specified in
/// CFDP chapter 5.2.5.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct MetadataPduCreator<'src_name, 'dest_name, 'opts> {
pdu_header: PduHeader,
metadata_params: MetadataGenericParams,
src_file_name: Lv<'src_name>,
dest_file_name: Lv<'dest_name>,
options: &'opts [Tlv<'opts>],
}
impl<'src_name, 'dest_name, 'opts> MetadataPduCreator<'src_name, 'dest_name, 'opts> {
pub fn new_no_opts(
pdu_header: PduHeader,
metadata_params: MetadataGenericParams,
src_file_name: Lv<'src_name>,
dest_file_name: Lv<'dest_name>,
) -> Self {
Self::new(
pdu_header,
metadata_params,
src_file_name,
dest_file_name,
&[],
)
}
pub fn new_with_opts(
pdu_header: PduHeader,
metadata_params: MetadataGenericParams,
src_file_name: Lv<'src_name>,
dest_file_name: Lv<'dest_name>,
options: &'opts [Tlv<'opts>],
) -> Self {
Self::new(
pdu_header,
metadata_params,
src_file_name,
dest_file_name,
options,
)
}
pub fn new(
mut pdu_header: PduHeader,
metadata_params: MetadataGenericParams,
src_file_name: Lv<'src_name>,
dest_file_name: Lv<'dest_name>,
options: &'opts [Tlv<'opts>],
) -> Self {
pdu_header.pdu_type = PduType::FileDirective;
pdu_header.pdu_conf.direction = Direction::TowardsReceiver;
let mut pdu = Self {
pdu_header,
metadata_params,
src_file_name,
dest_file_name,
options,
};
pdu.pdu_header.pdu_datafield_len = pdu.calc_pdu_datafield_len() as u16;
pdu
}
pub fn metadata_params(&self) -> &MetadataGenericParams {
&self.metadata_params
}
pub fn src_file_name(&self) -> Lv<'src_name> {
self.src_file_name
}
pub fn dest_file_name(&self) -> Lv<'dest_name> {
self.dest_file_name
}
pub fn options(&self) -> &'opts [Tlv<'opts>] {
self.options
}
fn calc_pdu_datafield_len(&self) -> usize {
// One directve type octet and one byte of the directive parameter field.
let mut len = 2;
if self.pdu_header.common_pdu_conf().file_flag == LargeFileFlag::Large {
len += 8;
} else {
len += 4;
}
len += self.src_file_name.len_full();
len += self.dest_file_name.len_full();
for tlv in self.options() {
len += tlv.len_full()
}
if self.crc_flag() == CrcFlag::WithCrc {
len += 2;
}
len
}
}
impl CfdpPdu for MetadataPduCreator<'_, '_, '_> {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
Some(FileDirectiveType::MetadataPdu)
}
}
impl WritablePduPacket for MetadataPduCreator<'_, '_, '_> {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, PduError> {
let expected_len = self.len_written();
if buf.len() < expected_len {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: expected_len,
}
.into());
}
let mut current_idx = self.pdu_header.write_to_bytes(buf)?;
buf[current_idx] = FileDirectiveType::MetadataPdu as u8;
current_idx += 1;
buf[current_idx] = ((self.metadata_params.closure_requested as u8) << 6)
| (self.metadata_params.checksum_type as u8);
current_idx += 1;
current_idx += write_fss_field(
self.pdu_header.common_pdu_conf().file_flag,
self.metadata_params.file_size,
&mut buf[current_idx..],
)?;
current_idx += self
.src_file_name
.write_to_be_bytes(&mut buf[current_idx..])?;
current_idx += self
.dest_file_name
.write_to_be_bytes(&mut buf[current_idx..])?;
for opt in self.options() {
opt.write_to_bytes(&mut buf[current_idx..current_idx + opt.len_full()])?;
current_idx += opt.len_full();
}
if self.crc_flag() == CrcFlag::WithCrc {
current_idx = add_pdu_crc(buf, current_idx);
}
Ok(current_idx)
}
fn len_written(&self) -> usize {
self.pdu_header.header_len() + self.calc_pdu_datafield_len()
}
}
/// Helper structure to loop through all options of a metadata PDU. It should be noted that
/// iterators in Rust are not fallible, but the TLV creation can fail, for example if the raw TLV
/// data is invalid for some reason. In that case, the iterator will yield [None] because there
/// is no way to recover from this.
///
/// The user can accumulate the length of all TLVs yielded by the iterator and compare it against
/// the full length of the options to check whether the iterator was able to parse all TLVs
/// successfully.
pub struct OptionsIter<'opts> {
opt_buf: &'opts [u8],
current_idx: usize,
}
impl<'opts> Iterator for OptionsIter<'opts> {
type Item = Tlv<'opts>;
fn next(&mut self) -> Option<Self::Item> {
if self.current_idx == self.opt_buf.len() {
return None;
}
let tlv = Tlv::from_bytes(&self.opt_buf[self.current_idx..]);
// There are not really fallible iterators so we can't continue here..
if tlv.is_err() {
return None;
}
let tlv = tlv.unwrap();
self.current_idx += tlv.len_full();
Some(tlv)
}
}
/// Metadata PDU reader abstraction.
///
/// This abstraction exposes a specialized API for reading a metadata PDU with minimal copying
/// involved.
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MetadataPduReader<'buf> {
pdu_header: PduHeader,
metadata_params: MetadataGenericParams,
#[cfg_attr(feature = "serde", serde(borrow))]
src_file_name: Lv<'buf>,
#[cfg_attr(feature = "serde", serde(borrow))]
dest_file_name: Lv<'buf>,
options: &'buf [u8],
}
impl<'raw> MetadataPduReader<'raw> {
pub fn new(buf: &'raw [u8]) -> Result<Self, PduError> {
Self::from_bytes(buf)
}
pub fn from_bytes(buf: &'raw [u8]) -> Result<Self, PduError> {
let (pdu_header, mut current_idx) = PduHeader::from_bytes(buf)?;
let full_len_without_crc = pdu_header.verify_length_and_checksum(buf)?;
let is_large_file = pdu_header.pdu_conf.file_flag == LargeFileFlag::Large;
// Minimal length: 1 byte + FSS (4 byte) + 2 empty LV (1 byte)
let mut min_expected_len = current_idx + 7;
if is_large_file {
min_expected_len += 4;
}
generic_length_checks_pdu_deserialization(buf, min_expected_len, full_len_without_crc)?;
let directive_type = FileDirectiveType::try_from(buf[current_idx]).map_err(|_| {
PduError::InvalidDirectiveType {
found: buf[current_idx],
expected: Some(FileDirectiveType::MetadataPdu),
}
})?;
if directive_type != FileDirectiveType::MetadataPdu {
return Err(PduError::WrongDirectiveType {
found: directive_type,
expected: FileDirectiveType::MetadataPdu,
});
}
current_idx += 1;
let (fss_len, file_size) =
read_fss_field(pdu_header.pdu_conf.file_flag, &buf[current_idx + 1..]);
let metadata_params = MetadataGenericParams {
closure_requested: ((buf[current_idx] >> 6) & 0b1) != 0,
checksum_type: ChecksumType::try_from(buf[current_idx] & 0b1111)
.map_err(|_| PduError::InvalidChecksumType(buf[current_idx] & 0b1111))?,
file_size,
};
current_idx += 1 + fss_len;
let src_file_name = Lv::from_bytes(&buf[current_idx..])?;
current_idx += src_file_name.len_full();
let dest_file_name = Lv::from_bytes(&buf[current_idx..])?;
current_idx += dest_file_name.len_full();
// All left-over bytes are options.
Ok(Self {
pdu_header,
metadata_params,
src_file_name,
dest_file_name,
options: &buf[current_idx..full_len_without_crc],
})
}
/// Yield an iterator which can be used to loop through all options. Returns [None] if the
/// options field is empty.
pub fn options_iter(&self) -> Option<OptionsIter<'_>> {
Some(OptionsIter {
opt_buf: self.options,
current_idx: 0,
})
}
pub fn options(&self) -> &'raw [u8] {
self.options
}
pub fn metadata_params(&self) -> &MetadataGenericParams {
&self.metadata_params
}
pub fn src_file_name(&self) -> Lv {
self.src_file_name
}
pub fn dest_file_name(&self) -> Lv {
self.dest_file_name
}
}
impl CfdpPdu for MetadataPduReader<'_> {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
Some(FileDirectiveType::MetadataPdu)
}
}
#[cfg(test)]
pub mod tests {
use alloc::string::ToString;
use crate::cfdp::lv::Lv;
use crate::cfdp::pdu::metadata::{
build_metadata_opts_from_slice, build_metadata_opts_from_vec, MetadataGenericParams,
MetadataPduCreator, MetadataPduReader,
};
use crate::cfdp::pdu::tests::{
common_pdu_conf, verify_raw_header, TEST_DEST_ID, TEST_SEQ_NUM, TEST_SRC_ID,
};
use crate::cfdp::pdu::{CfdpPdu, PduError, WritablePduPacket};
use crate::cfdp::pdu::{FileDirectiveType, PduHeader};
use crate::cfdp::tlv::{Tlv, TlvType};
use crate::cfdp::{
ChecksumType, CrcFlag, Direction, LargeFileFlag, PduType, SegmentMetadataFlag,
SegmentationControl, TransmissionMode,
};
use std::vec;
const SRC_FILENAME: &str = "hello-world.txt";
const DEST_FILENAME: &str = "hello-world2.txt";
fn generic_metadata_pdu<'opts>(
crc_flag: CrcFlag,
checksum_type: ChecksumType,
closure_requested: bool,
fss: LargeFileFlag,
opts: &'opts [Tlv],
) -> (
Lv<'static>,
Lv<'static>,
MetadataPduCreator<'static, 'static, 'opts>,
) {
let pdu_header = PduHeader::new_no_file_data(common_pdu_conf(crc_flag, fss), 0);
let metadata_params = MetadataGenericParams::new(closure_requested, checksum_type, 0x1010);
let src_filename = Lv::new_from_str(SRC_FILENAME).expect("Generating string LV failed");
let dest_filename =
Lv::new_from_str(DEST_FILENAME).expect("Generating destination LV failed");
(
src_filename,
dest_filename,
MetadataPduCreator::new(
pdu_header,
metadata_params,
src_filename,
dest_filename,
opts,
),
)
}
#[test]
fn test_basic() {
let (src_filename, dest_filename, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
ChecksumType::Crc32,
false,
LargeFileFlag::Normal,
&[],
);
assert_eq!(
metadata_pdu.len_written(),
metadata_pdu.pdu_header().header_len()
+ 1
+ 1
+ 4
+ src_filename.len_full()
+ dest_filename.len_full()
);
assert_eq!(metadata_pdu.src_file_name(), src_filename);
assert_eq!(metadata_pdu.dest_file_name(), dest_filename);
assert!(metadata_pdu.options().is_empty());
assert_eq!(metadata_pdu.crc_flag(), CrcFlag::NoCrc);
assert_eq!(metadata_pdu.file_flag(), LargeFileFlag::Normal);
assert_eq!(metadata_pdu.pdu_type(), PduType::FileDirective);
assert!(!metadata_pdu.metadata_params().closure_requested);
assert_eq!(
metadata_pdu.metadata_params().checksum_type,
ChecksumType::Crc32
);
assert_eq!(
metadata_pdu.file_directive_type(),
Some(FileDirectiveType::MetadataPdu)
);
assert_eq!(
metadata_pdu.transmission_mode(),
TransmissionMode::Acknowledged
);
assert_eq!(metadata_pdu.direction(), Direction::TowardsReceiver);
assert_eq!(metadata_pdu.source_id(), TEST_SRC_ID.into());
assert_eq!(metadata_pdu.dest_id(), TEST_DEST_ID.into());
assert_eq!(metadata_pdu.transaction_seq_num(), TEST_SEQ_NUM.into());
}
fn check_metadata_raw_fields(
metadata_pdu: &MetadataPduCreator,
buf: &[u8],
written_bytes: usize,
checksum_type: ChecksumType,
closure_requested: bool,
expected_src_filename: &Lv,
expected_dest_filename: &Lv,
) {
verify_raw_header(metadata_pdu.pdu_header(), buf);
assert_eq!(
written_bytes,
metadata_pdu.pdu_header.header_len()
+ 1
+ 1
+ 4
+ expected_src_filename.len_full()
+ expected_dest_filename.len_full()
);
assert_eq!(buf[7], FileDirectiveType::MetadataPdu as u8);
assert_eq!(buf[8] >> 6, closure_requested as u8);
assert_eq!(buf[8] & 0b1111, checksum_type as u8);
assert_eq!(u32::from_be_bytes(buf[9..13].try_into().unwrap()), 0x1010);
let mut current_idx = 13;
let src_name_from_raw =
Lv::from_bytes(&buf[current_idx..]).expect("Creating source name LV failed");
assert_eq!(src_name_from_raw, *expected_src_filename);
current_idx += src_name_from_raw.len_full();
let dest_name_from_raw =
Lv::from_bytes(&buf[current_idx..]).expect("Creating dest name LV failed");
assert_eq!(dest_name_from_raw, *expected_dest_filename);
current_idx += dest_name_from_raw.len_full();
// No options, so no additional data here.
assert_eq!(current_idx, written_bytes);
}
#[test]
fn test_serialization_0() {
let checksum_type = ChecksumType::Crc32;
let closure_requested = false;
let (src_filename, dest_filename, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
checksum_type,
closure_requested,
LargeFileFlag::Normal,
&[],
);
let mut buf: [u8; 64] = [0; 64];
let res = metadata_pdu.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
check_metadata_raw_fields(
&metadata_pdu,
&buf,
written,
checksum_type,
closure_requested,
&src_filename,
&dest_filename,
);
}
#[test]
fn test_serialization_1() {
let checksum_type = ChecksumType::Modular;
let closure_requested = true;
let (src_filename, dest_filename, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
checksum_type,
closure_requested,
LargeFileFlag::Normal,
&[],
);
let mut buf: [u8; 64] = [0; 64];
let res = metadata_pdu.write_to_bytes(&mut buf);
assert!(res.is_ok());
let written = res.unwrap();
check_metadata_raw_fields(
&metadata_pdu,
&buf,
written,
checksum_type,
closure_requested,
&src_filename,
&dest_filename,
);
}
#[test]
fn test_write_to_vec() {
let (_, _, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
ChecksumType::Crc32,
false,
LargeFileFlag::Normal,
&[],
);
let mut buf: [u8; 64] = [0; 64];
let pdu_vec = metadata_pdu.to_vec().unwrap();
let written = metadata_pdu.write_to_bytes(&mut buf).unwrap();
assert_eq!(buf[0..written], pdu_vec);
}
fn compare_read_pdu_to_written_pdu(written: &MetadataPduCreator, read: &MetadataPduReader) {
assert_eq!(written.metadata_params(), read.metadata_params());
assert_eq!(written.src_file_name(), read.src_file_name());
assert_eq!(written.dest_file_name(), read.dest_file_name());
let opts = written.options();
for (tlv_written, tlv_read) in opts.iter().zip(read.options_iter().unwrap()) {
assert_eq!(tlv_written, &tlv_read);
}
}
#[test]
fn test_deserialization() {
let (_, _, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
ChecksumType::Crc32,
true,
LargeFileFlag::Normal,
&[],
);
let mut buf: [u8; 64] = [0; 64];
metadata_pdu.write_to_bytes(&mut buf).unwrap();
let pdu_read_back = MetadataPduReader::from_bytes(&buf);
assert!(pdu_read_back.is_ok());
let pdu_read_back = pdu_read_back.unwrap();
compare_read_pdu_to_written_pdu(&metadata_pdu, &pdu_read_back);
}
#[test]
fn test_with_crc_flag() {
let (src_filename, dest_filename, metadata_pdu) = generic_metadata_pdu(
CrcFlag::WithCrc,
ChecksumType::Crc32,
true,
LargeFileFlag::Normal,
&[],
);
assert_eq!(metadata_pdu.crc_flag(), CrcFlag::WithCrc);
let mut buf: [u8; 64] = [0; 64];
let write_res = metadata_pdu.write_to_bytes(&mut buf);
assert!(write_res.is_ok());
let written = write_res.unwrap();
assert_eq!(
written,
metadata_pdu.pdu_header().header_len()
+ 1
+ 1
+ core::mem::size_of::<u32>()
+ src_filename.len_full()
+ dest_filename.len_full()
+ 2
);
assert_eq!(written, metadata_pdu.len_written());
let pdu_read_back = MetadataPduReader::new(&buf).unwrap();
compare_read_pdu_to_written_pdu(&metadata_pdu, &pdu_read_back);
}
#[test]
fn test_with_large_file_flag() {
let (src_filename, dest_filename, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
ChecksumType::Crc32,
false,
LargeFileFlag::Large,
&[],
);
let mut buf: [u8; 64] = [0; 64];
let write_res = metadata_pdu.write_to_bytes(&mut buf);
assert!(write_res.is_ok());
let written = write_res.unwrap();
assert_eq!(
written,
metadata_pdu.pdu_header().header_len()
+ 1
+ 1
+ core::mem::size_of::<u64>()
+ src_filename.len_full()
+ dest_filename.len_full()
);
let pdu_read_back = MetadataPduReader::new(&buf).unwrap();
compare_read_pdu_to_written_pdu(&metadata_pdu, &pdu_read_back);
}
#[test]
fn test_opts_builders() {
let tlv1 = Tlv::new_empty(TlvType::FlowLabel);
let msg_to_user: [u8; 4] = [1, 2, 3, 4];
let tlv2 = Tlv::new(TlvType::MsgToUser, &msg_to_user).unwrap();
let tlv_slice = [tlv1, tlv2];
let mut buf: [u8; 32] = [0; 32];
let opts = build_metadata_opts_from_slice(&mut buf, &tlv_slice);
assert!(opts.is_ok());
let opts_len = opts.unwrap();
assert_eq!(opts_len, tlv1.len_full() + tlv2.len_full());
let tlv1_conv_back = Tlv::from_bytes(&buf).unwrap();
assert_eq!(tlv1_conv_back, tlv1);
let tlv2_conv_back = Tlv::from_bytes(&buf[tlv1_conv_back.len_full()..]).unwrap();
assert_eq!(tlv2_conv_back, tlv2);
}
#[test]
fn test_opts_builders_from_vec() {
let tlv1 = Tlv::new_empty(TlvType::FlowLabel);
let msg_to_user: [u8; 4] = [1, 2, 3, 4];
let tlv2 = Tlv::new(TlvType::MsgToUser, &msg_to_user).unwrap();
let tlv_vec = vec![tlv1, tlv2];
let mut buf: [u8; 32] = [0; 32];
let opts = build_metadata_opts_from_vec(&mut buf, &tlv_vec);
assert!(opts.is_ok());
let opts_len = opts.unwrap();
assert_eq!(opts_len, tlv1.len_full() + tlv2.len_full());
let tlv1_conv_back = Tlv::from_bytes(&buf).unwrap();
assert_eq!(tlv1_conv_back, tlv1);
let tlv2_conv_back = Tlv::from_bytes(&buf[tlv1_conv_back.len_full()..]).unwrap();
assert_eq!(tlv2_conv_back, tlv2);
}
#[test]
fn test_with_opts() {
let tlv1 = Tlv::new_empty(TlvType::FlowLabel);
let msg_to_user: [u8; 4] = [1, 2, 3, 4];
let tlv2 = Tlv::new(TlvType::MsgToUser, &msg_to_user).unwrap();
let tlv_vec = vec![tlv1, tlv2];
let opts_len = tlv1.len_full() + tlv2.len_full();
let (src_filename, dest_filename, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
ChecksumType::Crc32,
false,
LargeFileFlag::Normal,
&tlv_vec,
);
let mut buf: [u8; 128] = [0; 128];
let write_res = metadata_pdu.write_to_bytes(&mut buf);
assert!(write_res.is_ok());
let written = write_res.unwrap();
assert_eq!(
written,
metadata_pdu.pdu_header.header_len()
+ 1
+ 1
+ 4
+ src_filename.len_full()
+ dest_filename.len_full()
+ opts_len
);
let pdu_read_back = MetadataPduReader::from_bytes(&buf).unwrap();
compare_read_pdu_to_written_pdu(&metadata_pdu, &pdu_read_back);
let opts_iter = pdu_read_back.options_iter();
assert!(opts_iter.is_some());
let opts_iter = opts_iter.unwrap();
let mut accumulated_len = 0;
for (idx, opt) in opts_iter.enumerate() {
assert_eq!(tlv_vec[idx], opt);
accumulated_len += opt.len_full();
}
assert_eq!(accumulated_len, pdu_read_back.options().len());
}
#[test]
fn test_invalid_directive_code() {
let (_, _, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
ChecksumType::Crc32,
true,
LargeFileFlag::Large,
&[],
);
let mut metadata_vec = metadata_pdu.to_vec().unwrap();
metadata_vec[7] = 0xff;
let metadata_error = MetadataPduReader::from_bytes(&metadata_vec);
assert!(metadata_error.is_err());
let error = metadata_error.unwrap_err();
if let PduError::InvalidDirectiveType { found, expected } = error {
assert_eq!(found, 0xff);
assert_eq!(expected, Some(FileDirectiveType::MetadataPdu));
assert_eq!(
error.to_string(),
"invalid directive type value 255, expected Some(MetadataPdu)"
);
} else {
panic!("Expected InvalidDirectiveType error, got {:?}", error);
}
}
#[test]
fn test_wrong_directive_code() {
let (_, _, metadata_pdu) = generic_metadata_pdu(
CrcFlag::NoCrc,
ChecksumType::Crc32,
false,
LargeFileFlag::Large,
&[],
);
let mut metadata_vec = metadata_pdu.to_vec().unwrap();
metadata_vec[7] = FileDirectiveType::EofPdu as u8;
let metadata_error = MetadataPduReader::from_bytes(&metadata_vec);
assert!(metadata_error.is_err());
let error = metadata_error.unwrap_err();
if let PduError::WrongDirectiveType { found, expected } = error {
assert_eq!(found, FileDirectiveType::EofPdu);
assert_eq!(expected, FileDirectiveType::MetadataPdu);
assert_eq!(
error.to_string(),
"found directive type EofPdu, expected MetadataPdu"
);
} else {
panic!("Expected InvalidDirectiveType error, got {:?}", error);
}
}
#[test]
fn test_corrects_pdu_header() {
let pdu_header = PduHeader::new_for_file_data(
common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal),
0,
SegmentMetadataFlag::NotPresent,
SegmentationControl::NoRecordBoundaryPreservation,
);
let metadata_params = MetadataGenericParams::new(false, ChecksumType::Crc32, 10);
let src_filename = Lv::new_from_str(SRC_FILENAME).expect("Generating string LV failed");
let dest_filename =
Lv::new_from_str(DEST_FILENAME).expect("Generating destination LV failed");
let metadata_pdu = MetadataPduCreator::new_no_opts(
pdu_header,
metadata_params,
src_filename,
dest_filename,
);
assert_eq!(metadata_pdu.pdu_header().pdu_type(), PduType::FileDirective);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,803 +0,0 @@
use crate::{
cfdp::{CrcFlag, Direction, LargeFileFlag},
ByteConversionError,
};
use core::{marker::PhantomData, mem::size_of};
use super::{
add_pdu_crc, generic_length_checks_pdu_deserialization, CfdpPdu, FileDirectiveType, PduError,
PduHeader, WritablePduPacket,
};
/// Helper type to encapsulate both normal file size segment requests and large file size segment
/// requests.
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum SegmentRequests<'a> {
U32Pairs(&'a [(u32, u32)]),
U64Pairs(&'a [(u64, u64)]),
}
impl SegmentRequests<'_> {
pub fn is_empty(&self) -> bool {
match self {
SegmentRequests::U32Pairs(pairs) => pairs.is_empty(),
SegmentRequests::U64Pairs(pairs) => pairs.is_empty(),
}
}
}
/// NAK PDU abstraction specialized in the creation of NAK PDUs.
///
/// It exposes a specialized API which simplifies to generate these NAK PDUs with the
/// format according to CFDP chapter 5.2.6.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct NakPduCreator<'seg_reqs> {
pdu_header: PduHeader,
start_of_scope: u64,
end_of_scope: u64,
segment_requests: Option<SegmentRequests<'seg_reqs>>,
}
impl<'seg_reqs> NakPduCreator<'seg_reqs> {
/// Please note that the start of scope and the end of scope need to be smaller or equal
/// to [u32::MAX] if the large file flag of the passed PDU configuration is
/// [LargeFileFlag::Normal].
///
/// ## Errrors
///
pub fn new_no_segment_requests(
pdu_header: PduHeader,
start_of_scope: u64,
end_of_scope: u64,
) -> Result<NakPduCreator<'seg_reqs>, PduError> {
Self::new_generic(pdu_header, start_of_scope, end_of_scope, None)
}
/// Default constructor for normal file sizes.
pub fn new(
pdu_header: PduHeader,
start_of_scope: u32,
end_of_scope: u32,
segment_requests: &'seg_reqs [(u32, u32)],
) -> Result<NakPduCreator, PduError> {
let mut passed_segment_requests = None;
if !segment_requests.is_empty() {
passed_segment_requests = Some(SegmentRequests::U32Pairs(segment_requests));
}
Self::new_generic(
pdu_header,
start_of_scope.into(),
end_of_scope.into(),
passed_segment_requests,
)
}
pub fn new_large_file_size(
pdu_header: PduHeader,
start_of_scope: u64,
end_of_scope: u64,
segment_requests: &'seg_reqs [(u64, u64)],
) -> Result<NakPduCreator, PduError> {
let mut passed_segment_requests = None;
if !segment_requests.is_empty() {
passed_segment_requests = Some(SegmentRequests::U64Pairs(segment_requests));
}
Self::new_generic(
pdu_header,
start_of_scope,
end_of_scope,
passed_segment_requests,
)
}
fn new_generic(
mut pdu_header: PduHeader,
start_of_scope: u64,
end_of_scope: u64,
segment_requests: Option<SegmentRequests<'seg_reqs>>,
) -> Result<NakPduCreator, PduError> {
// Force correct direction flag.
pdu_header.pdu_conf.direction = Direction::TowardsSender;
if let Some(ref segment_requests) = segment_requests {
match segment_requests {
SegmentRequests::U32Pairs(_) => {
if start_of_scope > u32::MAX as u64 || end_of_scope > u32::MAX as u64 {
return Err(PduError::InvalidStartOrEndOfScopeValue);
}
pdu_header.pdu_conf.file_flag = LargeFileFlag::Normal;
}
SegmentRequests::U64Pairs(_) => {
pdu_header.pdu_conf.file_flag = LargeFileFlag::Large;
}
}
};
let mut nak_pdu = Self {
pdu_header,
start_of_scope,
end_of_scope,
segment_requests,
};
nak_pdu.pdu_header.pdu_datafield_len = nak_pdu.calc_pdu_datafield_len() as u16;
Ok(nak_pdu)
}
pub fn start_of_scope(&self) -> u64 {
self.start_of_scope
}
pub fn end_of_scope(&self) -> u64 {
self.end_of_scope
}
pub fn segment_requests(&self) -> Option<&SegmentRequests> {
self.segment_requests.as_ref()
}
pub fn num_segment_reqs(&self) -> usize {
match &self.segment_requests {
Some(seg_reqs) => match seg_reqs {
SegmentRequests::U32Pairs(pairs) => pairs.len(),
SegmentRequests::U64Pairs(pairs) => pairs.len(),
},
None => 0,
}
}
pub fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn calc_pdu_datafield_len(&self) -> usize {
let mut datafield_len = 1;
if self.file_flag() == LargeFileFlag::Normal {
datafield_len += 8;
datafield_len += self.num_segment_reqs() * 8;
} else {
datafield_len += 16;
datafield_len += self.num_segment_reqs() * 16;
}
if self.crc_flag() == CrcFlag::WithCrc {
datafield_len += 2;
}
datafield_len
}
}
impl CfdpPdu for NakPduCreator<'_> {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
Some(FileDirectiveType::NakPdu)
}
}
impl WritablePduPacket for NakPduCreator<'_> {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, PduError> {
let expected_len = self.len_written();
if buf.len() < expected_len {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: expected_len,
}
.into());
}
let mut current_idx = self.pdu_header.write_to_bytes(buf)?;
buf[current_idx] = FileDirectiveType::NakPdu as u8;
current_idx += 1;
let mut write_start_end_of_scope_normal = || {
let start_of_scope = u32::try_from(self.start_of_scope).unwrap();
let end_of_scope = u32::try_from(self.end_of_scope).unwrap();
buf[current_idx..current_idx + 4].copy_from_slice(&start_of_scope.to_be_bytes());
current_idx += 4;
buf[current_idx..current_idx + 4].copy_from_slice(&end_of_scope.to_be_bytes());
current_idx += 4;
};
if let Some(ref seg_reqs) = self.segment_requests {
match seg_reqs {
SegmentRequests::U32Pairs(pairs) => {
// Unwrap is okay here, the API should prevent invalid values which would trigger a
// panic here.
write_start_end_of_scope_normal();
for (next_start_offset, next_end_offset) in *pairs {
buf[current_idx..current_idx + 4]
.copy_from_slice(&next_start_offset.to_be_bytes());
current_idx += 4;
buf[current_idx..current_idx + 4]
.copy_from_slice(&next_end_offset.to_be_bytes());
current_idx += 4;
}
}
SegmentRequests::U64Pairs(pairs) => {
buf[current_idx..current_idx + 8]
.copy_from_slice(&self.start_of_scope.to_be_bytes());
current_idx += 8;
buf[current_idx..current_idx + 8]
.copy_from_slice(&self.end_of_scope.to_be_bytes());
current_idx += 8;
for (next_start_offset, next_end_offset) in *pairs {
buf[current_idx..current_idx + 8]
.copy_from_slice(&next_start_offset.to_be_bytes());
current_idx += 8;
buf[current_idx..current_idx + 8]
.copy_from_slice(&next_end_offset.to_be_bytes());
current_idx += 8;
}
}
}
} else {
write_start_end_of_scope_normal();
}
if self.crc_flag() == CrcFlag::WithCrc {
current_idx = add_pdu_crc(buf, current_idx);
}
Ok(current_idx)
}
fn len_written(&self) -> usize {
self.pdu_header.header_len() + self.calc_pdu_datafield_len()
}
}
/// Special iterator type for the NAK PDU which allows to iterate over both normal and large file
/// segment requests.
#[derive(Debug)]
pub struct SegmentRequestIter<'a, T> {
seq_req_raw: &'a [u8],
current_idx: usize,
phantom: core::marker::PhantomData<T>,
}
pub trait SegReqFromBytes {
fn from_bytes(bytes: &[u8]) -> Self;
}
impl SegReqFromBytes for u32 {
fn from_bytes(bytes: &[u8]) -> u32 {
u32::from_be_bytes(bytes.try_into().unwrap())
}
}
impl SegReqFromBytes for u64 {
fn from_bytes(bytes: &[u8]) -> u64 {
u64::from_be_bytes(bytes.try_into().unwrap())
}
}
impl<'a, T> Iterator for SegmentRequestIter<'a, T>
where
T: SegReqFromBytes,
{
type Item = (T, T);
fn next(&mut self) -> Option<Self::Item> {
let value = self.next_at_offset(self.current_idx);
self.current_idx += 2 * size_of::<T>();
value
}
}
impl<'a, 'b> PartialEq<SegmentRequests<'a>> for SegmentRequestIter<'b, u32> {
fn eq(&self, other: &SegmentRequests) -> bool {
match other {
SegmentRequests::U32Pairs(pairs) => self.compare_pairs(pairs),
SegmentRequests::U64Pairs(pairs) => {
if pairs.is_empty() && self.seq_req_raw.is_empty() {
return true;
}
false
}
}
}
}
impl<'a, 'b> PartialEq<SegmentRequests<'a>> for SegmentRequestIter<'b, u64> {
fn eq(&self, other: &SegmentRequests) -> bool {
match other {
SegmentRequests::U32Pairs(pairs) => {
if pairs.is_empty() && self.seq_req_raw.is_empty() {
return true;
}
false
}
SegmentRequests::U64Pairs(pairs) => self.compare_pairs(pairs),
}
}
}
impl<'a, T> SegmentRequestIter<'a, T>
where
T: SegReqFromBytes + PartialEq,
{
fn compare_pairs(&self, pairs: &[(T, T)]) -> bool {
if pairs.is_empty() && self.seq_req_raw.is_empty() {
return true;
}
let size = size_of::<T>();
if pairs.len() * 2 * size != self.seq_req_raw.len() {
return false;
}
for (i, pair) in pairs.iter().enumerate() {
let next_val = self.next_at_offset(i * 2 * size).unwrap();
if next_val != *pair {
return false;
}
}
true
}
}
impl<T: SegReqFromBytes> SegmentRequestIter<'_, T> {
fn next_at_offset(&self, mut offset: usize) -> Option<(T, T)> {
if offset + size_of::<T>() * 2 > self.seq_req_raw.len() {
return None;
}
let start_offset = T::from_bytes(&self.seq_req_raw[offset..offset + size_of::<T>()]);
offset += size_of::<T>();
let end_offset = T::from_bytes(&self.seq_req_raw[offset..offset + size_of::<T>()]);
Some((start_offset, end_offset))
}
}
/// NAK PDU abstraction specialized in the reading NAK PDUs from a raw bytestream.
///
/// This is a zero-copy class where the segment requests can be read using a special iterator
/// API without the need to copy them.
///
/// The NAK format is expected to be conforming to CFDP chapter 5.2.6.
#[derive(Debug, PartialEq, Eq)]
pub struct NakPduReader<'seg_reqs> {
pdu_header: PduHeader,
start_of_scope: u64,
end_of_scope: u64,
seg_reqs_raw: &'seg_reqs [u8],
}
impl CfdpPdu for NakPduReader<'_> {
fn pdu_header(&self) -> &PduHeader {
&self.pdu_header
}
fn file_directive_type(&self) -> Option<FileDirectiveType> {
Some(FileDirectiveType::NakPdu)
}
}
impl<'seg_reqs> NakPduReader<'seg_reqs> {
pub fn new(buf: &'seg_reqs [u8]) -> Result<NakPduReader, PduError> {
Self::from_bytes(buf)
}
pub fn from_bytes(buf: &'seg_reqs [u8]) -> Result<NakPduReader, PduError> {
let (pdu_header, mut current_idx) = PduHeader::from_bytes(buf)?;
let full_len_without_crc = pdu_header.verify_length_and_checksum(buf)?;
// Minimum length of 9: 1 byte directive field and start and end of scope for normal file
// size.
generic_length_checks_pdu_deserialization(buf, 9, full_len_without_crc)?;
let directive_type = FileDirectiveType::try_from(buf[current_idx]).map_err(|_| {
PduError::InvalidDirectiveType {
found: buf[current_idx],
expected: Some(FileDirectiveType::NakPdu),
}
})?;
if directive_type != FileDirectiveType::NakPdu {
return Err(PduError::WrongDirectiveType {
found: directive_type,
expected: FileDirectiveType::AckPdu,
});
}
current_idx += 1;
let start_of_scope;
let end_of_scope;
if pdu_header.common_pdu_conf().file_flag == LargeFileFlag::Large {
if current_idx + 16 > buf.len() {
return Err(PduError::ByteConversion(
ByteConversionError::FromSliceTooSmall {
found: buf.len(),
expected: current_idx + 16,
},
));
}
start_of_scope =
u64::from_be_bytes(buf[current_idx..current_idx + 8].try_into().unwrap());
current_idx += 8;
end_of_scope =
u64::from_be_bytes(buf[current_idx..current_idx + 8].try_into().unwrap());
current_idx += 8;
} else {
start_of_scope =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap()) as u64;
current_idx += 4;
end_of_scope =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap()) as u64;
current_idx += 4;
}
Ok(Self {
pdu_header,
start_of_scope,
end_of_scope,
seg_reqs_raw: &buf[current_idx..full_len_without_crc],
})
}
pub fn start_of_scope(&self) -> u64 {
self.start_of_scope
}
pub fn end_of_scope(&self) -> u64 {
self.end_of_scope
}
pub fn num_segment_reqs(&self) -> usize {
if self.seg_reqs_raw.is_empty() {
return 0;
}
if self.file_flag() == LargeFileFlag::Normal {
self.seg_reqs_raw.len() / 8
} else {
self.seg_reqs_raw.len() / 16
}
}
/// This function returns [None] if this NAK PDUs contains segment requests for a large file.
pub fn get_normal_segment_requests_iterator(&self) -> Option<SegmentRequestIter<'_, u32>> {
if self.file_flag() == LargeFileFlag::Large {
return None;
}
Some(SegmentRequestIter {
seq_req_raw: self.seg_reqs_raw,
current_idx: 0,
phantom: PhantomData,
})
}
/// This function returns [None] if this NAK PDUs contains segment requests for a normal file.
pub fn get_large_segment_requests_iterator(&self) -> Option<SegmentRequestIter<'_, u64>> {
if self.file_flag() == LargeFileFlag::Normal {
return None;
}
Some(SegmentRequestIter {
seq_req_raw: self.seg_reqs_raw,
current_idx: 0,
phantom: PhantomData,
})
}
}
impl<'a, 'b> PartialEq<NakPduCreator<'a>> for NakPduReader<'b> {
fn eq(&self, other: &NakPduCreator<'a>) -> bool {
if self.pdu_header() != other.pdu_header()
|| self.end_of_scope() != other.end_of_scope()
|| self.start_of_scope() != other.start_of_scope()
{
return false;
}
// Check if both segment requests are empty or None
match (self.seg_reqs_raw.is_empty(), other.segment_requests()) {
(true, None) => true,
(true, Some(seg_reqs)) => seg_reqs.is_empty(),
(false, None) => false,
_ => {
// Compare based on file_flag
if self.file_flag() == LargeFileFlag::Normal {
let normal_iter = self.get_normal_segment_requests_iterator().unwrap();
normal_iter == *other.segment_requests().unwrap()
} else {
let large_iter = self.get_large_segment_requests_iterator().unwrap();
large_iter == *other.segment_requests().unwrap()
}
}
}
}
}
#[cfg(test)]
mod tests {
use alloc::string::ToString;
use crate::cfdp::{
pdu::tests::{common_pdu_conf, verify_raw_header, TEST_DEST_ID, TEST_SEQ_NUM, TEST_SRC_ID},
PduType, TransmissionMode,
};
use super::*;
fn check_generic_fields(nak_pdu: &impl CfdpPdu) {
assert_eq!(nak_pdu.crc_flag(), CrcFlag::NoCrc);
assert_eq!(nak_pdu.file_flag(), LargeFileFlag::Normal);
assert_eq!(nak_pdu.pdu_type(), PduType::FileDirective);
assert_eq!(
nak_pdu.file_directive_type(),
Some(FileDirectiveType::NakPdu),
);
assert_eq!(nak_pdu.transmission_mode(), TransmissionMode::Acknowledged);
assert_eq!(nak_pdu.direction(), Direction::TowardsSender);
assert_eq!(nak_pdu.source_id(), TEST_SRC_ID.into());
assert_eq!(nak_pdu.dest_id(), TEST_DEST_ID.into());
assert_eq!(nak_pdu.transaction_seq_num(), TEST_SEQ_NUM.into());
}
#[test]
fn test_seg_request_api() {
let seg_req = SegmentRequests::U32Pairs(&[]);
assert!(seg_req.is_empty());
let seg_req = SegmentRequests::U64Pairs(&[]);
assert!(seg_req.is_empty());
}
#[test]
fn test_basic_creator() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu = NakPduCreator::new_no_segment_requests(pdu_header, 0, 0)
.expect("creating NAK PDU creator failed");
assert_eq!(nak_pdu.start_of_scope(), 0);
assert_eq!(nak_pdu.end_of_scope(), 0);
assert_eq!(nak_pdu.segment_requests(), None);
assert_eq!(nak_pdu.num_segment_reqs(), 0);
check_generic_fields(&nak_pdu);
}
#[test]
fn test_serialization_empty() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu = NakPduCreator::new_no_segment_requests(pdu_header, 100, 300)
.expect("creating NAK PDU creator failed");
assert_eq!(nak_pdu.start_of_scope(), 100);
assert_eq!(nak_pdu.end_of_scope(), 300);
let mut buf: [u8; 64] = [0; 64];
nak_pdu
.write_to_bytes(&mut buf)
.expect("writing NAK PDU to buffer failed");
verify_raw_header(nak_pdu.pdu_header(), &buf);
let mut current_idx = nak_pdu.pdu_header().header_len();
assert_eq!(current_idx + 9, nak_pdu.len_written());
assert_eq!(buf[current_idx], FileDirectiveType::NakPdu as u8);
current_idx += 1;
let start_of_scope =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
assert_eq!(start_of_scope, 100);
current_idx += 4;
let end_of_scope =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
assert_eq!(end_of_scope, 300);
current_idx += 4;
assert_eq!(current_idx, nak_pdu.len_written());
}
#[test]
fn test_serialization_two_segments() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu = NakPduCreator::new(pdu_header, 100, 300, &[(0, 0), (32, 64)])
.expect("creating NAK PDU creator failed");
let mut buf: [u8; 64] = [0; 64];
nak_pdu
.write_to_bytes(&mut buf)
.expect("writing NAK PDU to buffer failed");
verify_raw_header(nak_pdu.pdu_header(), &buf);
let mut current_idx = nak_pdu.pdu_header().header_len();
assert_eq!(current_idx + 9 + 16, nak_pdu.len_written());
assert_eq!(buf[current_idx], FileDirectiveType::NakPdu as u8);
current_idx += 1;
let start_of_scope =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
assert_eq!(start_of_scope, 100);
current_idx += 4;
let end_of_scope =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
assert_eq!(end_of_scope, 300);
current_idx += 4;
let first_seg_start =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
assert_eq!(first_seg_start, 0);
current_idx += 4;
let first_seg_end =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
assert_eq!(first_seg_end, 0);
current_idx += 4;
let second_seg_start =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
assert_eq!(second_seg_start, 32);
current_idx += 4;
let second_seg_end =
u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap());
assert_eq!(second_seg_end, 64);
current_idx += 4;
assert_eq!(current_idx, nak_pdu.len_written());
}
#[test]
fn test_deserialization_empty() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu = NakPduCreator::new_no_segment_requests(pdu_header, 100, 300)
.expect("creating NAK PDU creator failed");
let mut buf: [u8; 64] = [0; 64];
nak_pdu
.write_to_bytes(&mut buf)
.expect("writing NAK PDU to buffer failed");
let nak_pdu_deser = NakPduReader::from_bytes(&buf).expect("deserializing NAK PDU failed");
assert_eq!(nak_pdu_deser, nak_pdu);
check_generic_fields(&nak_pdu_deser);
}
#[test]
fn test_deserialization_large_segments() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Large);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu =
NakPduCreator::new_large_file_size(pdu_header, 100, 300, &[(50, 100), (200, 300)])
.expect("creating NAK PDU creator failed");
let mut buf: [u8; 128] = [0; 128];
nak_pdu
.write_to_bytes(&mut buf)
.expect("writing NAK PDU to buffer failed");
let nak_pdu_deser = NakPduReader::from_bytes(&buf).expect("deserializing NAK PDU failed");
assert_eq!(nak_pdu_deser, nak_pdu);
assert_eq!(nak_pdu_deser.start_of_scope(), 100);
assert_eq!(nak_pdu_deser.end_of_scope(), 300);
assert_eq!(nak_pdu_deser.num_segment_reqs(), 2);
assert!(nak_pdu_deser
.get_large_segment_requests_iterator()
.is_some());
assert!(nak_pdu_deser
.get_normal_segment_requests_iterator()
.is_none());
assert_eq!(
nak_pdu_deser
.get_large_segment_requests_iterator()
.unwrap()
.count(),
2
);
for (idx, large_segments) in nak_pdu_deser
.get_large_segment_requests_iterator()
.unwrap()
.enumerate()
{
if idx == 0 {
assert_eq!(large_segments.0, 50);
assert_eq!(large_segments.1, 100);
} else {
assert_eq!(large_segments.0, 200);
assert_eq!(large_segments.1, 300);
}
}
}
#[test]
fn test_deserialization_normal_segments() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu = NakPduCreator::new(pdu_header, 100, 300, &[(50, 100), (200, 300)])
.expect("creating NAK PDU creator failed");
let mut buf: [u8; 128] = [0; 128];
nak_pdu
.write_to_bytes(&mut buf)
.expect("writing NAK PDU to buffer failed");
let nak_pdu_deser = NakPduReader::from_bytes(&buf).expect("deserializing NAK PDU failed");
assert_eq!(nak_pdu_deser, nak_pdu);
assert_eq!(nak_pdu_deser.start_of_scope(), 100);
assert_eq!(nak_pdu_deser.end_of_scope(), 300);
assert_eq!(nak_pdu_deser.num_segment_reqs(), 2);
assert!(nak_pdu_deser
.get_normal_segment_requests_iterator()
.is_some());
assert!(nak_pdu_deser
.get_large_segment_requests_iterator()
.is_none());
assert_eq!(
nak_pdu_deser
.get_normal_segment_requests_iterator()
.unwrap()
.count(),
2
);
for (idx, large_segments) in nak_pdu_deser
.get_normal_segment_requests_iterator()
.unwrap()
.enumerate()
{
if idx == 0 {
assert_eq!(large_segments.0, 50);
assert_eq!(large_segments.1, 100);
} else {
assert_eq!(large_segments.0, 200);
assert_eq!(large_segments.1, 300);
}
}
}
#[test]
fn test_empty_is_empty() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu_0 =
NakPduCreator::new(pdu_header, 100, 300, &[]).expect("creating NAK PDU creator failed");
let nak_pdu_1 = NakPduCreator::new_no_segment_requests(pdu_header, 100, 300)
.expect("creating NAK PDU creator failed");
assert_eq!(nak_pdu_0, nak_pdu_1);
// Assert the segment request is mapped to None.
assert!(nak_pdu_0.segment_requests().is_none());
}
#[test]
fn test_new_generic_invalid_input() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let u32_list = SegmentRequests::U32Pairs(&[(0, 50), (50, 100)]);
//let error = NakPduCreator::new_generic(pdu_header, 100, 300, Some(u32_list));
let error = NakPduCreator::new_generic(
pdu_header,
u32::MAX as u64 + 1,
u32::MAX as u64 + 2,
Some(u32_list),
);
assert!(error.is_err());
let error = error.unwrap_err();
if let PduError::InvalidStartOrEndOfScopeValue = error {
assert_eq!(
error.to_string(),
"invalid start or end of scope for NAK PDU"
);
} else {
panic!("unexpected error {error}");
}
}
#[test]
fn test_target_buf_too_small() {
let pdu_conf = common_pdu_conf(CrcFlag::NoCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu = NakPduCreator::new_no_segment_requests(pdu_header, 100, 300)
.expect("creating NAK PDU creator failed");
assert_eq!(nak_pdu.start_of_scope(), 100);
assert_eq!(nak_pdu.end_of_scope(), 300);
let mut buf: [u8; 5] = [0; 5];
let error = nak_pdu.write_to_bytes(&mut buf);
assert!(error.is_err());
let e = error.unwrap_err();
match e {
PduError::ByteConversion(conv_error) => match conv_error {
ByteConversionError::ToSliceTooSmall { found, expected } => {
assert_eq!(expected, nak_pdu.len_written());
assert_eq!(found, 5);
}
_ => panic!("unexpected error {conv_error}"),
},
_ => panic!("unexpected error {e}"),
}
}
#[test]
fn test_with_crc() {
let pdu_conf = common_pdu_conf(CrcFlag::WithCrc, LargeFileFlag::Normal);
let pdu_header = PduHeader::new_no_file_data(pdu_conf, 0);
let nak_pdu = NakPduCreator::new_no_segment_requests(pdu_header, 0, 0)
.expect("creating NAK PDU creator failed");
let mut nak_vec = nak_pdu.to_vec().expect("writing NAK to vector failed");
assert_eq!(nak_vec.len(), pdu_header.header_len() + 9 + 2);
assert_eq!(nak_vec.len(), nak_pdu.len_written());
let nak_pdu_deser = NakPduReader::new(&nak_vec).expect("reading NAK PDU failed");
assert_eq!(nak_pdu_deser, nak_pdu);
nak_vec[nak_pdu.len_written() - 1] -= 1;
let nak_pdu_deser = NakPduReader::new(&nak_vec);
assert!(nak_pdu_deser.is_err());
if let Err(PduError::ChecksumError(raw)) = nak_pdu_deser {
assert_eq!(
raw,
u16::from_be_bytes(nak_vec[nak_pdu.len_written() - 2..].try_into().unwrap())
);
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,173 +0,0 @@
//! Abstractions for the Message to User CFDP TLV subtype.
use super::{GenericTlv, Tlv, TlvLvError, TlvType, TlvTypeField, WritableTlv};
use crate::ByteConversionError;
use delegate::delegate;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct MsgToUserTlv<'data> {
pub tlv: Tlv<'data>,
}
impl<'data> MsgToUserTlv<'data> {
/// Create a new message to user TLV where the type field is set correctly.
pub fn new(value: &'data [u8]) -> Result<MsgToUserTlv<'data>, TlvLvError> {
Ok(Self {
tlv: Tlv::new(TlvType::MsgToUser, value)?,
})
}
delegate! {
to self.tlv {
pub fn value(&self) -> &[u8];
/// Helper method to retrieve the length of the value. Simply calls the [slice::len] method of
/// [Self::value]
pub fn len_value(&self) -> usize;
/// Returns the full raw length, including the length byte.
pub fn len_full(&self) -> usize;
/// Checks whether the value field is empty.
pub fn is_empty(&self) -> bool;
/// If the TLV was generated from a raw bytestream using [Self::from_bytes], the raw start
/// of the TLV can be retrieved with this method.
pub fn raw_data(&self) -> Option<&[u8]>;
}
}
pub fn is_standard_tlv(&self) -> bool {
true
}
pub fn tlv_type(&self) -> Option<TlvType> {
Some(TlvType::MsgToUser)
}
/// Check whether this message is a reserved CFDP message like a Proxy Operation Message.
pub fn is_reserved_cfdp_msg(&self) -> bool {
if self.value().len() < 4 {
return false;
}
let value = self.value();
if value[0] == b'c' && value[1] == b'f' && value[2] == b'd' && value[3] == b'p' {
return true;
}
false
}
/// This is a thin wrapper around [Tlv::from_bytes] with the additional type check.
pub fn from_bytes(buf: &'data [u8]) -> Result<MsgToUserTlv<'data>, TlvLvError> {
let msg_to_user = Self {
tlv: Tlv::from_bytes(buf)?,
};
match msg_to_user.tlv.tlv_type_field() {
TlvTypeField::Standard(tlv_type) => {
if tlv_type != TlvType::MsgToUser {
return Err(TlvLvError::InvalidTlvTypeField {
found: tlv_type as u8,
expected: Some(TlvType::MsgToUser as u8),
});
}
}
TlvTypeField::Custom(raw) => {
return Err(TlvLvError::InvalidTlvTypeField {
found: raw,
expected: Some(TlvType::MsgToUser as u8),
});
}
}
Ok(msg_to_user)
}
}
impl WritableTlv for MsgToUserTlv<'_> {
fn len_written(&self) -> usize {
self.len_full()
}
delegate!(
to self.tlv {
fn write_to_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError>;
}
);
}
impl GenericTlv for MsgToUserTlv<'_> {
fn tlv_type_field(&self) -> TlvTypeField {
self.tlv.tlv_type_field()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basic() {
let custom_value: [u8; 4] = [1, 2, 3, 4];
let msg_to_user = MsgToUserTlv::new(&custom_value);
assert!(msg_to_user.is_ok());
let msg_to_user = msg_to_user.unwrap();
assert!(msg_to_user.is_standard_tlv());
assert_eq!(msg_to_user.tlv_type().unwrap(), TlvType::MsgToUser);
assert_eq!(
msg_to_user.tlv_type_field(),
TlvTypeField::Standard(TlvType::MsgToUser)
);
assert_eq!(msg_to_user.value(), custom_value);
assert_eq!(msg_to_user.value().len(), 4);
assert_eq!(msg_to_user.len_value(), 4);
assert_eq!(msg_to_user.len_full(), 6);
assert!(!msg_to_user.is_empty());
assert!(msg_to_user.raw_data().is_none());
assert!(!msg_to_user.is_reserved_cfdp_msg());
}
#[test]
fn test_reserved_msg_serialization() {
let custom_value: [u8; 4] = [1, 2, 3, 4];
let msg_to_user = MsgToUserTlv::new(&custom_value).unwrap();
let mut buf: [u8; 6] = [0; 6];
msg_to_user.write_to_bytes(&mut buf).unwrap();
assert_eq!(
buf,
[
TlvType::MsgToUser as u8,
custom_value.len() as u8,
1,
2,
3,
4
]
);
}
#[test]
fn test_reserved_msg_deserialization() {
let custom_value: [u8; 3] = [1, 2, 3];
let msg_to_user = MsgToUserTlv::new(&custom_value).unwrap();
let msg_to_user_vec = msg_to_user.to_vec();
let msg_to_user_from_bytes = MsgToUserTlv::from_bytes(&msg_to_user_vec).unwrap();
assert!(!msg_to_user.is_reserved_cfdp_msg());
assert_eq!(msg_to_user_from_bytes, msg_to_user);
assert_eq!(msg_to_user_from_bytes.value(), msg_to_user.value());
assert_eq!(msg_to_user_from_bytes.tlv_type(), msg_to_user.tlv_type());
}
#[test]
fn test_reserved_msg_deserialization_invalid_type() {
let trash: [u8; 5] = [TlvType::FlowLabel as u8, 3, 1, 2, 3];
let error = MsgToUserTlv::from_bytes(&trash).unwrap_err();
if let TlvLvError::InvalidTlvTypeField { found, expected } = error {
assert_eq!(found, TlvType::FlowLabel as u8);
assert_eq!(expected, Some(TlvType::MsgToUser as u8));
} else {
panic!("Wrong error type returned: {:?}", error);
}
}
#[test]
fn test_reserved_msg() {
let reserved_str = "cfdp";
let msg_to_user = MsgToUserTlv::new(reserved_str.as_bytes());
assert!(msg_to_user.is_ok());
let msg_to_user = msg_to_user.unwrap();
assert!(msg_to_user.is_reserved_cfdp_msg());
}
}

View File

@ -1,80 +1,33 @@
//! Common definitions and helpers required to create PUS TMTC packets according to
//! [ECSS-E-ST-70-41C](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/)
//!
//! You can find the PUS telecommand definitions in the [tc] module and ithe PUS telemetry definitions
//! inside the [tm] module.
use crate::{ByteConversionError, CcsdsPacket, CRC_CCITT_FALSE};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use crate::{ByteConversionError, CcsdsPacket, SizeMissmatch};
use core::fmt::{Debug, Display, Formatter};
use core::mem::size_of;
use num_enum::{IntoPrimitive, TryFromPrimitive};
use crc::{Crc, CRC_16_IBM_3740};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::error::Error;
pub mod event;
pub mod hk;
pub mod scheduling;
pub mod tc;
pub mod tm;
pub mod verification;
pub type CrcType = u16;
/// CRC algorithm used by the PUS standard.
pub const CRC_CCITT_FALSE: Crc<u16> = Crc::<u16>::new(&CRC_16_IBM_3740);
pub const CCSDS_HEADER_LEN: usize = size_of::<crate::zc::SpHeader>();
#[derive(Debug, Copy, Clone, Eq, PartialEq, IntoPrimitive, TryFromPrimitive)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
#[non_exhaustive]
pub enum PusServiceId {
/// Service 1
Verification = 1,
/// Service 2
DeviceAccess = 2,
/// Service 3
Housekeeping = 3,
/// Service 4
ParameterStatistics = 4,
/// Service 5
Event = 5,
/// Service 6
MemoryManagement = 6,
/// Service 8
Action = 8,
/// Service 9
TimeManagement = 9,
/// Service 11
Scheduling = 11,
/// Service 12
OnBoardMonitoring = 12,
/// Service 13
LargePacketTransfer = 13,
/// Service 14
RealTimeForwardingControl = 14,
/// Service 15
StorageAndRetrival = 15,
/// Service 17
Test = 17,
/// Service 18
OpsAndProcedures = 18,
/// Service 19
EventAction = 19,
/// Service 20
Parameter = 20,
/// Service 21
RequestSequencing = 21,
/// Service 22
PositionBasedScheduling = 22,
/// Service 23
FileManagement = 23,
}
/// All PUS versions. Only PUS C is supported by this library.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[non_exhaustive]
pub enum PusVersion {
EsaPus = 0,
PusA = 1,
@ -95,10 +48,8 @@ impl TryFrom<u8> for PusVersion {
}
}
/// ECSS Packet Type Codes (PTC)s.
#[derive(Debug, Copy, Clone, Eq, PartialEq, IntoPrimitive, TryFromPrimitive)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum PacketTypeCodes {
Boolean = 1,
Enumerated = 2,
@ -116,11 +67,9 @@ pub enum PacketTypeCodes {
pub type Ptc = PacketTypeCodes;
/// ECSS Packet Field Codes (PFC)s for the unsigned [Ptc].
#[derive(Debug, Copy, Clone, Eq, PartialEq, IntoPrimitive, TryFromPrimitive)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum PfcUnsigned {
pub enum UnsignedPfc {
OneByte = 4,
TwelveBits = 8,
TwoBytes = 12,
@ -133,11 +82,9 @@ pub enum PfcUnsigned {
ThreeBits = 19,
}
/// ECSS Packet Field Codes (PFC)s for the real (floating point) [Ptc].
#[derive(Debug, Copy, Clone, Eq, PartialEq, IntoPrimitive, TryFromPrimitive)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum PfcReal {
pub enum RealPfc {
/// 4 octets simple precision format (IEEE)
Float = 1,
/// 8 octets simple precision format (IEEE)
@ -152,26 +99,38 @@ pub enum PfcReal {
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PusError {
VersionNotSupported(PusVersion),
ChecksumFailure(u16),
IncorrectCrc(u16),
RawDataTooShort(usize),
NoRawData,
/// CRC16 needs to be calculated first
CrcCalculationMissing,
ByteConversion(ByteConversionError),
ByteConversionError(ByteConversionError),
}
impl Display for PusError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
PusError::VersionNotSupported(v) => {
write!(f, "PUS version {v:?} not supported")
write!(f, "PUS version {:?} not supported", v)
}
PusError::ChecksumFailure(crc) => {
write!(f, "checksum verification for crc16 {crc:#06x} failed")
PusError::IncorrectCrc(crc) => {
write!(f, "crc16 {:#04x} is incorrect", crc)
}
PusError::RawDataTooShort(size) => {
write!(
f,
"deserialization error, provided raw data with size {} too short",
size
)
}
PusError::NoRawData => {
write!(f, "no raw data provided")
}
PusError::CrcCalculationMissing => {
write!(f, "crc16 was not calculated")
}
PusError::ByteConversion(e) => {
write!(f, "pus error: {e}")
PusError::ByteConversionError(e) => {
write!(f, "low level byte conversion error: {}", e)
}
}
}
@ -180,7 +139,7 @@ impl Display for PusError {
#[cfg(feature = "std")]
impl Error for PusError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
if let PusError::ByteConversion(e) = self {
if let PusError::ByteConversionError(e) = self {
return Some(e);
}
None
@ -189,29 +148,24 @@ impl Error for PusError {
impl From<ByteConversionError> for PusError {
fn from(e: ByteConversionError) -> Self {
PusError::ByteConversion(e)
PusError::ByteConversionError(e)
}
}
/// Generic trait to describe common attributes for both PUS Telecommands (TC) and PUS Telemetry
/// (TM) packets. All PUS packets are also a special type of [CcsdsPacket]s.
pub trait PusPacket: CcsdsPacket {
const PUS_VERSION: PusVersion = PusVersion::PusC;
fn pus_version(&self) -> PusVersion;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn user_data(&self) -> &[u8];
fn user_data(&self) -> Option<&[u8]>;
fn crc16(&self) -> Option<u16>;
}
pub(crate) fn crc_from_raw_data(raw_data: &[u8]) -> Result<u16, PusError> {
if raw_data.len() < 2 {
return Err(ByteConversionError::FromSliceTooSmall {
found: raw_data.len(),
expected: 2,
}
.into());
return Err(PusError::RawDataTooShort(raw_data.len()));
}
Ok(u16::from_be_bytes(
raw_data[raw_data.len() - 2..raw_data.len()]
@ -247,34 +201,23 @@ pub(crate) fn crc_procedure(
pub(crate) fn user_data_from_raw(
current_idx: usize,
total_len: usize,
raw_data_len: usize,
slice: &[u8],
) -> Result<&[u8], PusError> {
) -> Result<Option<&[u8]>, PusError> {
match current_idx {
_ if current_idx > total_len - 2 => Err(ByteConversionError::FromSliceTooSmall {
found: total_len - 2,
expected: current_idx,
}
.into()),
_ => Ok(&slice[current_idx..total_len - 2]),
_ if current_idx == total_len - 2 => Ok(None),
_ if current_idx > total_len - 2 => Err(PusError::RawDataTooShort(raw_data_len)),
_ => Ok(Some(&slice[current_idx..total_len - 2])),
}
}
pub(crate) fn verify_crc16_ccitt_false_from_raw_to_pus_error(
raw_data: &[u8],
crc16: u16,
) -> Result<(), PusError> {
verify_crc16_ccitt_false_from_raw(raw_data)
.then(|| ())
.ok_or(PusError::ChecksumFailure(crc16))
}
pub(crate) fn verify_crc16_ccitt_false_from_raw(raw_data: &[u8]) -> bool {
pub(crate) fn verify_crc16_from_raw(raw_data: &[u8], crc16: u16) -> Result<(), PusError> {
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(raw_data);
if digest.finalize() == 0 {
return true;
return Ok(());
}
false
Err(PusError::IncorrectCrc(crc16))
}
macro_rules! ccsds_impl {
@ -298,7 +241,6 @@ macro_rules! sp_header_impls {
}
}
use crate::util::{GenericUnsignedByteField, ToBeBytes, UnsignedEnum};
pub(crate) use ccsds_impl;
pub(crate) use sp_header_impls;
@ -306,45 +248,93 @@ pub(crate) use sp_header_impls;
/// and an unsigned value. The trait makes no assumptions about the actual type of the unsigned
/// value and only requires implementors to implement a function which writes the enumeration into
/// a raw byte format.
pub trait EcssEnumeration: UnsignedEnum {
pub trait EcssEnumeration {
/// Packet Format Code, which denotes the number of bits of the enumeration
fn pfc(&self) -> u8;
fn byte_width(&self) -> usize {
(self.pfc() / 8) as usize
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<(), ByteConversionError>;
}
pub trait EcssEnumerationExt: EcssEnumeration + Debug + Copy + Clone + PartialEq + Eq {}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct GenericEcssEnumWrapper<TYPE: Copy> {
field: GenericUnsignedByteField<TYPE>,
pub trait ToBeBytes {
type ByteArray: AsRef<[u8]>;
fn to_be_bytes(&self) -> Self::ByteArray;
}
impl<TYPE: Copy> GenericEcssEnumWrapper<TYPE> {
impl ToBeBytes for () {
type ByteArray = [u8; 0];
fn to_be_bytes(&self) -> Self::ByteArray {
[]
}
}
impl ToBeBytes for u8 {
type ByteArray = [u8; 1];
fn to_be_bytes(&self) -> Self::ByteArray {
u8::to_be_bytes(*self)
}
}
impl ToBeBytes for u16 {
type ByteArray = [u8; 2];
fn to_be_bytes(&self) -> Self::ByteArray {
u16::to_be_bytes(*self)
}
}
impl ToBeBytes for u32 {
type ByteArray = [u8; 4];
fn to_be_bytes(&self) -> Self::ByteArray {
u32::to_be_bytes(*self)
}
}
impl ToBeBytes for u64 {
type ByteArray = [u8; 8];
fn to_be_bytes(&self) -> Self::ByteArray {
u64::to_be_bytes(*self)
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct GenericEcssEnumWrapper<TYPE> {
val: TYPE,
}
impl<TYPE> GenericEcssEnumWrapper<TYPE> {
pub const fn ptc() -> PacketTypeCodes {
PacketTypeCodes::Enumerated
}
pub fn new(val: TYPE) -> Self {
Self {
field: GenericUnsignedByteField::new(val),
}
Self { val }
}
}
impl<TYPE: Copy + ToBeBytes> UnsignedEnum for GenericEcssEnumWrapper<TYPE> {
fn size(&self) -> usize {
(self.pfc() / 8) as usize
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
self.field.write_to_be_bytes(buf)
}
}
impl<TYPE: Copy + ToBeBytes> EcssEnumeration for GenericEcssEnumWrapper<TYPE> {
impl<TYPE: ToBeBytes> EcssEnumeration for GenericEcssEnumWrapper<TYPE> {
fn pfc(&self) -> u8 {
size_of::<TYPE>() as u8 * 8_u8
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<(), ByteConversionError> {
if buf.len() < self.byte_width() {
return Err(ByteConversionError::ToSliceTooSmall(SizeMissmatch {
found: buf.len(),
expected: self.byte_width(),
}));
}
buf[0..self.byte_width()].copy_from_slice(self.val.to_be_bytes().as_ref());
Ok(())
}
}
impl<TYPE: Debug + Copy + Clone + PartialEq + Eq + ToBeBytes> EcssEnumerationExt
@ -357,41 +347,15 @@ pub type EcssEnumU16 = GenericEcssEnumWrapper<u16>;
pub type EcssEnumU32 = GenericEcssEnumWrapper<u32>;
pub type EcssEnumU64 = GenericEcssEnumWrapper<u64>;
/// Generic trait for PUS packet abstractions which can written to a raw slice as their raw
/// byte representation. This is especially useful for generic abstractions which depend only
/// on the serialization of those packets.
pub trait WritablePusPacket {
fn len_written(&self) -> usize;
fn write_to_bytes(&self, slice: &mut [u8]) -> Result<usize, PusError>;
#[cfg(feature = "alloc")]
fn to_vec(&self) -> Result<Vec<u8>, PusError> {
// This is the correct way to do this. See
// [this issue](https://github.com/rust-lang/rust-clippy/issues/4483) for caveats of more
// "efficient" implementations.
let mut vec = alloc::vec![0; self.len_written()];
self.write_to_bytes(&mut vec)?;
Ok(vec)
}
}
#[cfg(test)]
mod tests {
use alloc::string::ToString;
use crate::ecss::{EcssEnumU16, EcssEnumU32, EcssEnumU8, UnsignedEnum};
use crate::ecss::{EcssEnumU16, EcssEnumU32, EcssEnumU8, EcssEnumeration};
use crate::ByteConversionError;
use super::*;
#[cfg(feature = "serde")]
use crate::tests::generic_serde_test;
#[test]
fn test_enum_u8() {
let mut buf = [0, 0, 0];
let my_enum = EcssEnumU8::new(1);
assert_eq!(EcssEnumU8::ptc(), Ptc::Enumerated);
assert_eq!(my_enum.size(), 1);
assert_eq!(my_enum.pfc(), 8);
my_enum
.write_to_be_bytes(&mut buf[1..2])
.expect("To byte conversion of u8 failed");
@ -405,8 +369,6 @@ mod tests {
my_enum
.write_to_be_bytes(&mut buf[1..3])
.expect("To byte conversion of u8 failed");
assert_eq!(my_enum.size(), 2);
assert_eq!(my_enum.pfc(), 16);
assert_eq!(buf[1], 0x1f);
assert_eq!(buf[2], 0x2f);
}
@ -419,9 +381,9 @@ mod tests {
assert!(res.is_err());
let error = res.unwrap_err();
match error {
ByteConversionError::ToSliceTooSmall { found, expected } => {
assert_eq!(expected, 2);
assert_eq!(found, 1);
ByteConversionError::ToSliceTooSmall(missmatch) => {
assert_eq!(missmatch.expected, 2);
assert_eq!(missmatch.found, 1);
}
_ => {
panic!("Unexpected error {:?}", error);
@ -450,87 +412,13 @@ mod tests {
assert!(res.is_err());
let error = res.unwrap_err();
match error {
ByteConversionError::ToSliceTooSmall { found, expected } => {
assert_eq!(expected, 4);
assert_eq!(found, 3);
ByteConversionError::ToSliceTooSmall(missmatch) => {
assert_eq!(missmatch.expected, 4);
assert_eq!(missmatch.found, 3);
}
_ => {
panic!("Unexpected error {:?}", error);
}
}
}
#[test]
fn test_pus_error_display() {
let unsupport_version = PusError::VersionNotSupported(super::PusVersion::EsaPus);
let write_str = unsupport_version.to_string();
assert_eq!(write_str, "PUS version EsaPus not supported")
}
#[test]
fn test_service_id_from_u8() {
let verification_id_raw = 1;
let verification_id = PusServiceId::try_from(verification_id_raw).unwrap();
assert_eq!(verification_id, PusServiceId::Verification);
}
#[test]
fn test_ptc_from_u8() {
let ptc_raw = Ptc::AbsoluteTime as u8;
let ptc = Ptc::try_from(ptc_raw).unwrap();
assert_eq!(ptc, Ptc::AbsoluteTime);
}
#[test]
fn test_unsigned_pfc_from_u8() {
let pfc_raw = PfcUnsigned::OneByte as u8;
let pfc = PfcUnsigned::try_from(pfc_raw).unwrap();
assert_eq!(pfc, PfcUnsigned::OneByte);
}
#[test]
fn test_real_pfc_from_u8() {
let pfc_raw = PfcReal::Double as u8;
let pfc = PfcReal::try_from(pfc_raw).unwrap();
assert_eq!(pfc, PfcReal::Double);
}
#[test]
fn test_pus_error_eq_impl() {
assert_eq!(
PusError::VersionNotSupported(PusVersion::EsaPus),
PusError::VersionNotSupported(PusVersion::EsaPus)
);
}
#[test]
fn test_pus_error_clonable() {
let pus_error = PusError::ChecksumFailure(0x0101);
let cloned = pus_error;
assert_eq!(pus_error, cloned);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_pus_service_id() {
generic_serde_test(PusServiceId::Verification);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_ptc() {
generic_serde_test(Ptc::AbsoluteTime);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_pfc_unsigned() {
generic_serde_test(PfcUnsigned::EightBytes);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_pfc_real() {
generic_serde_test(PfcReal::Double);
}
}

View File

@ -1,43 +0,0 @@
//! PUS Service 5 Events
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Debug, Eq, PartialEq, Copy, Clone, IntoPrimitive, TryFromPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Subservice {
TmInfoReport = 1,
TmLowSeverityReport = 2,
TmMediumSeverityReport = 3,
TmHighSeverityReport = 4,
TcEnableEventGeneration = 5,
TcDisableEventGeneration = 6,
TcReportDisabledList = 7,
TmDisabledEventsReport = 8,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_conv_into_u8() {
let subservice: u8 = Subservice::TmLowSeverityReport.into();
assert_eq!(subservice, 2);
}
#[test]
fn test_conv_from_u8() {
let subservice: Subservice = 2.try_into().unwrap();
assert_eq!(subservice, Subservice::TmLowSeverityReport);
}
#[test]
fn test_conv_fails() {
let conversion = Subservice::try_from(9);
assert!(conversion.is_err());
let err = conversion.unwrap_err();
assert_eq!(err.number, 9);
}
}

View File

@ -1,61 +0,0 @@
//! PUS Service 3 Housekeeping
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Debug, Eq, PartialEq, Copy, Clone, IntoPrimitive, TryFromPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Subservice {
// Regular HK
TcCreateHkReportStructure = 1,
TcDeleteHkReportStructures = 3,
TcEnableHkGeneration = 5,
TcDisableHkGeneration = 6,
TcReportHkReportStructures = 9,
TmHkPacket = 25,
TcGenerateOneShotHk = 27,
TcModifyHkCollectionInterval = 31,
// Diagnostics HK
TcCreateDiagReportStructure = 2,
TcDeleteDiagReportStructures = 4,
TcEnableDiagGeneration = 7,
TcDisableDiagGeneration = 8,
TmHkStructuresReport = 10,
TcReportDiagReportStructures = 11,
TmDiagStructuresReport = 12,
TmDiagPacket = 26,
TcGenerateOneShotDiag = 28,
TcModifyDiagCollectionInterval = 32,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_try_from_u8() {
let hk_report_subservice_raw = 25;
let hk_report: Subservice = Subservice::try_from(hk_report_subservice_raw).unwrap();
assert_eq!(hk_report, Subservice::TmHkPacket);
}
#[test]
fn test_into_u8() {
let hk_report_raw: u8 = Subservice::TmHkPacket.into();
assert_eq!(hk_report_raw, 25);
}
#[test]
fn test_partial_eq() {
let hk_report_raw = Subservice::TmHkPacket;
assert_ne!(hk_report_raw, Subservice::TcGenerateOneShotHk);
assert_eq!(hk_report_raw, Subservice::TmHkPacket);
}
#[test]
fn test_copy_clone() {
let hk_report = Subservice::TmHkPacket;
let hk_report_copy = hk_report;
assert_eq!(hk_report, hk_report_copy);
}
}

View File

@ -1,125 +0,0 @@
//! PUS Service 11 Scheduling
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Debug, PartialEq, Eq, Copy, Clone, IntoPrimitive, TryFromPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Subservice {
// Core subservices
TcEnableScheduling = 1,
TcDisableScheduling = 2,
TcResetScheduling = 3,
TcInsertActivity = 4,
TcDeleteActivityByRequestId = 5,
TcDeleteActivitiesByFilter = 6,
// Time shift subservices
TcTimeShiftActivityWithRequestId = 7,
TcTimeShiftActivitiesByFilter = 8,
TcTimeShiftAll = 15,
// Reporting subservices
TcDetailReportByRequestId = 9,
TmDetailReport = 10,
TcDetailReportByFilter = 11,
TcSummaryReportByRequestId = 12,
TmSummaryReport = 13,
TcSummaryReportByFilter = 14,
TcDetailReportAll = 16,
TcSummaryReportAll = 17,
// Subschedule subservices
TcReportSubscheduleStatus = 18,
TmReportSubscheduleStatus = 19,
TcEnableSubschedule = 20,
TcDisableSubschedule = 21,
// Group subservices
TcCreateScheduleGroup = 22,
TcDeleteScheduleGroup = 23,
TcEnableScheduleGroup = 24,
TcDisableScheduleGroup = 25,
TcReportAllGroupsStatus = 26,
TmReportAllGroupsStatus = 27,
}
/// This status applies to sub-schedules and groups as well as specified in ECSS-E-ST-70-41C 8.11.3
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum SchedStatus {
Disabled = 0,
Enabled = 1,
}
impl From<bool> for SchedStatus {
fn from(value: bool) -> Self {
if value {
SchedStatus::Enabled
} else {
SchedStatus::Disabled
}
}
}
/// Time window types as specified in ECSS-E-ST-70-41C 8.11.3
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum TimeWindowType {
SelectAll = 0,
TimeTagToTimeTag = 1,
FromTimeTag = 2,
ToTimeTag = 3,
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "serde")]
use crate::tests::generic_serde_test;
#[test]
fn test_bool_conv_0() {
let enabled = true;
let status: SchedStatus = enabled.into();
assert_eq!(status, SchedStatus::Enabled)
}
#[test]
fn test_bool_conv_1() {
let enabled = false;
let status: SchedStatus = enabled.into();
assert_eq!(status, SchedStatus::Disabled)
}
#[test]
fn test_conv_into_u8() {
let subservice: u8 = Subservice::TcCreateScheduleGroup.into();
assert_eq!(subservice, 22);
}
#[test]
fn test_conv_from_u8() {
let subservice: Subservice = 22u8.try_into().unwrap();
assert_eq!(subservice, Subservice::TcCreateScheduleGroup);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_subservice_id() {
generic_serde_test(Subservice::TcEnableScheduling);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_sched_status() {
generic_serde_test(SchedStatus::Enabled);
}
#[test]
#[cfg(feature = "serde")]
fn test_serde_time_window_type() {
generic_serde_test(TimeWindowType::SelectAll);
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,35 +0,0 @@
//! PUS Service 1 Verification
use num_enum::{IntoPrimitive, TryFromPrimitive};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Debug, Eq, PartialEq, Copy, Clone, IntoPrimitive, TryFromPrimitive)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(u8)]
pub enum Subservice {
TmAcceptanceSuccess = 1,
TmAcceptanceFailure = 2,
TmStartSuccess = 3,
TmStartFailure = 4,
TmStepSuccess = 5,
TmStepFailure = 6,
TmCompletionSuccess = 7,
TmCompletionFailure = 8,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_conv_into_u8() {
let subservice: u8 = Subservice::TmCompletionSuccess.into();
assert_eq!(subservice, 7);
}
#[test]
fn test_conv_from_u8() {
let subservice: Subservice = 7.try_into().unwrap();
assert_eq!(subservice, Subservice::TmCompletionSuccess);
}
}

View File

@ -7,15 +7,11 @@
//!
//! - Space Packet implementation according to
//! [CCSDS Blue Book 133.0-B-2](https://public.ccsds.org/Pubs/133x0b2e1.pdf)
//! - CCSDS File Delivery Protocol (CFDP) packet implementations according to
//! [CCSDS Blue Book 727.0-B-5](https://public.ccsds.org/Pubs/727x0b5.pdf)
//! - PUS Telecommand and PUS Telemetry implementation according to the
//! [ECSS-E-ST-70-41C standard](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
//! - CUC (CCSDS Unsegmented Time Code) implementation according to
//! [CCSDS 301.0-B-4 3.2](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
//! - CDS (CCSDS Day Segmented Time Code) implementation according to
//! [CCSDS 301.0-B-4 3.3](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
//! - Some helper types to support ASCII timecodes as specified in
//! - CDS Short Time Code implementation according to
//! [CCSDS CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
//! - Some helper types and functions to support ASCII timecodes ad specified in
//! [CCSDS 301.0-B-4 3.5](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
//!
//! ## Features
@ -62,48 +58,40 @@ extern crate alloc;
extern crate std;
use crate::ecss::CCSDS_HEADER_LEN;
use core::{
fmt::{Debug, Display, Formatter},
hash::Hash,
};
use crc::{Crc, CRC_16_IBM_3740};
use core::fmt::{Display, Formatter};
use delegate::delegate;
#[cfg(feature = "std")]
use std::error::Error;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
pub mod cfdp;
pub mod ecss;
pub mod tc;
pub mod time;
pub mod util;
pub mod tm;
mod private {
pub trait Sealed {}
}
/// CRC algorithm used by the PUS standard, the CCSDS TC standard and the CFDP standard.
pub const CRC_CCITT_FALSE: Crc<u16> = Crc::<u16>::new(&CRC_16_IBM_3740);
pub const MAX_APID: u16 = 2u16.pow(11) - 1;
pub const MAX_SEQ_COUNT: u16 = 2u16.pow(14) - 1;
/// Generic error type when converting to and from raw byte slices.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct SizeMissmatch {
pub found: usize,
pub expected: usize,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum ByteConversionError {
/// The passed slice is too small. Returns the passed slice length and expected minimum size
ToSliceTooSmall {
found: usize,
expected: usize,
},
ToSliceTooSmall(SizeMissmatch),
/// The provider buffer is too small. Returns the passed slice length and expected minimum size
FromSliceTooSmall {
found: usize,
expected: usize,
},
FromSliceTooSmall(SizeMissmatch),
/// The [zerocopy] library failed to write to bytes
ZeroCopyToError,
ZeroCopyFromError,
@ -112,18 +100,18 @@ pub enum ByteConversionError {
impl Display for ByteConversionError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
ByteConversionError::ToSliceTooSmall { found, expected } => {
ByteConversionError::ToSliceTooSmall(missmatch) => {
write!(
f,
"target slice with size {} is too small, expected size of at least {}",
found, expected
missmatch.found, missmatch.expected
)
}
ByteConversionError::FromSliceTooSmall { found, expected } => {
ByteConversionError::FromSliceTooSmall(missmatch) => {
write!(
f,
"source slice with size {} too small, expected at least {} bytes",
found, expected
missmatch.found, missmatch.expected
)
}
ByteConversionError::ZeroCopyToError => {
@ -139,7 +127,6 @@ impl Display for ByteConversionError {
#[cfg(feature = "std")]
impl Error for ByteConversionError {}
/// CCSDS packet type enumeration.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PacketType {
@ -188,9 +175,7 @@ impl TryFrom<u8> for SequenceFlags {
}
}
/// Abstraction for the CCSDS Packet ID, which forms the last thirteen bits
/// of the first two bytes in the CCSDS primary header.
#[derive(Debug, Eq, Copy, Clone)]
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PacketId {
pub ptype: PacketType,
@ -198,31 +183,6 @@ pub struct PacketId {
apid: u16,
}
impl PartialEq for PacketId {
fn eq(&self, other: &Self) -> bool {
self.raw().eq(&other.raw())
}
}
impl PartialOrd for PacketId {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for PacketId {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
self.raw().cmp(&other.raw())
}
}
impl Hash for PacketId {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
let raw = self.raw();
raw.hash(state);
}
}
impl Default for PacketId {
fn default() -> Self {
PacketId {
@ -283,7 +243,6 @@ impl PacketId {
self.apid
}
#[inline]
pub fn raw(&self) -> u16 {
((self.ptype as u16) << 12) | ((self.sec_header_flag as u16) << 11) | self.apid
}
@ -299,8 +258,6 @@ impl From<u16> for PacketId {
}
}
/// Abstraction for the CCSDS Packet Sequence Control (PSC) field which is the
/// third and the fourth byte in the CCSDS primary header.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PacketSequenceCtrl {
@ -311,7 +268,7 @@ pub struct PacketSequenceCtrl {
impl PacketSequenceCtrl {
/// const variant of [PacketSequenceCtrl::new], but panics if the sequence count exceeds
/// [MAX_SEQ_COUNT].
pub const fn const_new(seq_flags: SequenceFlags, seq_count: u16) -> PacketSequenceCtrl {
const fn const_new(seq_flags: SequenceFlags, seq_count: u16) -> PacketSequenceCtrl {
if seq_count > MAX_SEQ_COUNT {
panic!("Sequence count too large");
}
@ -593,10 +550,10 @@ impl SpHeader {
/// CCSDS header.
pub fn from_be_bytes(buf: &[u8]) -> Result<(Self, &[u8]), ByteConversionError> {
if buf.len() < CCSDS_HEADER_LEN {
return Err(ByteConversionError::FromSliceTooSmall {
return Err(ByteConversionError::FromSliceTooSmall(SizeMissmatch {
found: buf.len(),
expected: CCSDS_HEADER_LEN,
});
}));
}
let zc_header = zc::SpHeader::from_bytes(&buf[0..CCSDS_HEADER_LEN])
.ok_or(ByteConversionError::ZeroCopyFromError)?;
@ -610,10 +567,10 @@ impl SpHeader {
buf: &'a mut [u8],
) -> Result<&'a mut [u8], ByteConversionError> {
if buf.len() < CCSDS_HEADER_LEN {
return Err(ByteConversionError::FromSliceTooSmall {
return Err(ByteConversionError::FromSliceTooSmall(SizeMissmatch {
found: buf.len(),
expected: CCSDS_HEADER_LEN,
});
}));
}
let zc_header: zc::SpHeader = zc::SpHeader::from(*self);
zc_header
@ -670,9 +627,9 @@ sph_from_other!(SpHeader, crate::zc::SpHeader);
pub mod zc {
use crate::{CcsdsPacket, CcsdsPrimaryHeader, PacketId, PacketSequenceCtrl, VERSION_MASK};
use zerocopy::byteorder::NetworkEndian;
use zerocopy::{AsBytes, FromBytes, FromZeroes, Unaligned, U16};
use zerocopy::{AsBytes, FromBytes, Unaligned, U16};
#[derive(FromBytes, FromZeroes, AsBytes, Unaligned, Debug)]
#[derive(FromBytes, AsBytes, Unaligned, Debug)]
#[repr(C)]
pub struct SpHeader {
version_packet_id: U16<NetworkEndian>,
@ -749,9 +706,7 @@ pub mod zc {
}
#[cfg(all(test, feature = "std"))]
pub(crate) mod tests {
use std::collections::HashSet;
mod tests {
#[cfg(feature = "serde")]
use crate::CcsdsPrimaryHeader;
use crate::{
@ -759,13 +714,9 @@ pub(crate) mod tests {
};
use crate::{SequenceFlags, SpHeader};
use alloc::vec;
#[cfg(feature = "serde")]
use core::fmt::Debug;
use num_traits::pow;
#[cfg(feature = "serde")]
use postcard::{from_bytes, to_allocvec};
#[cfg(feature = "serde")]
use serde::{de::DeserializeOwned, Serialize};
const CONST_SP: SpHeader = SpHeader::new(
PacketId::const_tc(true, 0x36),
@ -775,19 +726,10 @@ pub(crate) mod tests {
const PACKET_ID_TM: PacketId = PacketId::const_tm(true, 0x22);
#[cfg(feature = "serde")]
pub(crate) fn generic_serde_test<T: Serialize + DeserializeOwned + PartialEq + Debug>(
value: T,
) {
let output: alloc::vec::Vec<u8> = to_allocvec(&value).unwrap();
let output_converted_back: T = from_bytes(&output).unwrap();
assert_eq!(output_converted_back, value);
}
#[test]
fn verify_const_packet_id() {
assert_eq!(PACKET_ID_TM.apid(), 0x22);
assert!(PACKET_ID_TM.sec_header_flag);
assert_eq!(PACKET_ID_TM.sec_header_flag, true);
assert_eq!(PACKET_ID_TM.ptype, PacketType::Tm);
let const_tc_id = PacketId::const_tc(true, 0x23);
assert_eq!(const_tc_id.ptype, PacketType::Tc);
@ -893,7 +835,6 @@ pub(crate) mod tests {
fn test_invalid_seq_count() {
let mut psc = PacketSequenceCtrl::new(SequenceFlags::ContinuationSegment, 77)
.expect("PSC creation failed");
assert_eq!(psc.seq_count(), 77);
assert!(!psc.set_seq_count(0xffff));
}
@ -1079,22 +1020,4 @@ pub(crate) mod tests {
assert_eq!(sp_header.ptype(), PacketType::Tc);
assert_eq!(sp_header.data_len(), 0);
}
#[test]
fn packet_id_ord_partial_ord() {
let packet_id_small = PacketId::from(1_u16);
let packet_id_larger = PacketId::from(2_u16);
assert!(packet_id_small < packet_id_larger);
assert!(packet_id_larger > packet_id_small);
assert_eq!(
packet_id_small.cmp(&packet_id_larger),
core::cmp::Ordering::Less
);
}
#[test]
fn packet_id_hashable() {
let mut id_set = HashSet::new();
id_set.insert(PacketId::from(1_u16));
}
}

735
src/tc.rs Normal file
View File

@ -0,0 +1,735 @@
//! This module contains all components required to create a ECSS PUS C telecommand packets according
//! to [ECSS-E-ST-70-41C](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
//!
//! # Examples
//!
//! ```rust
//! use spacepackets::{CcsdsPacket, SpHeader};
//! use spacepackets::tc::{PusTc, PusTcSecondaryHeader};
//! use spacepackets::ecss::PusPacket;
//!
//! // Create a ping telecommand with no user application data
//! let mut sph = SpHeader::tc_unseg(0x02, 0x34, 0).unwrap();
//! let tc_header = PusTcSecondaryHeader::new_simple(17, 1);
//! let pus_tc = PusTc::new(&mut sph, tc_header, None, true);
//! println!("{:?}", pus_tc);
//! assert_eq!(pus_tc.service(), 17);
//! assert_eq!(pus_tc.subservice(), 1);
//! assert_eq!(pus_tc.apid(), 0x02);
//!
//! // Serialize TC into a raw buffer
//! let mut test_buf: [u8; 32] = [0; 32];
//! let size = pus_tc
//! .write_to_bytes(test_buf.as_mut_slice())
//! .expect("Error writing TC to buffer");
//! assert_eq!(size, 13);
//! println!("{:?}", &test_buf[0..size]);
//!
//! // Deserialize from the raw byte representation
//! let pus_tc_deserialized = PusTc::from_bytes(&test_buf).expect("Deserialization failed");
//! assert_eq!(pus_tc.service(), 17);
//! assert_eq!(pus_tc.subservice(), 1);
//! assert_eq!(pus_tc.apid(), 0x02);
//! ```
use crate::ecss::{
ccsds_impl, crc_from_raw_data, crc_procedure, sp_header_impls, user_data_from_raw,
verify_crc16_from_raw, CrcType, PusError, PusPacket, PusVersion, CRC_CCITT_FALSE,
};
use crate::SpHeader;
use crate::{
ByteConversionError, CcsdsPacket, PacketType, SequenceFlags, SizeMissmatch, CCSDS_HEADER_LEN,
};
use core::mem::size_of;
use delegate::delegate;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zerocopy::AsBytes;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// PUS C secondary header length is fixed
pub const PUC_TC_SECONDARY_HEADER_LEN: usize = size_of::<zc::PusTcSecondaryHeader>();
pub const PUS_TC_MIN_LEN_WITHOUT_APP_DATA: usize =
CCSDS_HEADER_LEN + PUC_TC_SECONDARY_HEADER_LEN + size_of::<CrcType>();
const PUS_VERSION: PusVersion = PusVersion::PusC;
#[derive(Copy, Clone, PartialEq, Debug)]
enum AckOpts {
Acceptance = 0b1000,
Start = 0b0100,
Progress = 0b0010,
Completion = 0b0001,
}
pub const ACK_ALL: u8 = AckOpts::Acceptance as u8
| AckOpts::Start as u8
| AckOpts::Progress as u8
| AckOpts::Completion as u8;
pub trait GenericPusTcSecondaryHeader {
fn pus_version(&self) -> PusVersion;
fn ack_flags(&self) -> u8;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn source_id(&self) -> u16;
}
pub mod zc {
use crate::ecss::{PusError, PusVersion};
use crate::tc::GenericPusTcSecondaryHeader;
use zerocopy::{AsBytes, FromBytes, NetworkEndian, Unaligned, U16};
#[derive(FromBytes, AsBytes, Unaligned)]
#[repr(C)]
pub struct PusTcSecondaryHeader {
version_ack: u8,
service: u8,
subservice: u8,
source_id: U16<NetworkEndian>,
}
impl TryFrom<crate::tc::PusTcSecondaryHeader> for PusTcSecondaryHeader {
type Error = PusError;
fn try_from(value: crate::tc::PusTcSecondaryHeader) -> Result<Self, Self::Error> {
if value.version != PusVersion::PusC {
return Err(PusError::VersionNotSupported(value.version));
}
Ok(PusTcSecondaryHeader {
version_ack: ((value.version as u8) << 4) | value.ack,
service: value.service,
subservice: value.subservice,
source_id: U16::from(value.source_id),
})
}
}
impl GenericPusTcSecondaryHeader for PusTcSecondaryHeader {
fn pus_version(&self) -> PusVersion {
PusVersion::try_from(self.version_ack >> 4 & 0b1111).unwrap_or(PusVersion::Invalid)
}
fn ack_flags(&self) -> u8 {
self.version_ack & 0b1111
}
fn service(&self) -> u8 {
self.service
}
fn subservice(&self) -> u8 {
self.subservice
}
fn source_id(&self) -> u16 {
self.source_id.get()
}
}
impl PusTcSecondaryHeader {
pub fn write_to_bytes(&self, slice: &mut [u8]) -> Option<()> {
self.write_to(slice)
}
pub fn from_bytes(slice: &[u8]) -> Option<Self> {
Self::read_from(slice)
}
}
}
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTcSecondaryHeader {
pub service: u8,
pub subservice: u8,
pub source_id: u16,
pub ack: u8,
pub version: PusVersion,
}
impl GenericPusTcSecondaryHeader for PusTcSecondaryHeader {
fn pus_version(&self) -> PusVersion {
self.version
}
fn ack_flags(&self) -> u8 {
self.ack
}
fn service(&self) -> u8 {
self.service
}
fn subservice(&self) -> u8 {
self.subservice
}
fn source_id(&self) -> u16 {
self.source_id
}
}
impl TryFrom<zc::PusTcSecondaryHeader> for PusTcSecondaryHeader {
type Error = ();
fn try_from(value: zc::PusTcSecondaryHeader) -> Result<Self, Self::Error> {
Ok(PusTcSecondaryHeader {
service: value.service(),
subservice: value.subservice(),
source_id: value.source_id(),
ack: value.ack_flags(),
version: PUS_VERSION,
})
}
}
impl PusTcSecondaryHeader {
pub fn new_simple(service: u8, subservice: u8) -> Self {
PusTcSecondaryHeader {
service,
subservice,
ack: ACK_ALL,
source_id: 0,
version: PusVersion::PusC,
}
}
pub fn new(service: u8, subservice: u8, ack: u8, source_id: u16) -> Self {
PusTcSecondaryHeader {
service,
subservice,
ack: ack & 0b1111,
source_id,
version: PusVersion::PusC,
}
}
}
/// This class models a PUS telecommand. It is the primary data structure to generate the raw byte
/// representation of a PUS telecommand or to deserialize from one from raw bytes.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the
/// [serde] feature is used, which allows to send around TC packets in a raw byte format using a
/// serde provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTc<'slice> {
sp_header: SpHeader,
pub sec_header: PusTcSecondaryHeader,
/// If this is set to false, a manual call to [PusTc::calc_own_crc16] or
/// [PusTc::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid.
pub calc_crc_on_serialization: bool,
#[cfg_attr(feature = "serde", serde(skip))]
raw_data: Option<&'slice [u8]>,
app_data: Option<&'slice [u8]>,
crc16: Option<u16>,
}
impl<'slice> PusTc<'slice> {
/// Generates a new struct instance.
///
/// # Arguments
///
/// * `sp_header` - Space packet header information. The correct packet type will be set
/// automatically
/// * `sec_header` - Information contained in the data field header, including the service
/// and subservice type
/// * `app_data` - Custom application data
/// * `set_ccsds_len` - Can be used to automatically update the CCSDS space packet data length
/// field. If this is not set to true, [PusTc::update_ccsds_data_len] can be called to set
/// the correct value to this field manually
pub fn new(
sp_header: &mut SpHeader,
sec_header: PusTcSecondaryHeader,
app_data: Option<&'slice [u8]>,
set_ccsds_len: bool,
) -> Self {
sp_header.set_packet_type(PacketType::Tc);
sp_header.set_sec_header_flag();
let mut pus_tc = PusTc {
sp_header: *sp_header,
raw_data: None,
app_data,
sec_header,
calc_crc_on_serialization: true,
crc16: None,
};
if set_ccsds_len {
pus_tc.update_ccsds_data_len();
}
pus_tc
}
/// Simplified version of the [PusTc::new] function which allows to only specify service and
/// subservice instead of the full PUS TC secondary header.
pub fn new_simple(
sph: &mut SpHeader,
service: u8,
subservice: u8,
app_data: Option<&'slice [u8]>,
set_ccsds_len: bool,
) -> Self {
Self::new(
sph,
PusTcSecondaryHeader::new(service, subservice, ACK_ALL, 0),
app_data,
set_ccsds_len,
)
}
pub fn len_packed(&self) -> usize {
let mut length = PUS_TC_MIN_LEN_WITHOUT_APP_DATA;
if let Some(app_data) = self.app_data {
length += app_data.len();
}
length
}
pub fn set_ack_field(&mut self, ack: u8) -> bool {
if ack > 0b1111 {
return false;
}
self.sec_header.ack = ack & 0b1111;
true
}
pub fn set_source_id(&mut self, source_id: u16) {
self.sec_header.source_id = source_id;
}
sp_header_impls!();
/// Calculate the CCSDS space packet data length field and sets it
/// This is called automatically if the `set_ccsds_len` argument in the [PusTc::new] call was
/// used.
/// If this was not done or the application data is set or changed after construction,
/// this function needs to be called to ensure that the data length field of the CCSDS header
/// is set correctly.
pub fn update_ccsds_data_len(&mut self) {
self.sp_header.data_len =
self.len_packed() as u16 - size_of::<crate::zc::SpHeader>() as u16 - 1;
}
/// This function should be called before the TC packet is serialized if
/// [PusTc::calc_crc_on_serialization] is set to False. It will calculate and cache the CRC16.
pub fn calc_own_crc16(&mut self) {
let mut digest = CRC_CCITT_FALSE.digest();
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
digest.update(sph_zc.as_bytes());
let pus_tc_header = zc::PusTcSecondaryHeader::try_from(self.sec_header).unwrap();
digest.update(pus_tc_header.as_bytes());
if let Some(app_data) = self.app_data {
digest.update(app_data);
}
self.crc16 = Some(digest.finalize())
}
/// This helper function calls both [PusTc::update_ccsds_data_len] and [PusTc::calc_own_crc16].
pub fn update_packet_fields(&mut self) {
self.update_ccsds_data_len();
self.calc_own_crc16();
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes(&self, slice: &mut [u8]) -> Result<usize, PusError> {
let mut curr_idx = 0;
let tc_header_len = size_of::<zc::PusTcSecondaryHeader>();
let total_size = self.len_packed();
if total_size > slice.len() {
return Err(ByteConversionError::ToSliceTooSmall(SizeMissmatch {
found: slice.len(),
expected: total_size,
})
.into());
}
self.sp_header.write_to_be_bytes(slice)?;
curr_idx += CCSDS_HEADER_LEN;
let sec_header = zc::PusTcSecondaryHeader::try_from(self.sec_header).unwrap();
sec_header
.write_to_bytes(&mut slice[curr_idx..curr_idx + tc_header_len])
.ok_or(ByteConversionError::ZeroCopyToError)?;
curr_idx += tc_header_len;
if let Some(app_data) = self.app_data {
slice[curr_idx..curr_idx + app_data.len()].copy_from_slice(app_data);
curr_idx += app_data.len();
}
let crc16 = crc_procedure(
self.calc_crc_on_serialization,
&self.crc16,
0,
curr_idx,
slice,
)?;
slice[curr_idx..curr_idx + 2].copy_from_slice(crc16.to_be_bytes().as_slice());
curr_idx += 2;
Ok(curr_idx)
}
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn append_to_vec(&self, vec: &mut Vec<u8>) -> Result<usize, PusError> {
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
let mut appended_len = PUS_TC_MIN_LEN_WITHOUT_APP_DATA;
if let Some(app_data) = self.app_data {
appended_len += app_data.len();
};
let start_idx = vec.len();
let mut ser_len = 0;
vec.extend_from_slice(sph_zc.as_bytes());
ser_len += sph_zc.as_bytes().len();
// The PUS version is hardcoded to PUS C
let pus_tc_header = zc::PusTcSecondaryHeader::try_from(self.sec_header).unwrap();
vec.extend_from_slice(pus_tc_header.as_bytes());
ser_len += pus_tc_header.as_bytes().len();
if let Some(app_data) = self.app_data {
vec.extend_from_slice(app_data);
ser_len += app_data.len();
}
let crc16 = crc_procedure(
self.calc_crc_on_serialization,
&self.crc16,
start_idx,
ser_len,
&vec[start_idx..ser_len],
)?;
vec.extend_from_slice(crc16.to_be_bytes().as_slice());
Ok(appended_len)
}
/// Create a [PusTc] instance from a raw slice. On success, it returns a tuple containing
/// the instance and the found byte length of the packet.
pub fn from_bytes(slice: &'slice [u8]) -> Result<(Self, usize), PusError> {
let raw_data_len = slice.len();
if raw_data_len < PUS_TC_MIN_LEN_WITHOUT_APP_DATA {
return Err(PusError::RawDataTooShort(raw_data_len));
}
let mut current_idx = 0;
let (sp_header, _) = SpHeader::from_be_bytes(&slice[0..CCSDS_HEADER_LEN])?;
current_idx += CCSDS_HEADER_LEN;
let total_len = sp_header.total_len();
if raw_data_len < total_len || total_len < PUS_TC_MIN_LEN_WITHOUT_APP_DATA {
return Err(PusError::RawDataTooShort(raw_data_len));
}
let sec_header = zc::PusTcSecondaryHeader::from_bytes(
&slice[current_idx..current_idx + PUC_TC_SECONDARY_HEADER_LEN],
)
.ok_or(ByteConversionError::ZeroCopyFromError)?;
current_idx += PUC_TC_SECONDARY_HEADER_LEN;
let raw_data = &slice[0..total_len];
let pus_tc = PusTc {
sp_header,
sec_header: PusTcSecondaryHeader::try_from(sec_header).unwrap(),
raw_data: Some(raw_data),
app_data: user_data_from_raw(current_idx, total_len, raw_data_len, slice)?,
calc_crc_on_serialization: false,
crc16: Some(crc_from_raw_data(raw_data)?),
};
verify_crc16_from_raw(raw_data, pus_tc.crc16.expect("CRC16 invalid"))?;
Ok((pus_tc, total_len))
}
pub fn raw(&self) -> Option<&'slice [u8]> {
self.raw_data
}
}
//noinspection RsTraitImplementation
impl CcsdsPacket for PusTc<'_> {
ccsds_impl!();
}
//noinspection RsTraitImplementation
impl PusPacket for PusTc<'_> {
delegate!(to self.sec_header {
fn pus_version(&self) -> PusVersion;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
});
fn user_data(&self) -> Option<&[u8]> {
self.app_data
}
fn crc16(&self) -> Option<u16> {
self.crc16
}
}
//noinspection RsTraitImplementation
impl GenericPusTcSecondaryHeader for PusTc<'_> {
delegate!(to self.sec_header {
fn pus_version(&self) -> PusVersion;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn source_id(&self) -> u16;
fn ack_flags(&self) -> u8;
});
}
#[cfg(all(test, feature = "std"))]
mod tests {
use crate::ecss::PusVersion::PusC;
use crate::ecss::{PusError, PusPacket};
use crate::tc::ACK_ALL;
use crate::tc::{GenericPusTcSecondaryHeader, PusTc, PusTcSecondaryHeader};
use crate::{ByteConversionError, SpHeader};
use crate::{CcsdsPacket, SequenceFlags};
use alloc::vec::Vec;
fn base_ping_tc_full_ctor() -> PusTc<'static> {
let mut sph = SpHeader::tc_unseg(0x02, 0x34, 0).unwrap();
let tc_header = PusTcSecondaryHeader::new_simple(17, 1);
PusTc::new(&mut sph, tc_header, None, true)
}
fn base_ping_tc_simple_ctor() -> PusTc<'static> {
let mut sph = SpHeader::tc_unseg(0x02, 0x34, 0).unwrap();
PusTc::new_simple(&mut sph, 17, 1, None, true)
}
fn base_ping_tc_simple_ctor_with_app_data(app_data: &'static [u8]) -> PusTc<'static> {
let mut sph = SpHeader::tc_unseg(0x02, 0x34, 0).unwrap();
PusTc::new_simple(&mut sph, 17, 1, Some(app_data), true)
}
#[test]
fn test_tc_fields() {
let pus_tc = base_ping_tc_full_ctor();
assert_eq!(pus_tc.crc16(), None);
verify_test_tc(&pus_tc, false, 13);
}
#[test]
fn test_serialization() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 13);
}
#[test]
fn test_deserialization() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 13);
let (tc_from_raw, size) =
PusTc::from_bytes(&test_buf).expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(size, 13);
verify_test_tc(&tc_from_raw, false, 13);
assert!(tc_from_raw.user_data().is_none());
verify_test_tc_raw(&test_buf);
verify_crc_no_app_data(&test_buf);
}
#[test]
fn test_update_func() {
let mut sph = SpHeader::tc_unseg(0x02, 0x34, 0).unwrap();
let mut tc = PusTc::new_simple(&mut sph, 17, 1, None, false);
tc.calc_crc_on_serialization = false;
assert_eq!(tc.data_len(), 0);
tc.update_packet_fields();
assert_eq!(tc.data_len(), 6);
}
#[test]
fn test_deserialization_with_app_data() {
let pus_tc = base_ping_tc_simple_ctor_with_app_data(&[1, 2, 3]);
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(size, 16);
let (tc_from_raw, size) =
PusTc::from_bytes(&test_buf).expect("Creating PUS TC struct from raw buffer failed");
assert_eq!(size, 16);
verify_test_tc(&tc_from_raw, true, 16);
let user_data = tc_from_raw.user_data().unwrap();
assert_eq!(user_data[0], 1);
assert_eq!(user_data[1], 2);
assert_eq!(user_data[2], 3);
}
#[test]
fn test_vec_ser_deser() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_vec = Vec::new();
let size = pus_tc
.append_to_vec(&mut test_vec)
.expect("Error writing TC to vector");
assert_eq!(size, 13);
verify_test_tc_raw(&test_vec.as_slice());
verify_crc_no_app_data(&test_vec.as_slice());
}
#[test]
fn test_incorrect_crc() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
test_buf[12] = 0;
let res = PusTc::from_bytes(&test_buf);
assert!(res.is_err());
let err = res.unwrap_err();
assert!(matches!(err, PusError::IncorrectCrc { .. }));
}
#[test]
fn test_manual_crc_calculation() {
let mut pus_tc = base_ping_tc_simple_ctor();
pus_tc.calc_crc_on_serialization = false;
let mut test_buf: [u8; 32] = [0; 32];
pus_tc.calc_own_crc16();
pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
verify_test_tc_raw(&test_buf);
verify_crc_no_app_data(&test_buf);
}
#[test]
fn test_manual_crc_calculation_no_calc_call() {
let mut pus_tc = base_ping_tc_simple_ctor();
pus_tc.calc_crc_on_serialization = false;
let mut test_buf: [u8; 32] = [0; 32];
let res = pus_tc.write_to_bytes(test_buf.as_mut_slice());
assert!(res.is_err());
let err = res.unwrap_err();
assert!(matches!(err, PusError::CrcCalculationMissing { .. }));
}
#[test]
fn test_with_application_data_vec() {
let pus_tc = base_ping_tc_simple_ctor_with_app_data(&[1, 2, 3]);
verify_test_tc(&pus_tc, true, 16);
let mut test_vec = Vec::new();
let size = pus_tc
.append_to_vec(&mut test_vec)
.expect("Error writing TC to vector");
assert_eq!(test_vec[11], 1);
assert_eq!(test_vec[12], 2);
assert_eq!(test_vec[13], 3);
assert_eq!(size, 16);
}
#[test]
fn test_write_buf_too_small() {
let pus_tc = base_ping_tc_simple_ctor();
let mut test_buf = [0; 12];
let res = pus_tc.write_to_bytes(test_buf.as_mut_slice());
assert!(res.is_err());
let err = res.unwrap_err();
match err {
PusError::ByteConversionError(err) => match err {
ByteConversionError::ToSliceTooSmall(missmatch) => {
assert_eq!(missmatch.expected, pus_tc.len_packed());
assert_eq!(missmatch.found, 12);
}
_ => panic!("Unexpected error"),
},
_ => panic!("Unexpected error"),
}
}
#[test]
fn test_with_application_data_buf() {
let pus_tc = base_ping_tc_simple_ctor_with_app_data(&[1, 2, 3]);
verify_test_tc(&pus_tc, true, 16);
let mut test_buf: [u8; 32] = [0; 32];
let size = pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(test_buf[11], 1);
assert_eq!(test_buf[12], 2);
assert_eq!(test_buf[13], 3);
assert_eq!(size, 16);
}
#[test]
fn test_custom_setters() {
let mut pus_tc = base_ping_tc_simple_ctor();
let mut test_buf: [u8; 32] = [0; 32];
pus_tc.set_apid(0x7ff);
pus_tc.set_seq_count(0x3fff);
pus_tc.set_ack_field(0b11);
pus_tc.set_source_id(0xffff);
pus_tc.set_seq_flags(SequenceFlags::Unsegmented);
assert_eq!(pus_tc.source_id(), 0xffff);
assert_eq!(pus_tc.seq_count(), 0x3fff);
assert_eq!(pus_tc.ack_flags(), 0b11);
assert_eq!(pus_tc.apid(), 0x7ff);
assert_eq!(pus_tc.sequence_flags(), SequenceFlags::Unsegmented);
pus_tc.calc_own_crc16();
pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
assert_eq!(test_buf[0], 0x1f);
assert_eq!(test_buf[1], 0xff);
assert_eq!(test_buf[2], 0xff);
assert_eq!(test_buf[3], 0xff);
assert_eq!(test_buf[6], 0x23);
// Source ID 0
assert_eq!(test_buf[9], 0xff);
assert_eq!(test_buf[10], 0xff);
}
fn verify_test_tc(tc: &PusTc, has_user_data: bool, exp_full_len: usize) {
assert_eq!(PusPacket::service(tc), 17);
assert_eq!(PusPacket::subservice(tc), 1);
assert!(tc.sec_header_flag());
assert_eq!(PusPacket::pus_version(tc), PusC);
if !has_user_data {
assert_eq!(tc.user_data(), None);
}
assert_eq!(tc.seq_count(), 0x34);
assert_eq!(tc.source_id(), 0);
assert_eq!(tc.apid(), 0x02);
assert_eq!(tc.ack_flags(), ACK_ALL);
assert_eq!(tc.len_packed(), exp_full_len);
let mut comp_header = SpHeader::tc_unseg(0x02, 0x34, exp_full_len as u16 - 7).unwrap();
comp_header.set_sec_header_flag();
assert_eq!(tc.sp_header, comp_header);
}
fn verify_test_tc_raw(slice: &impl AsRef<[u8]>) {
// Reference comparison implementation:
// https://github.com/us-irs/py-spacepackets/blob/v0.13.0/tests/ecss/test_pus_tc.py
let slice = slice.as_ref();
// 0x1801 is the generic
assert_eq!(slice[0], 0x18);
// APID is 0x01
assert_eq!(slice[1], 0x02);
// Unsegmented packets
assert_eq!(slice[2], 0xc0);
// Sequence count 0x34
assert_eq!(slice[3], 0x34);
assert_eq!(slice[4], 0x00);
// Space data length of 6 equals total packet length of 13
assert_eq!(slice[5], 0x06);
// PUS Version C 0b0010 and ACK flags 0b1111
assert_eq!(slice[6], 0x2f);
// Service 17
assert_eq!(slice[7], 0x11);
// Subservice 1
assert_eq!(slice[8], 0x01);
// Source ID 0
assert_eq!(slice[9], 0x00);
assert_eq!(slice[10], 0x00);
}
fn verify_crc_no_app_data(slice: &impl AsRef<[u8]>) {
// Reference comparison implementation:
// https://github.com/us-irs/py-spacepackets/blob/v0.13.0/tests/ecss/test_pus_tc.py
let slice = slice.as_ref();
assert_eq!(slice[11], 0xee);
assert_eq!(slice[12], 0x63);
}
}

View File

@ -3,10 +3,8 @@
//! See [chrono::DateTime::format] for a usage example of the generated
//! [chrono::format::DelayedFormat] structs.
#[cfg(feature = "alloc")]
use chrono::{
format::{DelayedFormat, StrftimeItems},
DateTime, Utc,
};
use chrono::format::{DelayedFormat, StrftimeItems};
use chrono::{DateTime, Utc};
/// Tuple of format string and formatted size for time code A.
///

File diff suppressed because it is too large Load Diff

View File

@ -3,16 +3,9 @@
//!
//! The core data structure to do this is the [TimeProviderCcsdsEpoch] struct.
use super::*;
use chrono::Datelike;
use core::fmt::Debug;
use core::ops::{Add, AddAssign};
use core::time::Duration;
use core::u64;
const MIN_CUC_LEN: usize = 2;
/// Base value for the preamble field for a time field parser to determine the time field type.
pub const P_FIELD_BASE: u8 = (CcsdsTimeCodes::CucCcsdsEpoch as u8) << 4;
/// Maximum length if the preamble field is not extended.
pub const MAX_CUC_LEN_SMALL_PREAMBLE: usize = 8;
@ -46,14 +39,12 @@ impl TryFrom<u8> for FractionalResolution {
/// Please note that this function will panic if the fractional value is not smaller than
/// the maximum number of fractions allowed for the particular resolution.
/// (e.g. passing 270 when the resolution only allows 255 values).
#[inline]
pub fn convert_fractional_part_to_ns(fractional_part: FractionalPart) -> u64 {
let div = fractional_res_to_div(fractional_part.0);
assert!(fractional_part.1 < div);
10_u64.pow(9) * fractional_part.1 as u64 / div as u64
}
#[inline(always)]
pub const fn fractional_res_to_div(res: FractionalResolution) -> u32 {
2_u32.pow(8 * res as u32) - 1
}
@ -73,20 +64,10 @@ pub fn fractional_part_from_subsec_ns(
if ns > sec_as_ns {
panic!("passed nanosecond value larger than 1 second");
}
let resolution = fractional_res_to_div(res) as u64;
// Use integer division because this can reduce code size of really small systems.
// First determine the nanoseconds for the smallest segment given the resolution.
// Then divide by that to find out the fractional part. For the calculation of the smallest
// fraction, we perform a ceiling division. This is because if we would use the default
// flooring division, we would divide by a smaller value, thereby allowing the calculation to
// invalid fractional parts which are too large. For the division of the nanoseconds by the
// smallest fraction, a flooring division is correct.
// The multiplication with 100000 is necessary to avoid precision loss during integer division.
// TODO: Floating point division might actually be faster option, but requires additional
// code on small embedded systems..
let fractional_part = ns * 100000 / ((sec_as_ns * 100000 + resolution) / resolution);
// Floating point division.
//let fractional_part = (ns as f64 / ((sec_as_ns as f64) / resolution as f64)).floor() as u32;
// Then divide by that to find out the fractional part. An integer division floors
// which is what we want here.
let fractional_part = ns / (sec_as_ns / fractional_res_to_div(res) as u64);
Some(FractionalPart(res, fractional_part as u32))
}
@ -94,31 +75,25 @@ pub fn fractional_part_from_subsec_ns(
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum CucError {
InvalidCounterWidth(u8),
/// Invalid counter supplied.
InvalidCounter {
width: u8,
counter: u64,
},
InvalidFractions {
resolution: FractionalResolution,
value: u64,
},
InvalidFractionResolution(FractionalResolution),
InvalidCounter(u8, u64),
InvalidFractions(FractionalResolution, u64),
}
impl Display for CucError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
CucError::InvalidCounterWidth(w) => {
write!(f, "invalid cuc counter byte width {w}")
write!(f, "invalid cuc counter byte width {}", w)
}
CucError::InvalidCounter { width, counter } => {
write!(f, "invalid cuc counter {counter} for width {width}")
CucError::InvalidFractionResolution(w) => {
write!(f, "invalid cuc fractional part byte width {:?}", w)
}
CucError::InvalidFractions { resolution, value } => {
write!(
f,
"invalid cuc fractional part {value} for resolution {resolution:?}"
)
CucError::InvalidCounter(w, c) => {
write!(f, "invalid cuc counter {} for width {}", c, w)
}
CucError::InvalidFractions(w, c) => {
write!(f, "invalid cuc fractional part {} for width {:?}", c, w)
}
}
}
@ -140,8 +115,8 @@ pub struct FractionalPart(FractionalResolution, u32);
/// It has the capability to generate and read timestamps as specified in the CCSDS 301.0-B-4
/// section 3.2 . The preamble field only has one byte, which allows a time code representation
/// through the year 2094. The time is represented as a simple binary counter starting from the
/// fixed CCSDS epoch (1958-01-01T00:00:00+00:00). It is possible to provide subsecond accuracy
/// using the fractional field with various available [resolutions][FractionalResolution].
/// fixed CCSDS epoch (1958-01-01 00:00:00). It is possible to provide subsecond accuracy using the
/// fractional field with various available [resolutions][FractionalResolution].
///
/// Having a preamble field of one byte limits the width of the counter
/// type (generally seconds) to 4 bytes and the width of the fractions type to 3 bytes. This limits
@ -240,26 +215,24 @@ impl TimeProviderCcsdsEpoch {
/// The counter width will always be set to 4 bytes because the normal CCSDS epoch will overflow
/// when using less than that.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now(fraction_resolution: FractionalResolution) -> Result<Self, StdTimestampError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs() as i64);
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs());
if fraction_resolution == FractionalResolution::Seconds {
return Ok(Self::new(ccsds_epoch as u32));
}
let fractions =
fractional_part_from_subsec_ns(fraction_resolution, now.subsec_nanos() as u64);
Self::new_with_fractions(ccsds_epoch as u32, fractions.unwrap())
.map_err(|e| StdTimestampError::Timestamp(e.into()))
.map_err(|e| StdTimestampError::TimestampError(e.into()))
}
/// Updates the current time stamp from the current time. The fractional field width remains
/// the same and will be updated accordingly.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn update_from_now(&mut self) -> Result<(), StdTimestampError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
self.counter.1 = unix_epoch_to_ccsds_epoch(now.as_secs() as i64) as u32;
self.counter.1 = unix_epoch_to_ccsds_epoch(now.as_secs()) as u32;
if self.fractions.is_some() {
self.fractions = fractional_part_from_subsec_ns(
self.fractions.unwrap().0,
@ -269,41 +242,6 @@ impl TimeProviderCcsdsEpoch {
Ok(())
}
pub fn from_date_time(
dt: &DateTime<Utc>,
res: FractionalResolution,
) -> Result<Self, TimestampError> {
// Year before CCSDS epoch is invalid.
if dt.year() < 1958 {
return Err(TimestampError::DateBeforeCcsdsEpoch(*dt));
}
Self::new_generic(
WidthCounterPair(4, dt.timestamp() as u32),
fractional_part_from_subsec_ns(res, dt.timestamp_subsec_nanos() as u64),
)
.map_err(|e| e.into())
}
/// Generates a CUC timestamp from a UNIX timestamp with a width of 4. This width is able
/// to accomodate all possible UNIX timestamp values.
pub fn from_unix_stamp(
unix_stamp: &UnixTimestamp,
res: FractionalResolution,
) -> Result<Self, TimestampError> {
let ccsds_epoch = unix_epoch_to_ccsds_epoch(unix_stamp.unix_seconds);
// Negative CCSDS epoch is invalid.
if ccsds_epoch < 0 {
return Err(TimestampError::DateBeforeCcsdsEpoch(
unix_stamp.as_date_time().unwrap(),
));
}
let mut fractions = None;
if let Some(subsec_millis) = unix_stamp.subsecond_millis {
fractions = fractional_part_from_subsec_ns(res, subsec_millis as u64 * 10_u64.pow(6));
}
Self::new_generic(WidthCounterPair(4, ccsds_epoch as u32), fractions).map_err(|e| e.into())
}
pub fn new_u16_counter(counter: u16) -> Self {
// These values are definitely valid, so it is okay to unwrap here.
Self::new_generic(WidthCounterPair(2, counter as u32), None).unwrap()
@ -313,19 +251,12 @@ impl TimeProviderCcsdsEpoch {
self.counter
}
pub fn width(&self) -> u8 {
self.counter.0
}
pub fn counter(&self) -> u32 {
self.counter.1
}
pub fn width_fractions_pair(&self) -> Option<FractionalPart> {
self.fractions
}
pub fn set_fractions(&mut self, fractions: FractionalPart) -> Result<(), CucError> {
Self::verify_fractions_width(fractions.0)?;
Self::verify_fractions_value(fractions)?;
self.fractions = Some(fractions);
self.update_p_field_fractions();
@ -355,12 +286,10 @@ impl TimeProviderCcsdsEpoch {
) -> Result<Self, CucError> {
Self::verify_counter_width(counter.0)?;
if counter.1 > (2u64.pow(counter.0 as u32 * 8) - 1) as u32 {
return Err(CucError::InvalidCounter {
width: counter.0,
counter: counter.1 as u64,
});
return Err(CucError::InvalidCounter(counter.0, counter.1 as u64));
}
if let Some(fractions) = fractions {
Self::verify_fractions_width(fractions.0)?;
Self::verify_fractions_value(fractions)?;
}
Ok(Self {
@ -371,7 +300,7 @@ impl TimeProviderCcsdsEpoch {
}
fn build_p_field(counter_width: u8, fractions_width: Option<FractionalResolution>) -> u8 {
let mut pfield = P_FIELD_BASE;
let mut pfield = (CcsdsTimeCodes::CucCcsdsEpoch as u8) << 4;
if !(1..=4).contains(&counter_width) {
// Okay to panic here, this function is private and all input values should
// have been sanitized
@ -409,11 +338,6 @@ impl TimeProviderCcsdsEpoch {
pfield & 0b11
}
#[inline]
fn unix_seconds(&self) -> i64 {
ccsds_epoch_to_unix_epoch(self.counter.1 as i64)
}
/// This returns the length of the individual components of the CUC timestamp in addition
/// to the total size.
///
@ -446,12 +370,16 @@ impl TimeProviderCcsdsEpoch {
Ok(())
}
fn verify_fractions_width(width: FractionalResolution) -> Result<(), CucError> {
if width as u8 > 3 {
return Err(CucError::InvalidFractionResolution(width));
}
Ok(())
}
fn verify_fractions_value(val: FractionalPart) -> Result<(), CucError> {
if val.1 > 2u32.pow((val.0 as u32) * 8) - 1 {
return Err(CucError::InvalidFractions {
resolution: val.0,
value: val.1 as u64,
});
return Err(CucError::InvalidFractions(val.0, val.1 as u64));
}
Ok(())
}
@ -463,37 +391,37 @@ impl TimeReader for TimeProviderCcsdsEpoch {
Self: Sized,
{
if buf.len() < MIN_CUC_LEN {
return Err(TimestampError::ByteConversion(
ByteConversionError::FromSliceTooSmall {
return Err(TimestampError::ByteConversionError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
expected: MIN_CUC_LEN,
found: buf.len(),
},
}),
));
}
match ccsds_time_code_from_p_field(buf[0]) {
Ok(code) => {
if code != CcsdsTimeCodes::CucCcsdsEpoch {
return Err(TimestampError::InvalidTimeCode {
expected: CcsdsTimeCodes::CucCcsdsEpoch,
found: code as u8,
});
return Err(TimestampError::InvalidTimeCode(
CcsdsTimeCodes::CucCcsdsEpoch,
code as u8,
));
}
}
Err(raw) => {
return Err(TimestampError::InvalidTimeCode {
expected: CcsdsTimeCodes::CucCcsdsEpoch,
found: raw,
});
return Err(TimestampError::InvalidTimeCode(
CcsdsTimeCodes::CucCcsdsEpoch,
raw,
))
}
}
let (cntr_len, fractions_len, total_len) =
Self::len_components_and_total_from_pfield(buf[0]);
if buf.len() < total_len {
return Err(TimestampError::ByteConversion(
ByteConversionError::FromSliceTooSmall {
return Err(TimestampError::ByteConversionError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
expected: total_len,
found: buf.len(),
},
}),
));
}
let mut current_idx = 1;
@ -545,11 +473,11 @@ impl TimeWriter for TimeProviderCcsdsEpoch {
fn write_to_bytes(&self, bytes: &mut [u8]) -> Result<usize, TimestampError> {
// Cross check the sizes of the counters against byte widths in the ctor
if bytes.len() < self.len_as_bytes() {
return Err(TimestampError::ByteConversion(
ByteConversionError::ToSliceTooSmall {
return Err(TimestampError::ByteConversionError(
ByteConversionError::ToSliceTooSmall(SizeMissmatch {
found: bytes.len(),
expected: self.len_as_bytes(),
},
}),
));
}
bytes[0] = self.pfield;
@ -587,10 +515,6 @@ impl TimeWriter for TimeProviderCcsdsEpoch {
}
Ok(current_idx)
}
fn len_written(&self) -> usize {
self.len_as_bytes()
}
}
impl CcsdsTimeProvider for TimeProviderCcsdsEpoch {
@ -606,19 +530,10 @@ impl CcsdsTimeProvider for TimeProviderCcsdsEpoch {
CcsdsTimeCodes::CucCcsdsEpoch
}
/// Please note that this function only works as intended if the time counter resolution
/// is one second.
fn unix_seconds(&self) -> i64 {
self.unix_seconds()
}
fn subsecond_millis(&self) -> Option<u16> {
if let Some(fractions) = self.fractions {
if fractions.0 == FractionalResolution::Seconds {
return None;
}
// Rounding down here is the correct approach.
return Some((convert_fractional_part_to_ns(fractions) / 10_u32.pow(6) as u64) as u16);
}
None
ccsds_epoch_to_unix_epoch(self.counter.1 as u64) as i64
}
fn date_time(&self) -> Option<DateTime<Utc>> {
@ -635,99 +550,9 @@ impl CcsdsTimeProvider for TimeProviderCcsdsEpoch {
}
}
fn get_provider_values_after_duration_addition(
provider: &TimeProviderCcsdsEpoch,
duration: Duration,
) -> (u32, Option<FractionalPart>) {
let mut new_counter = provider.counter.1;
let subsec_nanos = duration.subsec_nanos();
let mut increment_counter = |amount: u32| {
let mut sum: u64 = 0;
let mut counter_inc_handler = |max_val: u64| {
sum = new_counter as u64 + amount as u64;
if sum >= max_val {
new_counter = (sum % max_val) as u32;
return;
}
new_counter = sum as u32;
};
match provider.counter.0 {
1 => counter_inc_handler(u8::MAX as u64),
2 => counter_inc_handler(u16::MAX as u64),
3 => counter_inc_handler((2_u32.pow(24) - 1) as u64),
4 => counter_inc_handler(u32::MAX as u64),
_ => {
// Should never happen
panic!("invalid counter width")
}
}
};
let fractional_part = if let Some(fractional_part) = &provider.fractions {
let fractional_increment =
fractional_part_from_subsec_ns(fractional_part.0, subsec_nanos as u64).unwrap();
let mut increment_fractions = |resolution| {
let mut new_fractions = fractional_part.1 + fractional_increment.1;
let max_fractions = fractional_res_to_div(resolution);
if new_fractions > max_fractions {
increment_counter(1);
new_fractions -= max_fractions;
}
Some(FractionalPart(resolution, new_fractions))
};
match fractional_increment.0 {
FractionalResolution::Seconds => None,
_ => increment_fractions(fractional_increment.0),
}
} else {
None
};
increment_counter(duration.as_secs() as u32);
(new_counter, fractional_part)
}
impl AddAssign<Duration> for TimeProviderCcsdsEpoch {
fn add_assign(&mut self, duration: Duration) {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(self, duration);
self.counter.1 = new_counter;
if self.fractions.is_some() {
self.fractions = new_fractional_part;
}
}
}
impl Add<Duration> for TimeProviderCcsdsEpoch {
type Output = Self;
fn add(self, duration: Duration) -> Self::Output {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(&self, duration);
if let Some(fractional_part) = new_fractional_part {
// The generated fractional part should always be valid, so its okay to unwrap here.
return Self::new_with_fractions(new_counter, fractional_part).unwrap();
}
Self::new(new_counter)
}
}
impl Add<Duration> for &TimeProviderCcsdsEpoch {
type Output = TimeProviderCcsdsEpoch;
fn add(self, duration: Duration) -> Self::Output {
let (new_counter, new_fractional_part) =
get_provider_values_after_duration_addition(self, duration);
if let Some(fractional_part) = new_fractional_part {
// The generated fractional part should always be valid, so its okay to unwrap here.
return Self::Output::new_with_fractions(new_counter, fractional_part).unwrap();
}
Self::Output::new(new_counter)
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::string::ToString;
use chrono::{Datelike, Timelike};
#[allow(unused_imports)]
use std::println;
@ -736,8 +561,6 @@ mod tests {
fn test_basic_zero_epoch() {
let zero_cuc = TimeProviderCcsdsEpoch::new(0);
assert_eq!(zero_cuc.len_as_bytes(), 5);
assert_eq!(zero_cuc.width(), zero_cuc.width_counter_pair().0);
assert_eq!(zero_cuc.counter(), zero_cuc.width_counter_pair().1);
assert_eq!(zero_cuc.ccdsd_time_code(), CcsdsTimeCodes::CucCcsdsEpoch);
let counter = zero_cuc.width_counter_pair();
assert_eq!(counter.0, 4);
@ -763,7 +586,6 @@ mod tests {
let zero_cuc = zero_cuc.unwrap();
let res = zero_cuc.write_to_bytes(&mut buf);
assert!(res.is_ok());
assert!(zero_cuc.subsecond_millis().is_none());
assert_eq!(zero_cuc.len_as_bytes(), 5);
assert_eq!(pfield_len(buf[0]), 1);
let written = res.unwrap();
@ -814,13 +636,11 @@ mod tests {
let res = TimeProviderCcsdsEpoch::from_bytes(&buf[0..i]);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::ByteConversion(ByteConversionError::FromSliceTooSmall {
found,
expected,
}) = err
if let TimestampError::ByteConversionError(ByteConversionError::FromSliceTooSmall(e)) =
err
{
assert_eq!(found, i);
assert_eq!(expected, 2);
assert_eq!(e.found, i);
assert_eq!(e.expected, 2);
}
}
let large_stamp = TimeProviderCcsdsEpoch::new_with_fine_fractions(22, 300).unwrap();
@ -829,13 +649,11 @@ mod tests {
let res = TimeProviderCcsdsEpoch::from_bytes(&buf[0..i]);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::ByteConversion(ByteConversionError::FromSliceTooSmall {
found,
expected,
}) = err
if let TimestampError::ByteConversionError(ByteConversionError::FromSliceTooSmall(e)) =
err
{
assert_eq!(found, i);
assert_eq!(expected, large_stamp.len_as_bytes());
assert_eq!(e.found, i);
assert_eq!(e.expected, large_stamp.len_as_bytes());
}
}
}
@ -878,7 +696,6 @@ mod tests {
#[test]
fn invalid_buf_len_for_read() {}
#[test]
fn write_read_three_byte_cntr_stamp() {
let mut buf = [0; 4];
@ -908,13 +725,11 @@ mod tests {
let err = cuc.write_to_bytes(&mut buf[0..i]);
assert!(err.is_err());
let err = err.unwrap_err();
if let TimestampError::ByteConversion(ByteConversionError::ToSliceTooSmall {
found,
expected,
}) = err
if let TimestampError::ByteConversionError(ByteConversionError::ToSliceTooSmall(e)) =
err
{
assert_eq!(expected, cuc.len_as_bytes());
assert_eq!(found, i);
assert_eq!(e.expected, cuc.len_as_bytes());
assert_eq!(e.found, i);
} else {
panic!("unexpected error: {}", err);
}
@ -927,9 +742,9 @@ mod tests {
let res = TimeProviderCcsdsEpoch::from_bytes(&buf);
assert!(res.is_err());
let err = res.unwrap_err();
if let TimestampError::InvalidTimeCode { expected, found } = err {
assert_eq!(expected, CcsdsTimeCodes::CucCcsdsEpoch);
assert_eq!(found, CcsdsTimeCodes::CucAgencyEpoch as u8);
if let TimestampError::InvalidTimeCode(code, raw) = err {
assert_eq!(code, CcsdsTimeCodes::CucCcsdsEpoch);
assert_eq!(raw, CcsdsTimeCodes::CucAgencyEpoch as u8);
} else {
panic!("unexpected error: {}", err);
}
@ -1052,39 +867,29 @@ mod tests {
#[test]
fn fractional_part_formula() {
let fractional_part =
fractional_part_from_subsec_ns(FractionalResolution::FourMs, 7843138).unwrap();
assert_eq!(fractional_part.1, 2);
7843137 / (10_u64.pow(9) / fractional_res_to_div(FractionalResolution::FourMs) as u64);
assert_eq!(fractional_part, 2);
}
#[test]
fn fractional_part_formula_2() {
let fractional_part =
fractional_part_from_subsec_ns(FractionalResolution::FourMs, 12000000).unwrap();
assert_eq!(fractional_part.1, 3);
12000000 / (10_u64.pow(9) / fractional_res_to_div(FractionalResolution::FourMs) as u64);
assert_eq!(fractional_part, 3);
}
#[test]
fn fractional_part_formula_3() {
let one_fraction_with_width_two_in_ns =
10_u64.pow(9) as f64 / (2_u32.pow(8 * 2) - 1) as f64;
assert_eq!(one_fraction_with_width_two_in_ns.ceil(), 15260.0);
let hundred_fractions_and_some =
(100.0 * one_fraction_with_width_two_in_ns).floor() as u64 + 7000;
let fractional_part = fractional_part_from_subsec_ns(
FractionalResolution::FifteenUs,
hundred_fractions_and_some,
)
.unwrap();
assert_eq!(fractional_part.1, 100);
// Using exactly 101.0 can yield values which will later be rounded down to 100
let hundred_and_one_fractions =
(101.001 * one_fraction_with_width_two_in_ns).floor() as u64;
let fractional_part = fractional_part_from_subsec_ns(
FractionalResolution::FifteenUs,
hundred_and_one_fractions,
)
.unwrap();
assert_eq!(fractional_part.1, 101);
let one_fraction_with_width_two_in_ns = 10_u64.pow(9) / (2_u32.pow(8 * 2) - 1) as u64;
assert_eq!(one_fraction_with_width_two_in_ns, 15259);
let hundred_fractions_and_some = 100 * one_fraction_with_width_two_in_ns + 7000;
let fractional_part = hundred_fractions_and_some
/ (10_u64.pow(9) / fractional_res_to_div(FractionalResolution::FifteenUs) as u64);
assert_eq!(fractional_part, 100);
let hundred_and_one_fractions = 101 * one_fraction_with_width_two_in_ns;
let fractional_part = hundred_and_one_fractions
/ (10_u64.pow(9) / fractional_res_to_div(FractionalResolution::FifteenUs) as u64);
assert_eq!(fractional_part, 101);
}
#[test]
@ -1109,134 +914,4 @@ mod tests {
let res = stamp.update_from_now();
assert!(res.is_ok());
}
#[test]
fn assert_largest_fractions() {
let fractions =
fractional_part_from_subsec_ns(FractionalResolution::SixtyNs, 10u64.pow(9) - 1)
.unwrap();
// The value can not be larger than representable by 3 bytes
// Assert that the maximum resolution can be reached
assert_eq!(fractions.1, 2_u32.pow(3 * 8) - 2);
}
fn check_stamp_after_addition(cuc_stamp: &TimeProviderCcsdsEpoch) {
assert_eq!(cuc_stamp.width_counter_pair().1, 202);
let fractions = cuc_stamp.width_fractions_pair().unwrap().1;
let expected_val =
(0.5 * fractional_res_to_div(FractionalResolution::FifteenUs) as f64).floor() as u32;
assert_eq!(fractions, expected_val);
let cuc_stamp2 = cuc_stamp + Duration::from_millis(501);
// What I would roughly expect
assert_eq!(cuc_stamp2.counter.1, 203);
assert!(cuc_stamp2.fractions.unwrap().1 < 100);
assert!(cuc_stamp2.subsecond_millis().unwrap() <= 1);
}
#[test]
fn add_duration_basic() {
let mut cuc_stamp = TimeProviderCcsdsEpoch::new(200);
cuc_stamp.set_fractional_resolution(FractionalResolution::FifteenUs);
let duration = Duration::from_millis(2500);
cuc_stamp += duration;
check_stamp_after_addition(&cuc_stamp);
}
#[test]
fn add_duration_basic_on_ref() {
let mut cuc_stamp = TimeProviderCcsdsEpoch::new(200);
cuc_stamp.set_fractional_resolution(FractionalResolution::FifteenUs);
let duration = Duration::from_millis(2500);
let new_stamp = cuc_stamp + duration;
check_stamp_after_addition(&new_stamp);
}
#[test]
fn add_duration_basic_no_fractions() {
let mut cuc_stamp = TimeProviderCcsdsEpoch::new(200);
let duration = Duration::from_millis(2000);
cuc_stamp += duration;
assert_eq!(cuc_stamp.counter(), 202);
assert_eq!(cuc_stamp.width_fractions_pair(), None);
}
#[test]
fn add_duration_basic_on_ref_no_fractions() {
let cuc_stamp = TimeProviderCcsdsEpoch::new(200);
let duration = Duration::from_millis(2000);
let new_stamp = cuc_stamp + duration;
assert_eq!(new_stamp.counter(), 202);
assert_eq!(new_stamp.width_fractions_pair(), None);
}
#[test]
fn add_duration_overflow() {
let mut cuc_stamp =
TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(1, 255), None).unwrap();
let duration = Duration::from_secs(10);
cuc_stamp += duration;
assert_eq!(cuc_stamp.counter.1, 10);
}
#[test]
fn test_invalid_width_param() {
let error = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(8, 0), None);
assert!(error.is_err());
let error = error.unwrap_err();
if let CucError::InvalidCounterWidth(width) = error {
assert_eq!(width, 8);
assert_eq!(error.to_string(), "invalid cuc counter byte width 8");
} else {
panic!("unexpected error: {}", error);
}
}
#[test]
fn test_from_dt() {
let dt = Utc.with_ymd_and_hms(2021, 1, 1, 0, 0, 0).unwrap();
let cuc =
TimeProviderCcsdsEpoch::from_date_time(&dt, FractionalResolution::Seconds).unwrap();
assert_eq!(cuc.counter(), dt.timestamp() as u32);
}
#[test]
fn test_new_u16_width() {
let cuc = TimeProviderCcsdsEpoch::new_u16_counter(0);
assert_eq!(cuc.width(), 2);
assert_eq!(cuc.counter(), 0);
}
#[test]
fn from_unix_stamp() {
let unix_stamp = UnixTimestamp::new(0, 0).unwrap();
let cuc =
TimeProviderCcsdsEpoch::from_unix_stamp(&unix_stamp, FractionalResolution::Seconds)
.expect("failed to create cuc from unix stamp");
assert_eq!(
cuc.counter(),
(-DAYS_CCSDS_TO_UNIX * SECONDS_PER_DAY as i32) as u32
);
}
#[test]
fn test_invalid_counter() {
let cuc_error = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(1, 256), None);
assert!(cuc_error.is_err());
let cuc_error = cuc_error.unwrap_err();
if let CucError::InvalidCounter { width, counter } = cuc_error {
assert_eq!(width, 1);
assert_eq!(counter, 256);
assert_eq!(cuc_error.to_string(), "invalid cuc counter 256 for width 1");
} else {
panic!("unexpected error: {}", cuc_error);
}
}
#[test]
fn test_stamp_to_vec() {
let stamp = TimeProviderCcsdsEpoch::new_u16_counter(100);
let stamp_vec = stamp.to_vec().unwrap();
let mut buf: [u8; 16] = [0; 16];
stamp.write_to_bytes(&mut buf).unwrap();
assert_eq!(stamp_vec, buf[..stamp.len_written()]);
}
}

View File

@ -1,11 +1,7 @@
//! CCSDS Time Code Formats according to [CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf)
use crate::ByteConversionError;
use crate::{ByteConversionError, SizeMissmatch};
use chrono::{DateTime, LocalResult, TimeZone, Utc};
use core::cmp::Ordering;
use core::fmt::{Display, Formatter};
use core::ops::{Add, AddAssign};
use core::time::Duration;
use core::u8;
#[allow(unused_imports)]
#[cfg(not(feature = "std"))]
@ -17,8 +13,6 @@ use serde::{Deserialize, Serialize};
use std::error::Error;
#[cfg(feature = "std")]
use std::time::{SystemTime, SystemTimeError};
#[cfg(feature = "std")]
pub use std_mod::*;
pub mod ascii;
pub mod cds;
@ -26,7 +20,6 @@ pub mod cuc;
pub const DAYS_CCSDS_TO_UNIX: i32 = -4383;
pub const SECONDS_PER_DAY: u32 = 86400;
pub const MS_PER_DAY: u32 = SECONDS_PER_DAY * 1000;
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
@ -62,36 +55,68 @@ pub fn ccsds_time_code_from_p_field(pfield: u8) -> Result<CcsdsTimeCodes, u8> {
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[non_exhaustive]
pub enum TimestampError {
InvalidTimeCode { expected: CcsdsTimeCodes, found: u8 },
ByteConversion(ByteConversionError),
Cds(cds::CdsError),
Cuc(cuc::CucError),
DateBeforeCcsdsEpoch(DateTime<Utc>),
/// Contains tuple where first value is the expected time code and the second
/// value is the found raw value
InvalidTimeCode(CcsdsTimeCodes, u8),
ByteConversionError(ByteConversionError),
CdsError(cds::CdsError),
CucError(cuc::CucError),
CustomEpochNotSupported,
}
impl From<cds::CdsError> for TimestampError {
fn from(e: cds::CdsError) -> Self {
TimestampError::CdsError(e)
}
}
impl From<cuc::CucError> for TimestampError {
fn from(e: cuc::CucError) -> Self {
TimestampError::CucError(e)
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
#[derive(Debug, Clone)]
pub enum StdTimestampError {
SystemTimeError(SystemTimeError),
TimestampError(TimestampError),
}
#[cfg(feature = "std")]
impl From<TimestampError> for StdTimestampError {
fn from(v: TimestampError) -> Self {
Self::TimestampError(v)
}
}
#[cfg(feature = "std")]
impl From<SystemTimeError> for StdTimestampError {
fn from(v: SystemTimeError) -> Self {
Self::SystemTimeError(v)
}
}
impl Display for TimestampError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
TimestampError::InvalidTimeCode { expected, found } => {
TimestampError::InvalidTimeCode(time_code, raw_val) => {
write!(
f,
"invalid raw time code value {found} for time code {expected:?}"
"invalid raw time code value {} for time code {:?}",
raw_val, time_code
)
}
TimestampError::Cds(e) => {
write!(f, "cds error: {e}")
TimestampError::CdsError(e) => {
write!(f, "cds error {}", e)
}
TimestampError::Cuc(e) => {
write!(f, "cuc error: {e}")
TimestampError::CucError(e) => {
write!(f, "cuc error {}", e)
}
TimestampError::ByteConversion(e) => {
write!(f, "time stamp: {e}")
}
TimestampError::DateBeforeCcsdsEpoch(e) => {
write!(f, "datetime with date before ccsds epoch: {e}")
TimestampError::ByteConversionError(e) => {
write!(f, "byte conversion error {}", e)
}
TimestampError::CustomEpochNotSupported => {
write!(f, "custom epochs are not supported")
@ -104,40 +129,13 @@ impl Display for TimestampError {
impl Error for TimestampError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
TimestampError::ByteConversion(e) => Some(e),
TimestampError::Cds(e) => Some(e),
TimestampError::Cuc(e) => Some(e),
TimestampError::ByteConversionError(e) => Some(e),
TimestampError::CdsError(e) => Some(e),
TimestampError::CucError(e) => Some(e),
_ => None,
}
}
}
impl From<cds::CdsError> for TimestampError {
fn from(e: cds::CdsError) -> Self {
TimestampError::Cds(e)
}
}
impl From<cuc::CucError> for TimestampError {
fn from(e: cuc::CucError) -> Self {
TimestampError::Cuc(e)
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub mod std_mod {
use crate::time::TimestampError;
use std::time::SystemTimeError;
use thiserror::Error;
#[derive(Debug, Clone, Error)]
pub enum StdTimestampError {
#[error("system time error: {0}")]
SystemTime(#[from] SystemTimeError),
#[error("timestamp error: {0}")]
Timestamp(#[from] TimestampError),
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
@ -150,28 +148,28 @@ pub fn seconds_since_epoch() -> f64 {
/// Convert UNIX days to CCSDS days
///
/// - CCSDS epoch: 1958-01-01T00:00:00+00:00
/// - UNIX Epoch: 1970-01-01T00:00:00+00:00
/// - CCSDS epoch: 1958 January 1
/// - UNIX Epoch: 1970 January 1
pub const fn unix_to_ccsds_days(unix_days: i64) -> i64 {
unix_days - DAYS_CCSDS_TO_UNIX as i64
}
/// Convert CCSDS days to UNIX days
///
/// - CCSDS epoch: 1958-01-01T00:00:00+00:00
/// - UNIX Epoch: 1970-01-01T00:00:00+00:00
/// - CCSDS epoch: 1958 January 1
/// - UNIX Epoch: 1970 January 1
pub const fn ccsds_to_unix_days(ccsds_days: i64) -> i64 {
ccsds_days + DAYS_CCSDS_TO_UNIX as i64
}
/// Similar to [unix_to_ccsds_days] but converts the epoch instead, which is the number of elpased
/// seconds since the CCSDS and UNIX epoch times.
pub const fn unix_epoch_to_ccsds_epoch(unix_epoch: i64) -> i64 {
unix_epoch - (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)
pub const fn unix_epoch_to_ccsds_epoch(unix_epoch: u64) -> u64 {
(unix_epoch as i64 - (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)) as u64
}
pub const fn ccsds_epoch_to_unix_epoch(ccsds_epoch: i64) -> i64 {
ccsds_epoch + (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)
pub const fn ccsds_epoch_to_unix_epoch(ccsds_epoch: u64) -> u64 {
(ccsds_epoch as i64 + (DAYS_CCSDS_TO_UNIX as i64 * SECONDS_PER_DAY as i64)) as u64
}
#[cfg(feature = "std")]
@ -189,18 +187,9 @@ pub fn ms_of_day(seconds_since_epoch: f64) -> u32 {
}
pub trait TimeWriter {
fn len_written(&self) -> usize;
/// Generic function to convert write a timestamp into a raw buffer.
/// Returns the number of written bytes on success.
fn write_to_bytes(&self, bytes: &mut [u8]) -> Result<usize, TimestampError>;
#[cfg(feature = "alloc")]
fn to_vec(&self) -> Result<alloc::vec::Vec<u8>, TimestampError> {
let mut vec = alloc::vec![0; self.len_written()];
self.write_to_bytes(&mut vec)?;
Ok(vec)
}
}
pub trait TimeReader {
@ -210,9 +199,6 @@ pub trait TimeReader {
}
/// Trait for generic CCSDS time providers.
///
/// The UNIX helper methods and the [Self::date_time] method are not strictly necessary but extremely
/// practical because they are a very common and simple exchange format for time information.
pub trait CcsdsTimeProvider {
fn len_as_bytes(&self) -> usize;
@ -222,210 +208,13 @@ pub trait CcsdsTimeProvider {
/// in big endian format.
fn p_field(&self) -> (usize, [u8; 2]);
fn ccdsd_time_code(&self) -> CcsdsTimeCodes;
fn unix_seconds(&self) -> i64;
fn subsecond_millis(&self) -> Option<u16>;
fn unix_stamp(&self) -> UnixTimestamp {
if self.subsecond_millis().is_none() {
return UnixTimestamp::new_only_seconds(self.unix_seconds());
}
UnixTimestamp::const_new(self.unix_seconds(), self.subsecond_millis().unwrap())
}
fn date_time(&self) -> Option<DateTime<Utc>>;
}
/// UNIX timestamp: Elapsed seconds since 1970-01-01T00:00:00+00:00.
///
/// Also can optionally include subsecond millisecond for greater accuracy. Please note that a
/// subsecond millisecond value of 0 gets converted to [None].
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct UnixTimestamp {
pub unix_seconds: i64,
subsecond_millis: Option<u16>,
}
impl UnixTimestamp {
/// Returns none if the subsecond millisecond value is larger than 999. 0 is converted to
/// a [None] value.
pub fn new(unix_seconds: i64, subsec_millis: u16) -> Option<Self> {
if subsec_millis > 999 {
return None;
}
Some(Self::const_new(unix_seconds, subsec_millis))
}
/// Like [Self::new] but const. Panics if the subsecond value is larger than 999.
pub const fn const_new(unix_seconds: i64, subsec_millis: u16) -> Self {
if subsec_millis > 999 {
panic!("subsec milliseconds exceeds 999");
}
let subsecond_millis = if subsec_millis == 0 {
None
} else {
Some(subsec_millis)
};
Self {
unix_seconds,
subsecond_millis,
}
}
pub fn new_only_seconds(unix_seconds: i64) -> Self {
Self {
unix_seconds,
subsecond_millis: None,
}
}
pub fn subsecond_millis(&self) -> Option<u16> {
self.subsecond_millis
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn from_now() -> Result<Self, SystemTimeError> {
let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?;
let epoch = now.as_secs();
Ok(Self::const_new(epoch as i64, now.subsec_millis() as u16))
}
#[inline]
pub fn unix_seconds_f64(&self) -> f64 {
let mut secs = self.unix_seconds as f64;
if let Some(subsec_millis) = self.subsecond_millis {
secs += subsec_millis as f64 / 1000.0;
}
secs
}
pub fn as_date_time(&self) -> LocalResult<DateTime<Utc>> {
Utc.timestamp_opt(
self.unix_seconds,
self.subsecond_millis.unwrap_or(0) as u32 * 10_u32.pow(6),
)
}
}
impl From<DateTime<Utc>> for UnixTimestamp {
fn from(value: DateTime<Utc>) -> Self {
Self::const_new(value.timestamp(), value.timestamp_subsec_millis() as u16)
}
}
impl PartialOrd for UnixTimestamp {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for UnixTimestamp {
fn cmp(&self, other: &Self) -> Ordering {
if self == other {
return Ordering::Equal;
}
match self.unix_seconds.cmp(&other.unix_seconds) {
Ordering::Less => return Ordering::Less,
Ordering::Greater => return Ordering::Greater,
_ => (),
}
match self
.subsecond_millis()
.unwrap_or(0)
.cmp(&other.subsecond_millis().unwrap_or(0))
{
Ordering::Less => {
return if self.unix_seconds < 0 {
Ordering::Greater
} else {
Ordering::Less
}
}
Ordering::Greater => {
return if self.unix_seconds < 0 {
Ordering::Less
} else {
Ordering::Greater
}
}
Ordering::Equal => (),
}
Ordering::Equal
}
}
fn get_new_stamp_after_addition(
current_stamp: &UnixTimestamp,
duration: Duration,
) -> UnixTimestamp {
let mut new_subsec_millis =
current_stamp.subsecond_millis().unwrap_or(0) + duration.subsec_millis() as u16;
let mut new_unix_seconds = current_stamp.unix_seconds;
let mut increment_seconds = |value: u32| {
if new_unix_seconds < 0 {
new_unix_seconds = new_unix_seconds
.checked_sub(value.into())
.expect("new unix seconds would exceed i64::MIN");
} else {
new_unix_seconds = new_unix_seconds
.checked_add(value.into())
.expect("new unix seconds would exceed i64::MAX");
}
};
if new_subsec_millis >= 1000 {
new_subsec_millis -= 1000;
increment_seconds(1);
}
increment_seconds(
duration
.as_secs()
.try_into()
.expect("duration seconds exceeds u32::MAX"),
);
UnixTimestamp::const_new(new_unix_seconds, new_subsec_millis)
}
/// Please note that this operation will panic on the following conditions:
///
/// - Unix seconds after subtraction for stamps before the unix epoch exceeds [i64::MIN].
/// - Unix seconds after addition exceeds [i64::MAX].
/// - Seconds from duration to add exceeds [u32::MAX].
impl AddAssign<Duration> for UnixTimestamp {
fn add_assign(&mut self, duration: Duration) {
*self = get_new_stamp_after_addition(self, duration);
}
}
/// Please note that this operation will panic for the following conditions:
///
/// - Unix seconds after subtraction for stamps before the unix epoch exceeds [i64::MIN].
/// - Unix seconds after addition exceeds [i64::MAX].
/// - Unix seconds exceeds [u32::MAX].
impl Add<Duration> for UnixTimestamp {
type Output = Self;
fn add(self, duration: Duration) -> Self::Output {
get_new_stamp_after_addition(&self, duration)
}
}
impl Add<Duration> for &UnixTimestamp {
type Output = UnixTimestamp;
fn add(self, duration: Duration) -> Self::Output {
get_new_stamp_after_addition(self, duration)
}
}
#[cfg(all(test, feature = "std"))]
mod tests {
use alloc::string::ToString;
use chrono::{Datelike, Timelike};
use std::format;
use super::{cuc::CucError, *};
use super::*;
#[test]
fn test_days_conversion() {
@ -439,156 +228,16 @@ mod tests {
assert!(sec_floats > 0.0);
}
#[test]
fn test_ms_of_day() {
let ms = ms_of_day(0.0);
assert_eq!(ms, 0);
let ms = ms_of_day(5.0);
assert_eq!(ms, 5000);
}
#[test]
fn test_ccsds_epoch() {
let now = SystemTime::now()
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap();
let unix_epoch = now.as_secs();
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs() as i64) as u64;
let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs());
assert!(ccsds_epoch > unix_epoch);
assert_eq!((ccsds_epoch - unix_epoch) % SECONDS_PER_DAY as u64, 0);
let days_diff = (ccsds_epoch - unix_epoch) / SECONDS_PER_DAY as u64;
assert_eq!(days_diff, -DAYS_CCSDS_TO_UNIX as u64);
}
#[test]
fn basic_unix_stamp_test() {
let stamp = UnixTimestamp::new_only_seconds(-200);
assert_eq!(stamp.unix_seconds, -200);
assert!(stamp.subsecond_millis().is_none());
let stamp = UnixTimestamp::new_only_seconds(250);
assert_eq!(stamp.unix_seconds, 250);
assert!(stamp.subsecond_millis().is_none());
}
#[test]
fn basic_float_unix_stamp_test() {
let stamp = UnixTimestamp::new(500, 600).unwrap();
assert!(stamp.subsecond_millis.is_some());
assert_eq!(stamp.unix_seconds, 500);
let subsec_millis = stamp.subsecond_millis().unwrap();
assert_eq!(subsec_millis, 600);
assert!((500.6 - stamp.unix_seconds_f64()).abs() < 0.0001);
}
#[test]
fn test_ord_larger() {
let stamp0 = UnixTimestamp::new_only_seconds(5);
let stamp1 = UnixTimestamp::new(5, 500).unwrap();
let stamp2 = UnixTimestamp::new_only_seconds(6);
assert!(stamp1 > stamp0);
assert!(stamp2 > stamp0);
assert!(stamp2 > stamp1);
}
#[test]
fn test_ord_smaller() {
let stamp0 = UnixTimestamp::new_only_seconds(5);
let stamp1 = UnixTimestamp::new(5, 500).unwrap();
let stamp2 = UnixTimestamp::new_only_seconds(6);
assert!(stamp0 < stamp1);
assert!(stamp0 < stamp2);
assert!(stamp1 < stamp2);
}
#[test]
fn test_ord_larger_neg_numbers() {
let stamp0 = UnixTimestamp::new_only_seconds(-5);
let stamp1 = UnixTimestamp::new(-5, 500).unwrap();
let stamp2 = UnixTimestamp::new_only_seconds(-6);
assert!(stamp0 > stamp1);
assert!(stamp0 > stamp2);
assert!(stamp1 > stamp2);
assert!(stamp1 >= stamp2);
assert!(stamp0 >= stamp1);
}
#[test]
fn test_ord_smaller_neg_numbers() {
let stamp0 = UnixTimestamp::new_only_seconds(-5);
let stamp1 = UnixTimestamp::new(-5, 500).unwrap();
let stamp2 = UnixTimestamp::new_only_seconds(-6);
assert!(stamp2 < stamp1);
assert!(stamp2 < stamp0);
assert!(stamp1 < stamp0);
assert!(stamp1 <= stamp0);
assert!(stamp2 <= stamp1);
}
#[test]
fn test_eq() {
let stamp0 = UnixTimestamp::new(5, 0).unwrap();
let stamp1 = UnixTimestamp::new_only_seconds(5);
assert_eq!(stamp0, stamp1);
assert!(stamp0 <= stamp1);
assert!(stamp0 >= stamp1);
assert!(!(stamp0 < stamp1));
assert!(!(stamp0 > stamp1));
}
#[test]
fn test_addition() {
let mut stamp0 = UnixTimestamp::new_only_seconds(1);
stamp0 += Duration::from_secs(5);
assert_eq!(stamp0.unix_seconds, 6);
assert!(stamp0.subsecond_millis().is_none());
let stamp1 = stamp0 + Duration::from_millis(500);
assert_eq!(stamp1.unix_seconds, 6);
assert!(stamp1.subsecond_millis().is_some());
assert_eq!(stamp1.subsecond_millis().unwrap(), 500);
}
#[test]
fn test_addition_on_ref() {
let stamp0 = &UnixTimestamp::new(20, 500).unwrap();
let stamp1 = stamp0 + Duration::from_millis(2500);
assert_eq!(stamp1.unix_seconds, 23);
assert!(stamp1.subsecond_millis().is_none());
}
#[test]
fn test_as_dt() {
let stamp = UnixTimestamp::new_only_seconds(0);
let dt = stamp.as_date_time().unwrap();
assert_eq!(dt.year(), 1970);
assert_eq!(dt.month(), 1);
assert_eq!(dt.day(), 1);
assert_eq!(dt.hour(), 0);
assert_eq!(dt.minute(), 0);
assert_eq!(dt.second(), 0);
}
#[test]
fn test_from_now() {
let stamp_now = UnixTimestamp::from_now().unwrap();
let dt_now = stamp_now.as_date_time().unwrap();
assert!(dt_now.year() >= 2020);
}
#[test]
fn test_addition_spillover() {
let mut stamp0 = UnixTimestamp::new(1, 900).unwrap();
stamp0 += Duration::from_millis(100);
assert_eq!(stamp0.unix_seconds, 2);
assert!(stamp0.subsecond_millis().is_none());
stamp0 += Duration::from_millis(1100);
assert_eq!(stamp0.unix_seconds, 3);
assert_eq!(stamp0.subsecond_millis().unwrap(), 100);
}
#[test]
fn test_cuc_error_printout() {
let cuc_error = CucError::InvalidCounterWidth(12);
let stamp_error = TimestampError::from(cuc_error);
assert_eq!(stamp_error.to_string(), format!("cuc error: {cuc_error}"));
}
}

668
src/tm.rs Normal file
View File

@ -0,0 +1,668 @@
//! This module contains all components required to create a ECSS PUS C telemetry packets according
//! to [ECSS-E-ST-70-41C](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
use crate::ecss::{
ccsds_impl, crc_from_raw_data, crc_procedure, sp_header_impls, user_data_from_raw,
verify_crc16_from_raw, CrcType, PusError, PusPacket, PusVersion, CRC_CCITT_FALSE,
};
use crate::{
ByteConversionError, CcsdsPacket, PacketType, SequenceFlags, SizeMissmatch, SpHeader,
CCSDS_HEADER_LEN,
};
use core::mem::size_of;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zerocopy::AsBytes;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use delegate::delegate;
/// Length without timestamp
pub const PUC_TM_MIN_SEC_HEADER_LEN: usize = 7;
pub const PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA: usize =
CCSDS_HEADER_LEN + PUC_TM_MIN_SEC_HEADER_LEN + size_of::<CrcType>();
pub trait GenericPusTmSecondaryHeader {
fn pus_version(&self) -> PusVersion;
fn sc_time_ref_status(&self) -> u8;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn msg_counter(&self) -> u16;
fn dest_id(&self) -> u16;
}
pub mod zc {
use super::GenericPusTmSecondaryHeader;
use crate::ecss::{PusError, PusVersion};
use zerocopy::{AsBytes, FromBytes, NetworkEndian, Unaligned, U16};
#[derive(FromBytes, AsBytes, Unaligned)]
#[repr(C)]
pub struct PusTmSecHeaderWithoutTimestamp {
pus_version_and_sc_time_ref_status: u8,
service: u8,
subservice: u8,
msg_counter: U16<NetworkEndian>,
dest_id: U16<NetworkEndian>,
}
pub struct PusTmSecHeader<'slice> {
pub(crate) zc_header: PusTmSecHeaderWithoutTimestamp,
pub(crate) timestamp: &'slice [u8],
}
impl TryFrom<crate::tm::PusTmSecondaryHeader<'_>> for PusTmSecHeaderWithoutTimestamp {
type Error = PusError;
fn try_from(header: crate::tm::PusTmSecondaryHeader) -> Result<Self, Self::Error> {
if header.pus_version != PusVersion::PusC {
return Err(PusError::VersionNotSupported(header.pus_version));
}
Ok(PusTmSecHeaderWithoutTimestamp {
pus_version_and_sc_time_ref_status: ((header.pus_version as u8) << 4)
| header.sc_time_ref_status,
service: header.service,
subservice: header.subservice,
msg_counter: U16::from(header.msg_counter),
dest_id: U16::from(header.dest_id),
})
}
}
impl PusTmSecHeaderWithoutTimestamp {
pub fn write_to_bytes(&self, slice: &mut [u8]) -> Option<()> {
self.write_to(slice)
}
pub fn from_bytes(slice: &[u8]) -> Option<Self> {
Self::read_from(slice)
}
}
impl GenericPusTmSecondaryHeader for PusTmSecHeaderWithoutTimestamp {
fn pus_version(&self) -> PusVersion {
PusVersion::try_from(self.pus_version_and_sc_time_ref_status >> 4 & 0b1111)
.unwrap_or(PusVersion::Invalid)
}
fn sc_time_ref_status(&self) -> u8 {
self.pus_version_and_sc_time_ref_status & 0b1111
}
fn service(&self) -> u8 {
self.service
}
fn subservice(&self) -> u8 {
self.subservice
}
fn msg_counter(&self) -> u16 {
self.msg_counter.get()
}
fn dest_id(&self) -> u16 {
self.dest_id.get()
}
}
}
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTmSecondaryHeader<'slice> {
pus_version: PusVersion,
pub sc_time_ref_status: u8,
pub service: u8,
pub subservice: u8,
pub msg_counter: u16,
pub dest_id: u16,
pub time_stamp: &'slice [u8],
}
impl<'slice> PusTmSecondaryHeader<'slice> {
pub fn new_simple(service: u8, subservice: u8, time_stamp: &'slice [u8]) -> Self {
PusTmSecondaryHeader {
pus_version: PusVersion::PusC,
sc_time_ref_status: 0,
service,
subservice,
msg_counter: 0,
dest_id: 0,
time_stamp,
}
}
pub fn new(
service: u8,
subservice: u8,
msg_counter: u16,
dest_id: u16,
time_stamp: &'slice [u8],
) -> Self {
PusTmSecondaryHeader {
pus_version: PusVersion::PusC,
sc_time_ref_status: 0,
service,
subservice,
msg_counter,
dest_id,
time_stamp,
}
}
}
impl GenericPusTmSecondaryHeader for PusTmSecondaryHeader<'_> {
fn pus_version(&self) -> PusVersion {
self.pus_version
}
fn sc_time_ref_status(&self) -> u8 {
self.sc_time_ref_status
}
fn service(&self) -> u8 {
self.service
}
fn subservice(&self) -> u8 {
self.subservice
}
fn msg_counter(&self) -> u16 {
self.msg_counter
}
fn dest_id(&self) -> u16 {
self.dest_id
}
}
impl<'slice> TryFrom<zc::PusTmSecHeader<'slice>> for PusTmSecondaryHeader<'slice> {
type Error = ();
fn try_from(sec_header: zc::PusTmSecHeader<'slice>) -> Result<Self, Self::Error> {
Ok(PusTmSecondaryHeader {
pus_version: sec_header.zc_header.pus_version(),
sc_time_ref_status: sec_header.zc_header.sc_time_ref_status(),
service: sec_header.zc_header.service(),
subservice: sec_header.zc_header.subservice(),
msg_counter: sec_header.zc_header.msg_counter(),
dest_id: sec_header.zc_header.dest_id(),
time_stamp: sec_header.timestamp,
})
}
}
/// This class models a PUS telemetry and which can also be used. It is the primary data
/// structure to generate the raw byte representation of PUS telemetry or to
/// deserialize from one from raw bytes.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde]
/// feature is used which allows to send around TM packets in a raw byte format using a serde
/// provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTm<'slice> {
pub sp_header: SpHeader,
pub sec_header: PusTmSecondaryHeader<'slice>,
/// If this is set to false, a manual call to [PusTm::calc_own_crc16] or
/// [PusTm::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid.
pub calc_crc_on_serialization: bool,
#[cfg_attr(feature = "serde", serde(skip))]
raw_data: Option<&'slice [u8]>,
source_data: Option<&'slice [u8]>,
crc16: Option<u16>,
}
impl<'slice> PusTm<'slice> {
/// Generates a new struct instance.
///
/// # Arguments
///
/// * `sp_header` - Space packet header information. The correct packet type will be set
/// automatically
/// * `sec_header` - Information contained in the secondary header, including the service
/// and subservice type
/// * `app_data` - Custom application data
/// * `set_ccsds_len` - Can be used to automatically update the CCSDS space packet data length
/// field. If this is not set to true, [PusTm::update_ccsds_data_len] can be called to set
/// the correct value to this field manually
pub fn new(
sp_header: &mut SpHeader,
sec_header: PusTmSecondaryHeader<'slice>,
source_data: Option<&'slice [u8]>,
set_ccsds_len: bool,
) -> Self {
sp_header.set_packet_type(PacketType::Tm);
sp_header.set_sec_header_flag();
let mut pus_tm = PusTm {
sp_header: *sp_header,
raw_data: None,
source_data,
sec_header,
calc_crc_on_serialization: true,
crc16: None,
};
if set_ccsds_len {
pus_tm.update_ccsds_data_len();
}
pus_tm
}
pub fn len_packed(&self) -> usize {
let mut length = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA;
length += self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
length += src_data.len();
}
length
}
pub fn time_stamp(&self) -> &'slice [u8] {
self.sec_header.time_stamp
}
pub fn source_data(&self) -> Option<&'slice [u8]> {
self.source_data
}
pub fn set_dest_id(&mut self, dest_id: u16) {
self.sec_header.dest_id = dest_id;
}
pub fn set_msg_counter(&mut self, msg_counter: u16) {
self.sec_header.msg_counter = msg_counter
}
pub fn set_sc_time_ref_status(&mut self, sc_time_ref_status: u8) {
self.sec_header.sc_time_ref_status = sc_time_ref_status & 0b1111;
}
sp_header_impls!();
/// This is called automatically if the `set_ccsds_len` argument in the [PusTm::new] call was
/// used.
/// If this was not done or the time stamp or source data is set or changed after construction,
/// this function needs to be called to ensure that the data length field of the CCSDS header
/// is set correctly
pub fn update_ccsds_data_len(&mut self) {
self.sp_header.data_len =
self.len_packed() as u16 - size_of::<crate::zc::SpHeader>() as u16 - 1;
}
/// This function should be called before the TM packet is serialized if
/// [PusTm.calc_crc_on_serialization] is set to False. It will calculate and cache the CRC16.
pub fn calc_own_crc16(&mut self) {
let mut digest = CRC_CCITT_FALSE.digest();
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
digest.update(sph_zc.as_bytes());
let pus_tc_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap();
digest.update(pus_tc_header.as_bytes());
digest.update(self.sec_header.time_stamp);
if let Some(src_data) = self.source_data {
digest.update(src_data);
}
self.crc16 = Some(digest.finalize())
}
/// This helper function calls both [PusTm.update_ccsds_data_len] and [PusTm.calc_own_crc16]
pub fn update_packet_fields(&mut self) {
self.update_ccsds_data_len();
self.calc_own_crc16();
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes(&self, slice: &mut [u8]) -> Result<usize, PusError> {
let mut curr_idx = 0;
let total_size = self.len_packed();
if total_size > slice.len() {
return Err(ByteConversionError::ToSliceTooSmall(SizeMissmatch {
found: slice.len(),
expected: total_size,
})
.into());
}
self.sp_header
.write_to_be_bytes(&mut slice[0..CCSDS_HEADER_LEN])?;
curr_idx += CCSDS_HEADER_LEN;
let sec_header_len = size_of::<zc::PusTmSecHeaderWithoutTimestamp>();
let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap();
sec_header
.write_to_bytes(&mut slice[curr_idx..curr_idx + sec_header_len])
.ok_or(ByteConversionError::ZeroCopyToError)?;
curr_idx += sec_header_len;
let timestamp_len = self.sec_header.time_stamp.len();
slice[curr_idx..curr_idx + timestamp_len].copy_from_slice(self.sec_header.time_stamp);
curr_idx += timestamp_len;
if let Some(src_data) = self.source_data {
slice[curr_idx..curr_idx + src_data.len()].copy_from_slice(src_data);
curr_idx += src_data.len();
}
let crc16 = crc_procedure(
self.calc_crc_on_serialization,
&self.crc16,
0,
curr_idx,
slice,
)?;
slice[curr_idx..curr_idx + 2].copy_from_slice(crc16.to_be_bytes().as_slice());
curr_idx += 2;
Ok(curr_idx)
}
/// Append the raw PUS byte representation to a provided [alloc::vec::Vec]
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn append_to_vec(&self, vec: &mut Vec<u8>) -> Result<usize, PusError> {
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
let mut appended_len =
PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
appended_len += src_data.len();
};
let start_idx = vec.len();
let mut ser_len = 0;
vec.extend_from_slice(sph_zc.as_bytes());
ser_len += sph_zc.as_bytes().len();
// The PUS version is hardcoded to PUS C
let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap();
vec.extend_from_slice(sec_header.as_bytes());
ser_len += sec_header.as_bytes().len();
vec.extend_from_slice(self.sec_header.time_stamp);
ser_len += self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
vec.extend_from_slice(src_data);
ser_len += src_data.len();
}
let crc16 = crc_procedure(
self.calc_crc_on_serialization,
&self.crc16,
start_idx,
ser_len,
&vec[start_idx..start_idx + ser_len],
)?;
vec.extend_from_slice(crc16.to_be_bytes().as_slice());
Ok(appended_len)
}
/// Create a [PusTm] instance from a raw slice. On success, it returns a tuple containing
/// the instance and the found byte length of the packet. The timestamp length needs to be
/// known beforehand.
pub fn from_bytes(
slice: &'slice [u8],
timestamp_len: usize,
) -> Result<(Self, usize), PusError> {
let raw_data_len = slice.len();
if raw_data_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA {
return Err(PusError::RawDataTooShort(raw_data_len));
}
let mut current_idx = 0;
let (sp_header, _) = SpHeader::from_be_bytes(&slice[0..CCSDS_HEADER_LEN])?;
current_idx += 6;
let total_len = sp_header.total_len();
if raw_data_len < total_len || total_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA {
return Err(PusError::RawDataTooShort(raw_data_len));
}
let sec_header_zc = zc::PusTmSecHeaderWithoutTimestamp::from_bytes(
&slice[current_idx..current_idx + PUC_TM_MIN_SEC_HEADER_LEN],
)
.ok_or(ByteConversionError::ZeroCopyFromError)?;
current_idx += PUC_TM_MIN_SEC_HEADER_LEN;
let zc_sec_header_wrapper = zc::PusTmSecHeader {
zc_header: sec_header_zc,
timestamp: &slice[current_idx..current_idx + timestamp_len],
};
current_idx += timestamp_len;
let raw_data = &slice[0..total_len];
let pus_tm = PusTm {
sp_header,
sec_header: PusTmSecondaryHeader::try_from(zc_sec_header_wrapper).unwrap(),
raw_data: Some(&slice[0..total_len]),
source_data: user_data_from_raw(current_idx, total_len, raw_data_len, slice)?,
calc_crc_on_serialization: false,
crc16: Some(crc_from_raw_data(raw_data)?),
};
verify_crc16_from_raw(raw_data, pus_tm.crc16.expect("CRC16 invalid"))?;
Ok((pus_tm, total_len))
}
}
//noinspection RsTraitImplementation
impl CcsdsPacket for PusTm<'_> {
ccsds_impl!();
}
//noinspection RsTraitImplementation
impl PusPacket for PusTm<'_> {
delegate!(to self.sec_header {
fn pus_version(&self) -> PusVersion;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
});
fn user_data(&self) -> Option<&[u8]> {
self.source_data
}
fn crc16(&self) -> Option<u16> {
self.crc16
}
}
//noinspection RsTraitImplementation
impl GenericPusTmSecondaryHeader for PusTm<'_> {
delegate!(to self.sec_header {
fn pus_version(&self) -> PusVersion;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn dest_id(&self) -> u16;
fn msg_counter(&self) -> u16;
fn sc_time_ref_status(&self) -> u8;
});
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ecss::PusVersion::PusC;
use crate::SpHeader;
fn base_ping_reply_full_ctor(time_stamp: &[u8]) -> PusTm {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(17, 2, &time_stamp);
PusTm::new(&mut sph, tc_header, None, true)
}
fn base_hk_reply<'a>(time_stamp: &'a [u8], src_data: &'a [u8]) -> PusTm<'a> {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(3, 5, &time_stamp);
PusTm::new(&mut sph, tc_header, Some(src_data), true)
}
fn dummy_time_stamp() -> &'static [u8] {
return &[0, 1, 2, 3, 4, 5, 6];
}
#[test]
fn test_basic() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
verify_ping_reply(&pus_tm, false, 22, dummy_time_stamp());
}
#[test]
fn test_serialization_no_source_data() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 22);
verify_raw_ping_reply(&buf);
}
#[test]
fn test_serialization_with_source_data() {
let src_data = [1, 2, 3];
let hk_reply = base_hk_reply(dummy_time_stamp(), &src_data);
let mut buf: [u8; 32] = [0; 32];
let ser_len = hk_reply
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 25);
assert_eq!(buf[20], 1);
assert_eq!(buf[21], 2);
assert_eq!(buf[22], 3);
}
#[test]
fn test_setters() {
let time_stamp = dummy_time_stamp();
let mut pus_tm = base_ping_reply_full_ctor(&time_stamp);
pus_tm.set_sc_time_ref_status(0b1010);
pus_tm.set_dest_id(0x7fff);
pus_tm.set_msg_counter(0x1f1f);
assert_eq!(pus_tm.sc_time_ref_status(), 0b1010);
assert_eq!(pus_tm.dest_id(), 0x7fff);
assert_eq!(pus_tm.msg_counter(), 0x1f1f);
assert!(pus_tm.set_apid(0x7ff));
assert_eq!(pus_tm.apid(), 0x7ff);
}
#[test]
fn test_deserialization_no_source_data() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 22);
let (tm_deserialized, size) = PusTm::from_bytes(&buf, 7).expect("Deserialization failed");
assert_eq!(ser_len, size);
verify_ping_reply(&tm_deserialized, false, 22, dummy_time_stamp());
}
#[test]
fn test_manual_field_update() {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(17, 2, dummy_time_stamp());
let mut tm = PusTm::new(&mut sph, tc_header, None, false);
tm.calc_crc_on_serialization = false;
assert_eq!(tm.data_len(), 0x00);
let mut buf: [u8; 32] = [0; 32];
let res = tm.write_to_bytes(&mut buf);
assert!(res.is_err());
assert!(matches!(res.unwrap_err(), PusError::CrcCalculationMissing));
tm.update_ccsds_data_len();
assert_eq!(tm.data_len(), 15);
tm.calc_own_crc16();
let res = tm.write_to_bytes(&mut buf);
assert!(res.is_ok());
tm.sp_header.data_len = 0;
tm.update_packet_fields();
assert_eq!(tm.data_len(), 15);
}
#[test]
fn test_target_buf_too_small() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 16] = [0; 16];
let res = pus_tm.write_to_bytes(&mut buf);
assert!(res.is_err());
let error = res.unwrap_err();
assert!(matches!(error, PusError::ByteConversionError { .. }));
match error {
PusError::ByteConversionError(err) => match err {
ByteConversionError::ToSliceTooSmall(size_missmatch) => {
assert_eq!(size_missmatch.expected, 22);
assert_eq!(size_missmatch.found, 16);
}
_ => panic!("Invalid PUS error {:?}", err),
},
_ => {
panic!("Invalid error {:?}", error);
}
}
}
#[test]
#[cfg(feature = "alloc")]
fn test_append_to_vec() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut vec = Vec::new();
let res = pus_tm.append_to_vec(&mut vec);
assert!(res.is_ok());
assert_eq!(res.unwrap(), 22);
verify_raw_ping_reply(vec.as_slice());
}
#[test]
#[cfg(feature = "alloc")]
fn test_append_to_vec_with_src_data() {
let src_data = [1, 2, 3];
let hk_reply = base_hk_reply(dummy_time_stamp(), &src_data);
let mut vec = Vec::new();
vec.push(4);
let res = hk_reply.append_to_vec(&mut vec);
assert!(res.is_ok());
assert_eq!(res.unwrap(), 25);
assert_eq!(vec.len(), 26);
}
fn verify_raw_ping_reply(buf: &[u8]) {
// Secondary header is set -> 0b0000_1001 , APID occupies last bit of first byte
assert_eq!(buf[0], 0x09);
// Rest of APID 0x123
assert_eq!(buf[1], 0x23);
// Unsegmented is the default, and first byte of 0x234 occupies this byte as well
assert_eq!(buf[2], 0xc2);
assert_eq!(buf[3], 0x34);
assert_eq!(((buf[4] as u16) << 8) | buf[5] as u16, 15);
// SC time ref status is 0
assert_eq!(buf[6], (PusC as u8) << 4);
assert_eq!(buf[7], 17);
assert_eq!(buf[8], 2);
// MSG counter 0
assert_eq!(buf[9], 0x00);
assert_eq!(buf[10], 0x00);
// Destination ID
assert_eq!(buf[11], 0x00);
assert_eq!(buf[12], 0x00);
// Timestamp
assert_eq!(&buf[13..20], dummy_time_stamp());
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(&buf[0..20]);
let crc16 = digest.finalize();
assert_eq!(((crc16 >> 8) & 0xff) as u8, buf[20]);
assert_eq!((crc16 & 0xff) as u8, buf[21]);
}
fn verify_ping_reply(
tm: &PusTm,
has_user_data: bool,
exp_full_len: usize,
exp_time_stamp: &[u8],
) {
assert!(tm.is_tm());
assert_eq!(PusPacket::service(tm), 17);
assert_eq!(PusPacket::subservice(tm), 2);
assert!(tm.sec_header_flag());
assert_eq!(tm.len_packed(), exp_full_len);
assert_eq!(tm.time_stamp(), exp_time_stamp);
if has_user_data {
assert!(!tm.user_data().is_none());
}
assert_eq!(PusPacket::pus_version(tm), PusC);
assert_eq!(tm.apid(), 0x123);
assert_eq!(tm.seq_count(), 0x234);
assert_eq!(tm.data_len(), exp_full_len as u16 - 7);
assert_eq!(tm.dest_id(), 0x0000);
assert_eq!(tm.msg_counter(), 0x0000);
assert_eq!(tm.sc_time_ref_status(), 0b0000);
}
}

View File

@ -1,678 +0,0 @@
use crate::ByteConversionError;
use core::fmt::{Debug, Display, Formatter};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::error::Error;
pub trait ToBeBytes {
type ByteArray: AsRef<[u8]>;
/// Length when written to big endian bytes.
fn written_len(&self) -> usize;
fn to_be_bytes(&self) -> Self::ByteArray;
}
impl ToBeBytes for () {
type ByteArray = [u8; 0];
fn written_len(&self) -> usize {
0
}
fn to_be_bytes(&self) -> Self::ByteArray {
[]
}
}
impl ToBeBytes for u8 {
type ByteArray = [u8; 1];
fn written_len(&self) -> usize {
1
}
fn to_be_bytes(&self) -> Self::ByteArray {
u8::to_be_bytes(*self)
}
}
impl ToBeBytes for u16 {
type ByteArray = [u8; 2];
fn written_len(&self) -> usize {
2
}
fn to_be_bytes(&self) -> Self::ByteArray {
u16::to_be_bytes(*self)
}
}
impl ToBeBytes for u32 {
type ByteArray = [u8; 4];
fn written_len(&self) -> usize {
4
}
fn to_be_bytes(&self) -> Self::ByteArray {
u32::to_be_bytes(*self)
}
}
impl ToBeBytes for u64 {
type ByteArray = [u8; 8];
fn written_len(&self) -> usize {
8
}
fn to_be_bytes(&self) -> Self::ByteArray {
u64::to_be_bytes(*self)
}
}
pub trait UnsignedEnum {
/// Size of the unsigned enumeration in bytes.
fn size(&self) -> usize;
/// Write the unsigned enumeration to a raw buffer. Returns the written size on success.
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError>;
}
pub trait UnsignedEnumExt: UnsignedEnum + Debug + Copy + Clone + PartialEq + Eq {}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum UnsignedByteFieldError {
/// Value is too large for specified width of byte field.
ValueTooLargeForWidth {
width: usize,
value: u64,
},
/// Only 1, 2, 4 and 8 are allow width values. Optionally contains the expected width if
/// applicable, for example for conversions.
InvalidWidth {
found: usize,
expected: Option<usize>,
},
ByteConversionError(ByteConversionError),
}
impl From<ByteConversionError> for UnsignedByteFieldError {
fn from(value: ByteConversionError) -> Self {
Self::ByteConversionError(value)
}
}
impl Display for UnsignedByteFieldError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
Self::ByteConversionError(e) => {
write!(f, "low level byte conversion error: {e}")
}
Self::InvalidWidth { found, .. } => {
write!(f, "invalid width {found}, only 1, 2, 4 and 8 are allowed.")
}
Self::ValueTooLargeForWidth { width, value } => {
write!(f, "value {value} too large for width {width}")
}
}
}
}
#[cfg(feature = "std")]
impl Error for UnsignedByteFieldError {}
/// Type erased variant.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct UnsignedByteField {
width: usize,
value: u64,
}
impl UnsignedByteField {
pub const fn new(width: usize, value: u64) -> Self {
Self { width, value }
}
pub fn value(&self) -> u64 {
self.value
}
pub fn new_from_be_bytes(width: usize, buf: &[u8]) -> Result<Self, UnsignedByteFieldError> {
if width > buf.len() {
return Err(ByteConversionError::FromSliceTooSmall {
expected: width,
found: buf.len(),
}
.into());
}
match width {
0 => Ok(Self::new(width, 0)),
1 => Ok(Self::new(width, buf[0] as u64)),
2 => Ok(Self::new(
width,
u16::from_be_bytes(buf[0..2].try_into().unwrap()) as u64,
)),
4 => Ok(Self::new(
width,
u32::from_be_bytes(buf[0..4].try_into().unwrap()) as u64,
)),
8 => Ok(Self::new(
width,
u64::from_be_bytes(buf[0..8].try_into().unwrap()),
)),
_ => Err(UnsignedByteFieldError::InvalidWidth {
found: width,
expected: None,
}),
}
}
}
impl UnsignedEnum for UnsignedByteField {
fn size(&self) -> usize {
self.width
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
if buf.len() < self.size() {
return Err(ByteConversionError::ToSliceTooSmall {
expected: self.size(),
found: buf.len(),
});
}
match self.size() {
0 => Ok(0),
1 => {
let u8 = UnsignedByteFieldU8::try_from(*self).unwrap();
u8.write_to_be_bytes(buf)
}
2 => {
let u16 = UnsignedByteFieldU16::try_from(*self).unwrap();
u16.write_to_be_bytes(buf)
}
4 => {
let u32 = UnsignedByteFieldU32::try_from(*self).unwrap();
u32.write_to_be_bytes(buf)
}
8 => {
let u64 = UnsignedByteFieldU64::try_from(*self).unwrap();
u64.write_to_be_bytes(buf)
}
_ => {
// The API does not allow this.
panic!("unexpected written length");
}
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct GenericUnsignedByteField<TYPE: Copy> {
value: TYPE,
}
impl<TYPE: Copy> GenericUnsignedByteField<TYPE> {
pub const fn new(val: TYPE) -> Self {
Self { value: val }
}
pub const fn value(&self) -> TYPE {
self.value
}
}
impl<TYPE: Copy + ToBeBytes> UnsignedEnum for GenericUnsignedByteField<TYPE> {
fn size(&self) -> usize {
self.value.written_len()
}
fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
if buf.len() < self.size() {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: self.size(),
});
}
buf[0..self.size()].copy_from_slice(self.value.to_be_bytes().as_ref());
Ok(self.value.written_len())
}
}
pub type UnsignedByteFieldEmpty = GenericUnsignedByteField<()>;
pub type UnsignedByteFieldU8 = GenericUnsignedByteField<u8>;
pub type UnsignedByteFieldU16 = GenericUnsignedByteField<u16>;
pub type UnsignedByteFieldU32 = GenericUnsignedByteField<u32>;
pub type UnsignedByteFieldU64 = GenericUnsignedByteField<u64>;
pub type UbfU8 = UnsignedByteFieldU8;
pub type UbfU16 = UnsignedByteFieldU16;
pub type UbfU32 = UnsignedByteFieldU32;
pub type UbfU64 = UnsignedByteFieldU64;
impl From<UnsignedByteFieldU8> for UnsignedByteField {
fn from(value: UnsignedByteFieldU8) -> Self {
Self::new(1, value.value as u64)
}
}
impl TryFrom<UnsignedByteField> for UnsignedByteFieldU8 {
type Error = UnsignedByteFieldError;
fn try_from(value: UnsignedByteField) -> Result<Self, Self::Error> {
if value.width != 1 {
return Err(UnsignedByteFieldError::InvalidWidth {
found: value.width,
expected: Some(1),
});
}
Ok(Self::new(value.value as u8))
}
}
impl From<UnsignedByteFieldU16> for UnsignedByteField {
fn from(value: UnsignedByteFieldU16) -> Self {
Self::new(2, value.value as u64)
}
}
impl TryFrom<UnsignedByteField> for UnsignedByteFieldU16 {
type Error = UnsignedByteFieldError;
fn try_from(value: UnsignedByteField) -> Result<Self, Self::Error> {
if value.width != 2 {
return Err(UnsignedByteFieldError::InvalidWidth {
found: value.width,
expected: Some(2),
});
}
Ok(Self::new(value.value as u16))
}
}
impl From<UnsignedByteFieldU32> for UnsignedByteField {
fn from(value: UnsignedByteFieldU32) -> Self {
Self::new(4, value.value as u64)
}
}
impl TryFrom<UnsignedByteField> for UnsignedByteFieldU32 {
type Error = UnsignedByteFieldError;
fn try_from(value: UnsignedByteField) -> Result<Self, Self::Error> {
if value.width != 4 {
return Err(UnsignedByteFieldError::InvalidWidth {
found: value.width,
expected: Some(4),
});
}
Ok(Self::new(value.value as u32))
}
}
impl From<UnsignedByteFieldU64> for UnsignedByteField {
fn from(value: UnsignedByteFieldU64) -> Self {
Self::new(8, value.value)
}
}
impl TryFrom<UnsignedByteField> for UnsignedByteFieldU64 {
type Error = UnsignedByteFieldError;
fn try_from(value: UnsignedByteField) -> Result<Self, Self::Error> {
if value.width != 8 {
return Err(UnsignedByteFieldError::InvalidWidth {
found: value.width,
expected: Some(8),
});
}
Ok(Self::new(value.value))
}
}
#[cfg(test)]
pub mod tests {
use crate::util::{
UnsignedByteField, UnsignedByteFieldError, UnsignedByteFieldU16, UnsignedByteFieldU32,
UnsignedByteFieldU64, UnsignedByteFieldU8, UnsignedEnum,
};
use crate::ByteConversionError;
use std::format;
#[test]
fn test_simple_u8() {
let u8 = UnsignedByteFieldU8::new(5);
assert_eq!(u8.size(), 1);
let mut buf: [u8; 8] = [0; 8];
let len = u8
.write_to_be_bytes(&mut buf)
.expect("writing to raw buffer failed");
assert_eq!(len, 1);
assert_eq!(buf[0], 5);
for val in buf.iter().skip(1) {
assert_eq!(*val, 0);
}
}
#[test]
fn test_simple_u16() {
let u16 = UnsignedByteFieldU16::new(3823);
assert_eq!(u16.size(), 2);
let mut buf: [u8; 8] = [0; 8];
let len = u16
.write_to_be_bytes(&mut buf)
.expect("writing to raw buffer failed");
assert_eq!(len, 2);
let raw_val = u16::from_be_bytes(buf[0..2].try_into().unwrap());
assert_eq!(raw_val, 3823);
for val in buf.iter().skip(2) {
assert_eq!(*val, 0);
}
}
#[test]
fn test_simple_u32() {
let u32 = UnsignedByteFieldU32::new(80932);
assert_eq!(u32.size(), 4);
let mut buf: [u8; 8] = [0; 8];
let len = u32
.write_to_be_bytes(&mut buf)
.expect("writing to raw buffer failed");
assert_eq!(len, 4);
let raw_val = u32::from_be_bytes(buf[0..4].try_into().unwrap());
assert_eq!(raw_val, 80932);
(4..8).for_each(|i| {
assert_eq!(buf[i], 0);
});
}
#[test]
fn test_simple_u64() {
let u64 = UnsignedByteFieldU64::new(5999999);
assert_eq!(u64.size(), 8);
let mut buf: [u8; 8] = [0; 8];
let len = u64
.write_to_be_bytes(&mut buf)
.expect("writing to raw buffer failed");
assert_eq!(len, 8);
let raw_val = u64::from_be_bytes(buf[0..8].try_into().unwrap());
assert_eq!(raw_val, 5999999);
}
#[test]
fn conversions_u8() {
let u8 = UnsignedByteFieldU8::new(5);
let u8_type_erased = UnsignedByteField::from(u8);
assert_eq!(u8_type_erased.width, 1);
assert_eq!(u8_type_erased.value, 5);
let u8_conv_back =
UnsignedByteFieldU8::try_from(u8_type_erased).expect("conversion failed for u8");
assert_eq!(u8, u8_conv_back);
assert_eq!(u8_conv_back.value, 5);
}
#[test]
fn conversion_u8_fails() {
let field = UnsignedByteField::new(2, 60000);
let conv_fails = UnsignedByteFieldU8::try_from(field);
assert!(conv_fails.is_err());
let err = conv_fails.unwrap_err();
match err {
UnsignedByteFieldError::InvalidWidth {
found,
expected: Some(expected),
} => {
assert_eq!(found, 2);
assert_eq!(expected, 1);
}
_ => {
panic!("{}", format!("invalid error {err}"))
}
}
}
#[test]
fn conversions_u16() {
let u16 = UnsignedByteFieldU16::new(64444);
let u16_type_erased = UnsignedByteField::from(u16);
assert_eq!(u16_type_erased.width, 2);
assert_eq!(u16_type_erased.value, 64444);
let u16_conv_back =
UnsignedByteFieldU16::try_from(u16_type_erased).expect("conversion failed for u16");
assert_eq!(u16, u16_conv_back);
assert_eq!(u16_conv_back.value, 64444);
}
#[test]
fn conversion_u16_fails() {
let field = UnsignedByteField::new(4, 75000);
let conv_fails = UnsignedByteFieldU16::try_from(field);
assert!(conv_fails.is_err());
let err = conv_fails.unwrap_err();
match err {
UnsignedByteFieldError::InvalidWidth {
found,
expected: Some(expected),
} => {
assert_eq!(found, 4);
assert_eq!(expected, 2);
}
_ => {
panic!("{}", format!("invalid error {err}"))
}
}
}
#[test]
fn conversions_u32() {
let u32 = UnsignedByteFieldU32::new(75000);
let u32_type_erased = UnsignedByteField::from(u32);
assert_eq!(u32_type_erased.width, 4);
assert_eq!(u32_type_erased.value, 75000);
let u32_conv_back =
UnsignedByteFieldU32::try_from(u32_type_erased).expect("conversion failed for u32");
assert_eq!(u32, u32_conv_back);
assert_eq!(u32_conv_back.value, 75000);
}
#[test]
fn conversion_u32_fails() {
let field = UnsignedByteField::new(8, 75000);
let conv_fails = UnsignedByteFieldU32::try_from(field);
assert!(conv_fails.is_err());
let err = conv_fails.unwrap_err();
match err {
UnsignedByteFieldError::InvalidWidth {
found,
expected: Some(expected),
} => {
assert_eq!(found, 8);
assert_eq!(expected, 4);
}
_ => {
panic!("{}", format!("invalid error {err}"))
}
}
}
#[test]
fn conversions_u64() {
let u64 = UnsignedByteFieldU64::new(5999999);
let u64_type_erased = UnsignedByteField::from(u64);
assert_eq!(u64_type_erased.width, 8);
assert_eq!(u64_type_erased.value, 5999999);
let u64_conv_back =
UnsignedByteFieldU64::try_from(u64_type_erased).expect("conversion failed for u64");
assert_eq!(u64, u64_conv_back);
assert_eq!(u64_conv_back.value, 5999999);
}
#[test]
fn conversion_u64_fails() {
let field = UnsignedByteField::new(4, 60000);
let conv_fails = UnsignedByteFieldU64::try_from(field);
assert!(conv_fails.is_err());
let err = conv_fails.unwrap_err();
match err {
UnsignedByteFieldError::InvalidWidth {
found,
expected: Some(expected),
} => {
assert_eq!(found, 4);
assert_eq!(expected, 8);
}
_ => {
panic!("{}", format!("invalid error {err}"))
}
}
}
#[test]
fn type_erased_u8_write() {
let u8 = UnsignedByteField::new(1, 5);
assert_eq!(u8.size(), 1);
let mut buf: [u8; 8] = [0; 8];
u8.write_to_be_bytes(&mut buf)
.expect("writing to raw buffer failed");
assert_eq!(buf[0], 5);
for i in 1..8 {
assert_eq!(buf[i], 0);
}
}
#[test]
fn type_erased_u16_write() {
let u16 = UnsignedByteField::new(2, 3823);
assert_eq!(u16.size(), 2);
let mut buf: [u8; 8] = [0; 8];
u16.write_to_be_bytes(&mut buf)
.expect("writing to raw buffer failed");
let raw_val = u16::from_be_bytes(buf[0..2].try_into().unwrap());
assert_eq!(raw_val, 3823);
for val in buf.iter().skip(2) {
assert_eq!(*val, 0);
}
}
#[test]
fn type_erased_u32_write() {
let u32 = UnsignedByteField::new(4, 80932);
assert_eq!(u32.size(), 4);
let mut buf: [u8; 8] = [0; 8];
u32.write_to_be_bytes(&mut buf)
.expect("writing to raw buffer failed");
let raw_val = u32::from_be_bytes(buf[0..4].try_into().unwrap());
assert_eq!(raw_val, 80932);
for i in 4..8 {
assert_eq!(buf[i], 0);
}
}
#[test]
fn type_erased_u64_write() {
let u64 = UnsignedByteField::new(8, 5999999);
assert_eq!(u64.size(), 8);
let mut buf: [u8; 8] = [0; 8];
u64.write_to_be_bytes(&mut buf)
.expect("writing to raw buffer failed");
let raw_val = u64::from_be_bytes(buf[0..8].try_into().unwrap());
assert_eq!(raw_val, 5999999);
}
#[test]
fn type_erased_u8_construction() {
let buf: [u8; 2] = [5, 10];
let u8 = UnsignedByteField::new_from_be_bytes(1, &buf).expect("construction failed");
assert_eq!(u8.width, 1);
assert_eq!(u8.value, 5);
}
#[test]
fn type_erased_u16_construction() {
let buf: [u8; 2] = [0x10, 0x15];
let u16 = UnsignedByteField::new_from_be_bytes(2, &buf).expect("construction failed");
assert_eq!(u16.width, 2);
assert_eq!(u16.value, 0x1015);
}
#[test]
fn type_erased_u32_construction() {
let buf: [u8; 4] = [0x01, 0x02, 0x03, 0x04];
let u32 = UnsignedByteField::new_from_be_bytes(4, &buf).expect("construction failed");
assert_eq!(u32.width, 4);
assert_eq!(u32.value, 0x01020304);
}
#[test]
fn type_erased_u64_construction() {
let buf: [u8; 8] = [0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08];
let u64 = UnsignedByteField::new_from_be_bytes(8, &buf).expect("construction failed");
assert_eq!(u64.width, 8);
assert_eq!(u64.value, 0x0102030405060708);
}
#[test]
fn type_u16_target_buf_too_small() {
let u16 = UnsignedByteFieldU16::new(500);
let mut buf: [u8; 1] = [0; 1];
let res = u16.write_to_be_bytes(&mut buf);
assert!(res.is_err());
let err = res.unwrap_err();
match err {
ByteConversionError::ToSliceTooSmall { found, expected } => {
assert_eq!(found, 1);
assert_eq!(expected, 2);
}
_ => {
panic!("invalid exception")
}
}
}
#[test]
fn type_erased_u16_target_buf_too_small() {
let u16 = UnsignedByteField::new(2, 500);
let mut buf: [u8; 1] = [0; 1];
let res = u16.write_to_be_bytes(&mut buf);
assert!(res.is_err());
let err = res.unwrap_err();
match err {
ByteConversionError::ToSliceTooSmall { found, expected } => {
assert_eq!(found, 1);
assert_eq!(expected, 2);
}
_ => {
panic!("invalid exception {}", err)
}
}
let u16 = UnsignedByteField::new_from_be_bytes(2, &buf);
assert!(u16.is_err());
let err = u16.unwrap_err();
if let UnsignedByteFieldError::ByteConversionError(
ByteConversionError::FromSliceTooSmall { found, expected },
) = err
{
assert_eq!(expected, 2);
assert_eq!(found, 1);
} else {
panic!("unexpected exception {}", err);
}
}
#[test]
fn type_u32_target_buf_too_small() {
let u16 = UnsignedByteFieldU32::new(500);
let mut buf: [u8; 3] = [0; 3];
let res = u16.write_to_be_bytes(&mut buf);
assert!(res.is_err());
let err = res.unwrap_err();
match err {
ByteConversionError::ToSliceTooSmall { found, expected } => {
assert_eq!(found, 3);
assert_eq!(expected, 4);
}
_ => {
panic!("invalid exception")
}
}
}
}