eive-obsw/mission/system/acs/SusAssembly.cpp

172 lines
6.1 KiB
C++
Raw Normal View History

#include "SusAssembly.h"
#include <devices/powerSwitcherList.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfw/serviceinterface.h>
2022-09-29 19:40:00 +02:00
SusAssembly::SusAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, SusAssHelper helper)
: DualLaneAssemblyBase(objectId, pwrSwitcher, SWITCH_NOM, SWITCH_RED,
POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED,
TRANSITION_OTHER_SIDE_FAILED),
helper(helper),
pwrSwitcher(pwrSwitcher) {
2022-03-03 20:11:12 +01:00
ModeListEntry entry;
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
initModeTableEntry(helper.susIds[idx], entry, modeTable);
2022-03-03 20:11:12 +01:00
}
}
ReturnValue_t SusAssembly::commandChildren(Mode_t mode, Submode_t submode) {
2022-08-24 17:27:47 +02:00
ReturnValue_t result = returnvalue::OK;
refreshHelperModes();
// Initialize the mode table to ensure all devices are in a defined state
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
modeTable[idx].setMode(MODE_OFF);
modeTable[idx].setSubmode(SUBMODE_NONE);
}
2023-03-02 14:59:27 +01:00
if (recoveryState == RecoveryState::RECOVERY_IDLE) {
result = checkAndHandleHealthStates(mode, submode);
if (result != returnvalue::OK) {
return result;
2023-03-02 14:59:27 +01:00
}
}
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
2022-03-22 11:07:31 +01:00
result = handleNormalOrOnModeCmd(mode, submode);
2022-03-03 20:11:12 +01:00
}
}
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
executeTable(tableIter);
return result;
}
ReturnValue_t SusAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
using namespace duallane;
2022-08-24 17:27:47 +02:00
ReturnValue_t result = returnvalue::OK;
bool needsSecondStep = false;
2023-03-31 19:14:42 +02:00
handleSideSwitchStates(submode, needsSecondStep);
auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, uint8_t tableIdx) {
2023-04-05 14:46:45 +02:00
if (isModeCommandable(objectId, devMode)) {
modeTable[tableIdx].setMode(mode);
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
2022-03-03 20:11:12 +01:00
}
};
switch (submode) {
case (A_SIDE): {
2022-03-03 20:11:12 +01:00
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
2022-03-03 20:11:12 +01:00
// Switch off devices on redundant side
modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
}
break;
2022-03-03 20:11:12 +01:00
}
case (B_SIDE): {
2022-03-03 20:11:12 +01:00
for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
2022-03-03 20:11:12 +01:00
// Switch devices on nominal side
modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
}
break;
2022-03-03 20:11:12 +01:00
}
case (DUAL_MODE): {
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
2022-03-03 20:11:12 +01:00
}
break;
2022-03-03 20:11:12 +01:00
}
}
if (needsSecondStep) {
result = NEED_SECOND_STEP;
}
return result;
}
ReturnValue_t SusAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
using namespace duallane;
2022-03-03 20:11:12 +01:00
refreshHelperModes();
if (wantedSubmode == A_SIDE) {
2022-03-03 20:11:12 +01:00
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
if (helper.susModes[idx] != wantedMode) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
}
2022-08-24 17:27:47 +02:00
return returnvalue::OK;
} else if (wantedSubmode == B_SIDE) {
2022-03-03 20:11:12 +01:00
for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
if (helper.susModes[idx] != wantedMode) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
}
2022-08-24 17:27:47 +02:00
return returnvalue::OK;
2022-03-03 20:11:12 +01:00
} else {
// Trigger event if devices are faulty? This is the last fallback mode, returning
// a failure here would trigger a transition to MODE_OFF unless handleModeTransitionFailed
// is overriden
2022-08-24 17:27:47 +02:00
return returnvalue::OK;
2022-03-03 20:11:12 +01:00
}
2022-08-24 17:27:47 +02:00
return returnvalue::OK;
}
2023-02-26 14:55:33 +01:00
ReturnValue_t SusAssembly::initialize() {
for (const auto& child : childrenMap) {
updateChildModeByObjId(child.first, MODE_OFF, 0);
}
return AssemblyBase::initialize();
}
void SusAssembly::refreshHelperModes() {
for (uint8_t idx = 0; idx < helper.susModes.size(); idx++) {
helper.susModes[idx] = childrenMap[helper.susIds[idx]].mode;
}
}
2023-03-02 14:59:27 +01:00
2023-04-05 14:46:45 +02:00
ReturnValue_t SusAssembly::checkAndHandleHealthStates(Mode_t commandedMode,
Submode_t commandedSubmode) {
2023-03-02 14:59:27 +01:00
using namespace returnvalue;
ReturnValue_t status = returnvalue::OK;
2023-04-05 10:27:19 +02:00
bool needsHealthOverwritten = false;
auto checkSusGroup = [&](object_id_t devNom, object_id_t devRed) {
HealthState healthNom = healthHelper.healthTable->getHealth(devNom);
HealthState healthRed = healthHelper.healthTable->getHealth(devRed);
2023-04-05 14:50:33 +02:00
if(healthNom == PERMANENT_FAULTY and healthRed == FAULTY) {
overwriteDeviceHealth(devRed, healthRed);
needsHealthOverwritten = true;
} else if(healthNom == FAULTY and healthRed == PERMANENT_FAULTY) {
overwriteDeviceHealth(devNom, healthNom);
needsHealthOverwritten = true;
} else if ((healthNom == FAULTY or healthNom == PERMANENT_FAULTY) and
(healthRed == FAULTY or healthRed == PERMANENT_FAULTY)) {
overwriteDeviceHealth(devNom, healthNom);
overwriteDeviceHealth(devRed, healthRed);
2023-04-05 10:27:19 +02:00
needsHealthOverwritten = true;
}
};
auto checkHealthForOneDev = [&](object_id_t dev) {
2023-03-02 14:59:27 +01:00
HealthState health = healthHelper.healthTable->getHealth(dev);
if (health == EXTERNAL_CONTROL) {
2023-03-02 14:59:27 +01:00
modeHelper.setForced(true);
}
};
if (commandedSubmode == duallane::DUAL_MODE) {
uint8_t idx = 0;
for (idx = 0; idx < 6; idx++) {
checkSusGroup(helper.susIds[idx], helper.susIds[idx + 6]);
checkHealthForOneDev(helper.susIds[idx]);
}
for (idx = 6; idx < 12; idx++) {
checkHealthForOneDev(helper.susIds[idx]);
2023-03-02 14:59:27 +01:00
}
}
2023-04-05 14:46:45 +02:00
if (needsHealthOverwritten) {
mode = commandedMode;
submode = commandedSubmode;
// We need second step instead of NEED_TO_CHANGE_HEALTH because we do not want recovery
// handling.
2023-04-05 10:27:19 +02:00
return NEED_TO_CHANGE_HEALTH;
}
2023-03-02 14:59:27 +01:00
return status;
}