42 Commits

Author SHA1 Message Date
cf97d690fe extended STM32 test task 2021-10-27 18:38:47 +02:00
473461a61d adaptions for updated fsfw 2021-10-27 17:09:25 +02:00
82147157b4 Merge remote-tracking branch 'origin/mueller/example-to-test' into mueller/master 2021-10-27 16:54:53 +02:00
349ada87f1 small fix for updated assembly 2021-10-17 23:28:09 +02:00
db0af8b29a moved some code to fsfw 2021-10-17 23:21:38 +02:00
a0d775e086 added include for updated fsfw 2021-10-11 13:18:10 +02:00
127a0f6e16 fixed for updated fsfw 2021-09-28 15:43:09 +02:00
693676304a updates for internal unit tester call 2021-08-10 11:22:52 +02:00
cf8552e950 bumped subversion 2021-08-02 21:03:52 +02:00
da0886cf56 Merge branch 'mueller/master' of https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common into mueller/master 2021-08-02 20:59:21 +02:00
b94e83612e include correction 2021-08-02 20:59:11 +02:00
44c09ef877 Merge branch 'mueller/master' of https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common into mueller/master 2021-08-02 20:38:47 +02:00
5526abb8fb include correction 2021-08-02 16:04:05 +02:00
19a8ba7640 Merge branch 'mueller/master' of https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common into mueller/master 2021-08-02 15:54:02 +02:00
172df0b570 compiling app_ethernet as well 2021-07-16 13:42:28 +02:00
253780d5d4 more refactoring 2021-07-16 13:39:50 +02:00
d5a342a509 removed moved code 2021-07-16 13:22:45 +02:00
c548d3b507 need to refactor networking code 2021-07-16 13:20:38 +02:00
afe0a13566 performing LED init as well 2021-07-16 12:44:35 +02:00
27215b67aa only compiling ethernet.c etc for freertos 2021-07-16 12:20:47 +02:00
0ad5c91fc7 better defines 2021-07-14 10:24:24 +02:00
abee0930f9 minor adaption for restructured fsfw 2021-07-14 00:54:06 +02:00
49566cd130 minor fix 2021-07-14 00:23:46 +02:00
e4879130b0 bumped version for stm32h7 changes 2021-07-13 10:22:52 +02:00
1176959a93 lwIP compiling 2021-07-13 09:15:36 +02:00
20842a26af minor fixes 2021-07-12 23:32:12 +02:00
ff6025d04d added FSFW logo 2021-07-12 21:23:39 +02:00
0901604854 added STM32H7 files 2021-07-12 21:21:03 +02:00
112adcbb64 added periodic event 2021-06-30 09:59:55 +02:00
edaccc0dbd Merge branch 'master' of https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common 2021-06-17 12:04:21 +02:00
39e0a0ca0f update to new fsfw 2021-06-17 12:04:08 +02:00
d79ab3df35 okay that was a mistake 2021-06-11 13:55:13 +02:00
c60e8c8523 added commo npath 2021-06-11 13:54:12 +02:00
64935286e1 added images 2021-06-09 11:26:38 +02:00
77bee78a2b renamed folder 2021-06-08 17:51:23 +02:00
7ab3e36d9c smaller tweaks 2021-06-08 17:46:47 +02:00
a81cd732b1 added common docs 2021-06-08 17:45:18 +02:00
338e7eed56 bumped minor version 2021-06-08 17:30:49 +02:00
f8bf44893c restructured a bit 2021-06-08 13:59:38 +02:00
2755045be1 cmake lists 2021-06-08 13:53:42 +02:00
51475efaab added common folder 2021-06-08 13:46:45 +02:00
56e93b5fd7 added test folder 2021-06-08 13:35:49 +02:00
78 changed files with 2783 additions and 1833 deletions

10
CMakeLists.txt Normal file
View File

@@ -0,0 +1,10 @@
add_subdirectory(config)
add_subdirectory(example)
target_include_directories(${TARGET_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
)
if(TGT_BSP MATCHES "arm/stm32h743zi-nucleo")
add_subdirectory(stm32h7)
endif()

7
config/CMakeLists.txt Normal file
View File

@@ -0,0 +1,7 @@
target_sources(${TARGET_NAME} PRIVATE
commonPollingSequenceFactory.cpp
)
target_include_directories(${TARGET_NAME} PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
)

8
config/OBSWVersion.h Normal file
View File

@@ -0,0 +1,8 @@
#ifndef COMMON_OBSWVERSION_H_
#define COMMON_OBSWVERSION_H_
#define FSFW_EXAMPLE_VERSION 1
#define FSFW_EXAMPLE_SUBVERSION 4
#define FSFW_EXAMPLE_REVISION 0
#endif /* COMMON_OBSWVERSION_H_ */

14
config/commonClassIds.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef COMMON_CONFIG_COMMONCLASSIDS_H_
#define COMMON_CONFIG_COMMONCLASSIDS_H_
#include "fsfw/returnvalues/FwClassIds.h"
namespace CLASS_ID {
enum commonClassIds: uint8_t {
COMMON_CLASS_ID_START = FW_CLASS_ID_COUNT,
DUMMY_HANDLER, //DDH
COMMON_CLASS_ID_END // [EXPORT] : [END]
};
}
#endif /* COMMON_CONFIG_COMMONCLASSIDS_H_ */

67
config/commonConfig.h.in Normal file
View File

@@ -0,0 +1,67 @@
/**
* @brief This file will contain configuration constants which are used across all BSPs
*/
#ifndef COMMON_COMMONCONFIG_H_
#define COMMON_COMMONCONFIG_H_
#include <stdint.h>
//! Specify the debug output verbose level
#define OBSW_VERBOSE_LEVEL 1
#define OBSW_PRINT_MISSED_DEADLINES 0
//! Perform internal unit testd at application startup
#define OBSW_PERFORM_INTERNAL_UNITTEST 1
//! Add core components for the FSFW and for TMTC communication
#define OBSW_ADD_CORE_COMPONENTS 1
//! Add the PUS service stack
#define OBSW_ADD_PUS_STACK 1
#define OBSW_PUS_PRINTOUT 0
//! Add the task examples
#define OBSW_ADD_TASK_EXAMPLE 1
#define OBSW_TASK_EXAMPLE_PRINTOUT 0
//! Add the demo device handler object
#define OBSW_ADD_DEVICE_HANDLER_DEMO 1
#define OBSW_DEVICE_HANDLER_PRINTOUT 1
//! Add the demo controller object
#define OBSW_ADD_CONTROLLER_DEMO 1
#define OBSW_CONTROLLER_PRINTOUT 1
/**
* The APID is a 14 bit identifier which can be used to distinguish processes and applications
* on a spacecraft. For more details, see the related ECSS/CCSDS standards.
* For this example, we are going to use a constant APID
*/
static const uint16_t COMMON_APID = 0xEF;
#ifdef __cplusplus
#include <fsfw/events/fwSubsystemIdRanges.h>
#include <fsfw/returnvalues/FwClassIds.h>
/**
* Enumerations for used PUS service IDs.
*/
namespace pus {
enum ServiceIds: uint8_t {
PUS_SERVICE_1 = 1,
PUS_SERVICE_2 = 2,
PUS_SERVICE_3 = 3,
PUS_SERVICE_5 = 5,
PUS_SERVICE_8 = 8,
PUS_SERVICE_9 = 9,
PUS_SERVICE_17 = 17,
PUS_SERVICE_20 = 20,
PUS_SERVICE_200 = 200
};
}
#endif /* __cplusplus */
#endif /* COMMON_COMMONCONFIG_H_ */

View File

@@ -0,0 +1,83 @@
#include "pollingsequence/pollingSequenceFactory.h"
#include "objects/systemObjectList.h"
#include "example/test/FsfwExampleTask.h"
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/tasks/FixedTimeslotTaskIF.h>
ReturnValue_t pst::pollingSequenceExamples(FixedTimeslotTaskIF* thisSequence) {
uint32_t length = thisSequence->getPeriodMs();
thisSequence->addSlot(objects::TEST_DUMMY_1, length * 0,
FsfwExampleTask::OpCodes::SEND_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_2, length * 0,
FsfwExampleTask::OpCodes::SEND_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_3, length * 0,
FsfwExampleTask::OpCodes::SEND_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_1, length * 0.2,
FsfwExampleTask::OpCodes::RECEIVE_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_2, length * 0.2,
FsfwExampleTask::OpCodes::RECEIVE_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_3, length * 0.2,
FsfwExampleTask::OpCodes::RECEIVE_RAND_NUM);
thisSequence->addSlot(objects::TEST_DUMMY_1, length * 0.5,
FsfwExampleTask::OpCodes::DELAY_SHORT);
thisSequence->addSlot(objects::TEST_DUMMY_2, length * 0.5,
FsfwExampleTask::OpCodes::DELAY_SHORT);
thisSequence->addSlot(objects::TEST_DUMMY_3, length * 0.5,
FsfwExampleTask::OpCodes::DELAY_SHORT);
if (thisSequence->checkSequence() == HasReturnvaluesIF::RETURN_OK) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "pst::pollingSequenceInitFunction: Initialization errors!" << std::endl;
#else
sif::printError("pst::pollingSequenceInitFunction: Initialization errors!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t pst::pollingSequenceDevices(FixedTimeslotTaskIF *thisSequence) {
uint32_t length = thisSequence->getPeriodMs();
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0, DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0, DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0.3, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0.3, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0.45 * length,
DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0.45 * length,
DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0.6 * length, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0.6 * length, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_0, 0.8 * length, DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::TEST_DEVICE_HANDLER_1, 0.8 * length, DeviceHandlerIF::GET_READ);
if (thisSequence->checkSequence() == HasReturnvaluesIF::RETURN_OK) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "pst::pollingSequenceTestFunction: Initialization errors!" << std::endl;
#else
sif::printError("pst::pollingSequenceTestFunction: Initialization errors!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
}

View File

@@ -0,0 +1,18 @@
#ifndef COMMON_CONFIG_COMMONSUBSYSTEMIDS_H_
#define COMMON_CONFIG_COMMONSUBSYSTEMIDS_H_
#include "fsfw/events/fwSubsystemIdRanges.h"
/**
* The subsystem IDs will be part of the event IDs used throughout the FSFW.
*/
namespace SUBSYSTEM_ID {
enum commonSubsystemId: uint8_t {
COMMON_SUBSYSTEM_ID_START = FW_SUBSYSTEM_ID_RANGE,
TEST_TASK_ID = 105,
COMMON_SUBSYSTEM_ID_END
};
}
#endif /* COMMON_CONFIG_COMMONSUBSYSTEMIDS_H_ */

View File

@@ -0,0 +1,40 @@
#ifndef COMMON_COMMONSYSTEMOBJECTS_H_
#define COMMON_COMMONSYSTEMOBJECTS_H_
#include <cstdint>
#include <fsfw/objectmanager/frameworkObjects.h>
namespace objects {
enum commonObjects: object_id_t {
/* 0x41 ('A') for Assemblies */
TEST_ASSEMBLY = 0x4100CAFE,
/* 0x43 ('C') for Controllers */
TEST_CONTROLLER = 0x4301CAFE,
/* 0x44 ('D') for Device Handlers */
TEST_DEVICE_HANDLER_0 = 0x4401AFFE,
TEST_DEVICE_HANDLER_1 = 0x4402AFFE,
/* 0x49 ('I') for Communication Interfaces */
TEST_ECHO_COM_IF = 0x4900AFFE,
/* 0x63 ('C') for core objects */
CCSDS_DISTRIBUTOR = 0x63000000,
PUS_DISTRIBUTOR = 0x63000001,
TM_FUNNEL = 0x63000002,
/* 0x74 ('t') for test and example objects */
TEST_TASK = 0x7400CAFE,
TEST_DUMMY_1 = 0x74000001,
TEST_DUMMY_2 = 0x74000002,
TEST_DUMMY_3= 0x74000003,
TEST_DUMMY_4 = 0x74000004,
TEST_DUMMY_5 = 0x74000005,
};
}
#endif /* COMMON_COMMONSYSTEMOBJECTS_H_ */

76
doc/README-cmake.md Normal file
View File

@@ -0,0 +1,76 @@
<img align="center" src="./images/cmake.png" width="25%">
<sub><sup>Image taken from [Wikipedia](https://commons.wikimedia.org/wiki/File:Cmake.svg)
and licensed under [Creative Commons 2.0](https://creativecommons.org/licenses/by/2.0/deed.en),
no changes made</sup></sub>
CMake is a modern cross-platform build system which is able to generate
various build systems. It also features a dependency management system which
allows developers to operate on targets (e.g. compile target as a library, link
against a target) which allows better control of build properties compared
to tools like Make.
## Building with CMake
Generally, building software with CMake is a two-step process.
First, the build configuration is set up using the CMake build system or IDE project
generators and then the software is built using the select build system or IDE.
CMake projects are generally built out-of-source which means that the files generated
during the build process are kept separately from the source tree. This generally involves
creating a build folder like `build-Debug` or `build-Release` and then performing all
steps inside that folder.
It is also possible to generate IDE project files with CMake. This is
not recommended for Eclipse because the CDT generation is not very good.
Instead, it is recommended to configure the build system once in the command line and then
invoke the CMake build command from Eclipse.
Script files were supplied in the `buildsystem` folder to have a starting point.
It is also possible to generate Visual Studio files but this has not been tested extensively yet.
It is possible to perform the build configuration steps with the
`cmake-gui` or with the curses `ccmake` command line utility. This also provides a graphical displayed
of available options and variables.
## Build Configuration options in CMake
Call `cmake --help` to get a first overview of how the CMake build configuration
works. Generally, build options can be displayed by running following command:
```sh
cmake -LA <path-to-source>
```
The general form to configure a build system is to call this command
in the folder where the build system should be set up (this is generally not
in a separate folder to avoid pollution of the source tree).
The generators for the host system can be displayed with `cmake --help` as well
and are supplied with `-G` to the build configuration.
Please note that the OSAL and architecture specific READMEs contain the
explicit commands to configure the build systems correctly.
```sh
cmake -G <Build Generator> <Options and Defines> <path-to-source>
```
Following build configurations are possible by setting the `CMAKE_BUILD_TYPE`
string when configuring the build system. Supply `-DCMAKE_BUILD_TYPE=<option>`
to do this:
1. `None`: No flags added
1. `Debug`: Default type if no build type is specified
2. `RelWithDebInfo`: Release build, but debug symbols included
3. `MinSizeRel`: Build for minimum size
4. `Release`: Build for maximum speed
For more information, see the [CMake website](https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/Useful-Variables#compilers-and-tools)
The FSFW OSAL can be specified with the `OS_FSFW` define during build configuration
Supply `-DOS_FSFW=<option>` to the configuration to do this.
Possible options are:
1. `host`: Host OSAL, tested for Windows 10 and Linux (Ubuntu 20.04)
2. `linux`: Linux OSAL, tested for regular Linux (Ubuntu 20.04) and embedded Linux
3. `freertos`: FreeRTOS OSAL, example for the STM32H743ZI-Nucleo development board provided.
4. `rtems`: Currently, no example provided, but will be provided for STM32H743ZI-Nucleo board.

190
doc/README-eclipse.md Normal file
View File

@@ -0,0 +1,190 @@
<img align="center" src="./images/eclipse_logo_colour.png" width="30%">
<sub><sup>Image taken from [Eclipse website](https://www.eclipse.org/artwork/)</sup></sub>
Eclipse is a general purpose IDE, which was initially developed for Java
but has evolved to be used for C/C++ as well. It is the recommended IDE
to develop Software with the FSFW because it is cross-platform, provides
useful features like an indexer and can be configured with moderate effort
to use the Make and CMake build systems.
## Setting up Eclipse - General
Eclipse project files and launch configurations were provided to have a starting
point for application development with Eclipse. It is recommended to use those
files and delete unneeded run configurations manually.
There are separate project files to either use the Makefiles or CMake.
1. Install [Eclipse for C/C++](https://www.eclipse.org/downloads/packages/)
using the installer. Install the Eclipse MCU plugin
for the STM32 and Raspberry Pi example by going to Help &rarr; Eclipse
Marketplace and searching and installing the plugin
2. For the STM32, the ARM toolchain (and Windows Build Tools on Windows) should have been
installed previously. Go to Window &rarr; Preferences &rarr; MCU &rarr; Global ARM Toolchain
and Windows Build Tools. Packages installed with xpm should be recognized automatically.
3. Setting up the indexer: It is recommended to use the separate indexers for
each run configurations. Right click on the project folder in the tree view,
go to Properties &rarr; C/C++ General &rarr; Indexer and set the indexer as shown below.
<img align="center" src="./images/eclipse/eclipse-indexer.png" width="50%">
4. Cross-Compiling: In general, the provided project configurations should set up
the cross compiler properly. However, if there are issues, the user should
check whether the compilers are set up properly.
Right click on the project folder in the tree view, go to
Properties &rarr; C/C++ Build &rarr; Tool Chain Editor and set the correct
editor. Then go to Properties &rarr; C/C++ Build &rarr; Settings and check
whether the cross-compiler paths are correct.
## Setting up Eclipse for a hosted CMake projects
1. Copy the files `.project` and `.cproject` inside the misc/eclipse/make folder
into the root of the cloned folder. This will add all build configurations.
```sh
cd fsfw_example
cp misc/eclipse/cmake/.project .
cp misc/eclipse/cmake/.cproject .
```
2. Import the project now by going to File &rarr; Import &rarr; Existing Projects and selecting the cloned folder.
Only check the root folder, Eclipse will try to import every folder which contains
`.project` or `.cproject` files!
<img src="./images/eclipse_cfg.PNG" width="50%">
3. Set up the build folders. Helper scripts have been provided to perform this
task and have a starting point, but a valid Python 3 installation is required for them to work.
For example, to create the build folder `Debug` and build the software
with the FSFW Host OSAL on Windows or Linux, perform the following steps in the MinGW64
command line or Linux terminal after navigating into the cloned example folder:
```sh
cd buildsystem/cmake/scripts/Host
./create_cmake_debug_cfg.sh
```
The shell script can also be run by double clicking it in Windows as long as it is executed
by the MinGW terminal. This shell script will first create a new Debug folder (and delete the old one)
and then execute the following command in the build folder on Windows
```sh
cmake -G "MinGW Makefiles" -DCMAKE_BUILD_TYPE=Debug -DOS_FSFW=host
```
or the following command on Linux:
```sh
cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -DOS_FSFW=host
```
For example, the execution of the script in MinGW64 on Windows should show the
following output:
<img src="./images/build_cfg_mingw.PNG" width="50%">
4. The build system is now ready to be used in Eclipse. Select the `fsfw-mingw-debug-cmake` (Windows)
or `fsfw-linux-debug-cmake` (Linux) launch configuration
in Eclipse and press the hammer button to build the software or the bug button to debug the
software for a host machine. This will invoke `cmake --build . -j` in the respective build
folders to build the software.
## Seting up Eclipse for Raspberry Pi projects - Remote Application
Eclipse is configured to assume that the toolchain is located in `/opt/cross-pi-gcc/bin` and
will deduce settings and compiler specs automatically (e.g. for the indexer) if the provides build
and launch configurations are used. Adapt the toolchain path accordingly if is installed
somewhere else.
Follow steps one and two of the previous section.
3. Set up the run configuration properly by setting up a SSH connection with
your Raspberry Pi. Go to Run &rarr; Debug Configurations.., look for the
`C/C++ Remote Application` section and click on one of the configurations
provided for the Raspberry Pi. A new SSH connection should be set up here.
The following image shows an example
<img src="./images/eclipse/eclipse-rpi.png" width="50%">
4. Set up the build folders if this was not done already.
We are going to do this with the script
```sh
cd buildsystem/cmake/scripts/RPi
./create_cmake_debug_cfg.sh
```
5. The build system is now ready to be used in Eclipse.
Select the `fsfw-rpi-debug-cmake` launch configuration and press the run or
debug button in the top panel on the right side to run or debug the application.
If there are issues, ensure that the Launch Configuration uses the correct
SSH settings to connect to the Raspberry Pi.
On Windows, MinGW Makefiles are used for the cross-compilation process, but Eclipse will only
have the Windows environmental variables cached. This can lead to issues with the CMake build if it
is configured in MinGW64. It is recommended to add the `RASPBIAN_ROOTFS` and the `RASPBERRY_VERSION`
variable to the Windows environmental variables.
The following picture shows an example:
<img src="./images/eclipse/rpi-win-environment.PNG" width="50%">
Alternatively, you can also add them to the Eclipse environmental variables in Properties &rarr;
C/C++ Build &rarr; Environment
## Setting up Eclipse for Raspberry Pi projects - TCF agent
Alternatively, the [TCF agent](https://wiki.eclipse.org/TCF) can be used
as a more generic and powerful tool to perform remote debugging.
1. Install the TCF agent plugin in Eclipse from the
[releases](https://www.eclipse.org/tcf/downloads.php). Go to
Help &rarr; Install New Software and use the download page, for
example https://download.eclipse.org/tools/tcf/releases/1.6/1.6.2/ to search
for the plugin and install it.
2. Go to Window &rarr; Perspective &rarr; Open Perspective and open the
**Target Explorer Perspective**. Here, the Raspberry Pi should show up if
the TCF agent has been set up on the Raspberry Pi as specified
[here](https://wiki.eclipse.org/TCF/Raspberry_Pi) or in the
respective [README](README-rpi.md#top). Connect to it.
3. Create a new **TCF Remote Application**. No launch configuration has
been provided because the IP address can change regularly.
- Create a new the configuration by pressing the cogs button at the top or
going to Run &rarr; Debug Configurations &rarr; Remote Application and
creating a new one there.
- Select the TCF connection, the correct image in the main tab (it might be
necessary to send it the the Raspberry Pi manually once) and file transfer properties
- It is also recommended to link the correct Eclipse project.
After that, comfortable remote debugging should be possible with the Debug button.
## Setting up Eclipse for the Makefile projects
The Makefiles are not maintained anymore and it is recommended to use the
CMake build configurations instead.
1. Copy the files `.project` and `.cproject` inside the misc/eclipse/make folder
into the root of the cloned folder. This will add all build configurations.
Configurations which are not required can be deleted manually.
```sh
cd fsfw_example
cp misc/eclipse/make/.project .
cp misc/eclipse/make/.cproject .
```
2. Import the project now by going to File &rarr; Import &rarr; Existing Projects and selecting
the cloned folder.
3. It should now be possible to build and debug the program by selecting the
correct launch configuration in the top panel and hitting the hammer or debug button.

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

BIN
doc/images/cmake.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 151 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
doc/images/eclipse_cfg.PNG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

View File

@@ -1,5 +1,5 @@
add_subdirectory(controller)
add_subdirectory(core)
add_subdirectory(devices)
add_subdirectory(test)
add_subdirectory(utility)
add_subdirectory(controller)
add_subdirectory(assemblies)

View File

View File

@@ -1,24 +1,26 @@
#include "GenericFactory.h"
#include "OBSWConfig.h"
#include "fsfw/FSFW.h"
#include "tmtc/apid.h"
#include "tmtc/pusIds.h"
#include "objects/systemObjectList.h"
#include "test/FsfwExampleTask.h"
#include "test/FsfwReaderTask.h"
#include "example/utility/TmFunnel.h"
#include "example/test/FsfwExampleTask.h"
#include "example/test/FsfwReaderTask.h"
#include "mission/assemblies/TestAssembly.h"
#include "mission/devices/TestCookie.h"
#include "mission/devices/TestDeviceHandler.h"
#include "mission/devices/TestEchoComIF.h"
#include "mission/utility/TmFunnel.h"
#include "mission/controller/TestController.h"
#include "fsfw_tests/internal/InternalUnitTester.h"
#include "fsfw_tests/integration/assemblies/TestAssembly.h"
#include "fsfw_tests/integration/devices/TestCookie.h"
#include "fsfw_tests/integration/devices/TestDeviceHandler.h"
#include "fsfw_tests/integration/devices/TestEchoComIF.h"
#include "fsfw_tests/integration/controller/TestController.h"
#include "fsfw/devicehandlers/CookieIF.h"
#include "fsfw/events/EventManager.h"
#include "fsfw/health/HealthTable.h"
#include "fsfw/internalError/InternalErrorReporter.h"
#include "fsfw/internalerror/InternalErrorReporter.h"
#include "fsfw/pus/CService200ModeCommanding.h"
#include "fsfw/pus/Service17Test.h"
#include "fsfw/pus/Service1TelecommandVerification.h"
@@ -31,7 +33,7 @@
#include "fsfw/tcdistribution/CCSDSDistributor.h"
#include "fsfw/tcdistribution/PUSDistributor.h"
#include "fsfw/timemanager/TimeStamper.h"
#include "fsfw/tmtcpacket/pus/TmPacketStored.h"
#include "fsfw/tmtcpacket/pus/tm.h"
@@ -76,10 +78,9 @@ void ObjectFactory::produceGenericObjects() {
new FsfwExampleTask(objects::TEST_DUMMY_3);
#if OBSW_TASK_EXAMPLE_PRINTOUT == 1
bool enablePrintout = true;
#else
bool enablePrintout = false;
#if OBSW_TASK_EXAMPLE_PRINTOUT == 1
enablePrintout = true;
#endif
new FsfwReaderTask(objects::TEST_DUMMY_4, enablePrintout);
#endif /* OBSW_ADD_TASK_EXAMPLE == 1 */
@@ -94,17 +95,18 @@ void ObjectFactory::produceGenericObjects() {
/* Demo device handler object */
size_t expectedMaxReplyLen = 64;
CookieIF* testCookie = new DummyCookie(
CookieIF* testCookie = new TestCookie(
static_cast<address_t>(testdevice::DeviceIndex::DEVICE_0), expectedMaxReplyLen);
new TestEchoComIF(objects::TEST_ECHO_COM_IF);
new TestDevice(objects::TEST_DEVICE_HANDLER_0, objects::TEST_ECHO_COM_IF, testCookie,
testdevice::DeviceIndex::DEVICE_0, enableInfoPrintout);
testCookie = new DummyCookie(static_cast<address_t>(testdevice::DeviceIndex::DEVICE_1),
testCookie = new TestCookie(static_cast<address_t>(testdevice::DeviceIndex::DEVICE_1),
expectedMaxReplyLen);
new TestDevice(objects::TEST_DEVICE_HANDLER_1, objects::TEST_ECHO_COM_IF, testCookie,
testdevice::DeviceIndex::DEVICE_1, enableInfoPrintout);
new TestAssembly(objects::TEST_ASSEMBLY, objects::NO_OBJECT);
new TestAssembly(objects::TEST_ASSEMBLY, objects::NO_OBJECT, objects::TEST_DEVICE_HANDLER_0,
objects::TEST_DEVICE_HANDLER_1);
#endif /* OBSW_ADD_DEVICE_HANDLER_DEMO == 1 */
@@ -114,9 +116,21 @@ void ObjectFactory::produceGenericObjects() {
#if OBSW_CONTROLLER_PRINTOUT == 1
#endif
new TestController(objects::TEST_CONTROLLER);
new TestController(objects::TEST_CONTROLLER, objects::TEST_DEVICE_HANDLER_0,
objects::TEST_DEVICE_HANDLER_1);
#endif /* OBSW_ADD_CONTROLLER_DEMO == 1 */
#if OBSW_PERFORM_INTERNAL_UNITTEST == 1
InternalUnitTester::TestConfig testCfg;
testCfg.testArrayPrinter = false;
#if defined FSFW_OSAL_HOST
// Not implemented yet for hosted OSAL (requires C++20)
testCfg.testSemaphores = false;
#endif
InternalUnitTester unittester;
unittester.performTests(testCfg);
#endif /* OBSW_PERFORM_INTERNAL_UNITTEST == 1 */
}
void Factory::setStaticFrameworkObjectIds() {

View File

View File

@@ -0,0 +1,12 @@
#ifndef EXAMPLE_COMMON_DEVICES_TESTDEVICEHANDLER_H_
#define EXAMPLE_COMMON_DEVICES_TESTDEVICEHANDLER_H_
//#include "fsfw_tests/integration/TestDeviceHandler.h"
//
//class FsfwTestDeviceHandler: public TestDeviceHandler {
//
//};
#endif /* EXAMPLE_COMMON_DEVICES_TESTDEVICEHANDLER_H_ */

View File

@@ -0,0 +1,5 @@
target_sources(${TARGET_NAME} PRIVATE
FsfwReaderTask.cpp
FsfwExampleTask.cpp
MutexExample.cpp
)

View File

@@ -0,0 +1,264 @@
#include "FsfwExampleTask.h"
#include "OBSWConfig.h"
#include "commonSystemObjects.h"
#include "objects/systemObjectList.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/objectmanager/ObjectManager.h>
#include <fsfw/tasks/TaskFactory.h>
#include <fsfw/ipc/QueueFactory.h>
#include <fsfw/ipc/CommandMessage.h>
FsfwExampleTask::FsfwExampleTask(object_id_t objectId): SystemObject(objectId),
poolManager(this, nullptr), demoSet(this),
monitor(objectId, MONITOR_ID, gp_id_t(objectId, FsfwDemoSet::VARIABLE_LIMIT), 30, 10)
{
commandQueue = QueueFactory::instance()->createMessageQueue(10,
CommandMessage::MAX_MESSAGE_SIZE);
}
FsfwExampleTask::~FsfwExampleTask() {
}
ReturnValue_t FsfwExampleTask::performOperation(uint8_t operationCode) {
if(operationCode == OpCodes::DELAY_SHORT){
TaskFactory::delayTask(5);
}
// TODO: Move this to new test controller?
ReturnValue_t result = performMonitoringDemo();
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if (operationCode == OpCodes::SEND_RAND_NUM) {
result = performSendOperation();
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
if (operationCode == OpCodes::RECEIVE_RAND_NUM) {
result = performReceiveOperation();
}
return 0;
}
object_id_t FsfwExampleTask::getNextRecipient() {
switch(this->getObjectId()) {
case(objects::TEST_DUMMY_1): {
return objects::TEST_DUMMY_2;
}
case(objects::TEST_DUMMY_2): {
return objects::TEST_DUMMY_3;
}
case(objects::TEST_DUMMY_3): {
return objects::TEST_DUMMY_1;
}
default:
return objects::TEST_DUMMY_1;
}
}
object_id_t FsfwExampleTask::getSender() {
switch(this->getObjectId()) {
case(objects::TEST_DUMMY_1): {
return objects::TEST_DUMMY_3;
}
case(objects::TEST_DUMMY_2): {
return objects::TEST_DUMMY_1;
}
case(objects::TEST_DUMMY_3): {
return objects::TEST_DUMMY_2;
}
default:
return objects::TEST_DUMMY_1;
}
}
ReturnValue_t FsfwExampleTask::initialize() {
// Get the dataset of the sender. Will be cached for later checks.
object_id_t sender = getSender();
HasLocalDataPoolIF* senderIF = ObjectManager::instance()->get<HasLocalDataPoolIF>(sender);
if(senderIF == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::initialize: Sender object invalid!" << std::endl;
#else
sif::printError("FsfwDemoTask::initialize: Sender object invalid!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
// we need a private copy of the previous dataset.. or we use the shared dataset.
senderSet = new FsfwDemoSet(senderIF);
if(senderSet == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::initialize: Sender dataset invalid!" << std::endl;
#else
sif::printError("FsfwDemoTask::initialize: Sender dataset invalid!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return poolManager.initialize(commandQueue);
}
ReturnValue_t FsfwExampleTask::initializeAfterTaskCreation() {
return poolManager.initializeAfterTaskCreation();
}
object_id_t FsfwExampleTask::getObjectId() const {
return SystemObject::getObjectId();
}
MessageQueueId_t FsfwExampleTask::getMessageQueueId(){
return commandQueue->getId();
}
void FsfwExampleTask::setTaskIF(PeriodicTaskIF* task){
this->task = task;
}
LocalPoolDataSetBase* FsfwExampleTask::getDataSetHandle(sid_t sid) {
return &demoSet;
}
uint32_t FsfwExampleTask::getPeriodicOperationFrequency() const {
return task->getPeriodMs();
}
ReturnValue_t FsfwExampleTask::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(FsfwDemoSet::PoolIds::VARIABLE, new PoolEntry<uint32_t>({0}));
localDataPoolMap.emplace(FsfwDemoSet::PoolIds::VARIABLE_LIMIT, new PoolEntry<uint16_t>({0}));
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FsfwExampleTask::performMonitoringDemo() {
ReturnValue_t result = demoSet.variableLimit.read(
MutexIF::TimeoutType::WAITING, 20);
if(result != HasReturnvaluesIF::RETURN_OK) {
/* Configuration error */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "DummyObject::performOperation: Could not read variableLimit!" << std::endl;
#else
sif::printError("DummyObject::performOperation: Could not read variableLimit!\n");
#endif
return result;
}
if(this->getObjectId() == objects::TEST_DUMMY_5){
if(demoSet.variableLimit.value > 20){
demoSet.variableLimit.value = 0;
}
demoSet.variableLimit.value++;
demoSet.variableLimit.commit(20);
monitor.check();
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FsfwExampleTask::performSendOperation() {
object_id_t nextRecipient = getNextRecipient();
FsfwExampleTask* target = ObjectManager::instance()->get<FsfwExampleTask>(nextRecipient);
if (target == nullptr) {
/* Configuration error */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "DummyObject::performOperation: Next recipient does not exist!" << std::endl;
#else
sif::printError("DummyObject::performOperation: Next recipient does not exist!\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
uint32_t randomNumber = rand() % 100;
CommandMessage message;
message.setParameter(randomNumber);
message.setParameter2(this->getMessageQueueId());
/* Send message using own message queue */
ReturnValue_t result = commandQueue->sendMessage(target->getMessageQueueId(), &message);
if (result != HasReturnvaluesIF::RETURN_OK
&& result != MessageQueueIF::FULL) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::performSendOperation: Send failed with " << result <<
std::endl;
#else
sif::printError("FsfwDemoTask::performSendOperation: Send failed with %hu\n", result);
#endif
}
/* Send message without via MessageQueueSenderIF */
result = MessageQueueSenderIF::sendMessage(target->getMessageQueueId(), &message,
commandQueue->getId());
if (result != HasReturnvaluesIF::RETURN_OK
&& result != MessageQueueIF::FULL) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::performSendOperation: Send failed with " << result << std::endl;
#else
sif::printError("FsfwDemoTask::performSendOperation: Send failed with %hu\n", result);
#endif
}
demoSet.variableWrite.value = randomNumber;
result = demoSet.variableWrite.commit(20);
return result;
}
ReturnValue_t FsfwExampleTask::performReceiveOperation() {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
while (result != MessageQueueIF::EMPTY) {
CommandMessage receivedMessage;
result = commandQueue->receiveMessage(&receivedMessage);
if (result != HasReturnvaluesIF::RETURN_OK
&& result != MessageQueueIF::EMPTY) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::debug << "Receive failed with " << result << std::endl;
#endif
break;
}
if (result != MessageQueueIF::EMPTY) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
#if OBSW_VERBOSE_LEVEL >= 2
sif::debug << "Message Received by " << getObjectId() << " from Queue " <<
receivedMessage.getSender() << " ObjectId " << receivedMessage.getParameter() <<
" Queue " << receivedMessage.getParameter2() << std::endl;
#endif
#endif
if(senderSet == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
result = senderSet->variableRead.read(MutexIF::TimeoutType::WAITING,
20);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if(senderSet->variableRead.value != receivedMessage.getParameter()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "FsfwDemoTask::performReceiveOperation: Variable " << std::hex <<
"0x" << senderSet->variableRead.getDataPoolId() << std::dec <<
" has wrong value." << std::endl;
sif::error << "Value: " << demoSet.variableRead.value << ", expected: " <<
receivedMessage.getParameter() << std::endl;
#endif
}
}
}
return result;
}
MessageQueueId_t FsfwExampleTask::getCommandQueue() const {
return commandQueue->getId();
}
LocalDataPoolManager* FsfwExampleTask::getHkManagerHandle() {
return &poolManager;
}

View File

@@ -0,0 +1,116 @@
#ifndef MISSION_DEMO_FSFWDEMOTASK_H_
#define MISSION_DEMO_FSFWDEMOTASK_H_
#include "testdefinitions/demoDefinitions.h"
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/datapoollocal/LocalPoolVariable.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/ipc/MessageQueueIF.h>
#include <fsfw/monitoring/AbsLimitMonitor.h>
class PeriodicTaskIF;
/**
* @brief This demo set shows the local data pool functionality and fixed
* timeslot capabilities of the FSFW.
*
* @details
* There will be multiple demo objects. Each demo object will generate a random
* number and send that number via message queues to the next demo object
* (e.g. DUMMY_1 sends the number to DUMMY_2 etc.). The receiving object
* will check the received value against the sent value by extracting the sent
* value directly from the sender via the local data pool interface.
* If the timing is set up correctly, the values will always be the same.
*/
class FsfwExampleTask:
public ExecutableObjectIF,
public SystemObject,
public HasLocalDataPoolIF {
public:
enum OpCodes {
SEND_RAND_NUM,
RECEIVE_RAND_NUM,
DELAY_SHORT
};
static constexpr uint8_t MONITOR_ID = 2;
/**
* @brief Simple constructor, only expects object ID.
* @param objectId
*/
FsfwExampleTask(object_id_t objectId);
virtual ~FsfwExampleTask();
/**
* @brief The performOperation method is executed in a task.
* @details There are no restrictions for calls within this method, so any
* other member of the class can be used.
* @return Currently, the return value is ignored.
*/
virtual ReturnValue_t performOperation(uint8_t operationCode = 0);
/**
* @brief This function will be called by the global object manager
* @details
* This function will always be called before any tasks are started.
* It can also be used to return error codes in the software initialization
* process cleanly.
* @return
*/
virtual ReturnValue_t initialize() override;
/**
* @brief This function will be called by the OSAL task handlers
* @details
* This function will be called before the first #performOperation
* call after the tasks have been started. It can be used if some
* initialization process requires task specific properties like
* periodic intervals (by using the PeriodicTaskIF* handle).
* @return
*/
virtual ReturnValue_t initializeAfterTaskCreation() override;
/**
* This function will be called by the OSAL task handler. The
* task interface handle can be cached to access task specific properties.
* @param task
*/
void setTaskIF(PeriodicTaskIF* task) override;
object_id_t getObjectId() const override;
MessageQueueId_t getMessageQueueId();
private:
LocalDataPoolManager poolManager;
FsfwDemoSet* senderSet = nullptr;
FsfwDemoSet demoSet;
AbsLimitMonitor<int32_t> monitor;
PeriodicTaskIF* task = nullptr;
MessageQueueIF* commandQueue = nullptr;
/* HasLocalDatapoolIF overrides */
MessageQueueId_t getCommandQueue() const override;
LocalPoolDataSetBase* getDataSetHandle(sid_t sid) override;
uint32_t getPeriodicOperationFrequency() const override;
virtual ReturnValue_t initializeLocalDataPool(
localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
virtual LocalDataPoolManager* getHkManagerHandle() override;
object_id_t getNextRecipient();
object_id_t getSender();
ReturnValue_t performMonitoringDemo();
ReturnValue_t performSendOperation();
ReturnValue_t performReceiveOperation();
uint8_t execCounter = 0;
};
#endif /* MISSION_DEMO_FSFWDEMOTASK_H_ */

View File

@@ -0,0 +1,55 @@
#include "FsfwReaderTask.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/tasks/TaskFactory.h>
#include <fsfw/timemanager/Stopwatch.h>
#include <OBSWConfig.h>
FsfwReaderTask::FsfwReaderTask(object_id_t objectId, bool enablePrintout):
SystemObject(objectId), printoutEnabled(enablePrintout), opDivider(10),
readSet(this->getObjectId(),
gp_id_t(objects::TEST_DUMMY_1, FsfwDemoSet::PoolIds::VARIABLE),
gp_id_t(objects::TEST_DUMMY_2, FsfwDemoSet::PoolIds::VARIABLE),
gp_id_t(objects::TEST_DUMMY_3, FsfwDemoSet::PoolIds::VARIABLE)) {
/* Special protection for set reading because each variable is read from a different pool */
readSet.setReadCommitProtectionBehaviour(true);
}
FsfwReaderTask::~FsfwReaderTask() {
}
ReturnValue_t FsfwReaderTask::initializeAfterTaskCreation() {
/* Give other task some time to set up local data pools. */
TaskFactory::delayTask(20);
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FsfwReaderTask::performOperation(uint8_t operationCode) {
PoolReadGuard readHelper(&readSet);
uint32_t variable1 = readSet.variable1.value;
uint32_t variable2 = readSet.variable2.value;
uint32_t variable3 = readSet.variable3.value;
#if OBSW_VERBOSE_LEVEL >= 1
if(opDivider.checkAndIncrement() and printoutEnabled) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "FsfwPeriodicTask::performOperation: Reading variables." << std::endl;
sif::info << "Variable read from demo object 1: " << variable1 << std::endl;
sif::info << "Variable read from demo object 2: " << variable2 << std::endl;
sif::info << "Variable read from demo object 3: " << variable3 << std::endl;
#else
sif::printInfo("FsfwPeriodicTask::performOperation: Reading variables.\n\r");
sif::printInfo("Variable read from demo object 1: %d\n\r", variable1);
sif::printInfo("Variable read from demo object 2: %d\n\r", variable2);
sif::printInfo("Variable read from demo object 3: %d\n\r", variable3);
#endif
}
#else
if(variable1 and variable2 and variable3) {};
#endif
return HasReturnvaluesIF::RETURN_OK;
}

View File

@@ -0,0 +1,24 @@
#ifndef MISSION_DEMO_FSFWPERIODICTASK_H_
#define MISSION_DEMO_FSFWPERIODICTASK_H_
#include "testdefinitions/demoDefinitions.h"
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/objectmanager/SystemObject.h>
class FsfwReaderTask: public ExecutableObjectIF, public SystemObject {
public:
FsfwReaderTask(object_id_t objectId, bool enablePrintout);
virtual ~FsfwReaderTask();
ReturnValue_t initializeAfterTaskCreation() override;
virtual ReturnValue_t performOperation(uint8_t operationCode = 0);
private:
bool printoutEnabled = false;
PeriodicOperationDivider opDivider;
CompleteDemoReadSet readSet;
};
#endif /* MISSION_DEMO_FSFWPERIODICTASK_H_ */

View File

@@ -0,0 +1,47 @@
#include "MutexExample.h"
#include <fsfw/ipc/MutexFactory.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
void MutexExample::example(){
MutexIF* mutex = MutexFactory::instance()->createMutex();
MutexIF* mutex2 = MutexFactory::instance()->createMutex();
ReturnValue_t result = mutex->lockMutex(MutexIF::TimeoutType::WAITING,
2 * 60 * 1000);
if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "MutexExample::example: Lock Failed with " << result << std::endl;
#else
sif::printError("MutexExample::example: Lock Failed with %hu\n", result);
#endif
}
result = mutex2->lockMutex(MutexIF::TimeoutType::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "MutexExample::example: Lock Failed with " << result << std::endl;
#else
sif::printError("MutexExample::example: Lock Failed with %hu\n", result);
#endif
}
result = mutex->unlockMutex();
if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "MutexExample::example: Unlock Failed with " << result << std::endl;
#else
sif::printError("MutexExample::example: Unlock Failed with %hu\n", result);
#endif
}
result = mutex2->unlockMutex();
if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "MutexExample::example: Unlock Failed with " << result << std::endl;
#else
sif::printError("MutexExample::example: Unlock Failed with %hu\n", result);
#endif
}
}

View File

@@ -0,0 +1,8 @@
#ifndef MISSION_DEMO_MUTEXEXAMPLE_H_
#define MISSION_DEMO_MUTEXEXAMPLE_H_
namespace MutexExample {
void example();
};
#endif /* MISSION_DEMO_MUTEXEXAMPLE_H_ */

View File

@@ -0,0 +1,63 @@
#ifndef MISSION_DEMO_DEMODEFINITIONS_H_
#define MISSION_DEMO_DEMODEFINITIONS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/datapoollocal/LocalPoolVariable.h>
/**
* @brief This demo set showcases the local data pool functionality of the
* FSFW
* @details
* Each demo object will have an own instance of this set class, which contains
* pool variables (for read and write access respectively).
*/
class FsfwDemoSet: public StaticLocalDataSet<3> {
public:
static constexpr uint32_t DEMO_SET_ID = 0;
enum PoolIds {
VARIABLE,
VARIABLE_LIMIT
};
FsfwDemoSet(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, DEMO_SET_ID) {}
lp_var_t<uint32_t> variableRead = lp_var_t<uint32_t>(sid.objectId,
PoolIds::VARIABLE, this, pool_rwm_t::VAR_READ);
lp_var_t<uint32_t> variableWrite = lp_var_t<uint32_t>(sid.objectId,
PoolIds::VARIABLE, this, pool_rwm_t::VAR_WRITE);
lp_var_t<uint16_t> variableLimit = lp_var_t<uint16_t>(sid.objectId,
PoolIds::VARIABLE_LIMIT, this);
private:
};
/**
* This set will enable object to read the dummy variables from the dataset
* above. An example application would be a consumer object like a controller
* which reads multiple sensor values at once.
*/
class CompleteDemoReadSet: public StaticLocalDataSet<3> {
public:
static constexpr uint32_t DEMO_SET_ID = 0;
CompleteDemoReadSet(object_id_t owner, gp_id_t variable1,
gp_id_t variable2, gp_id_t variable3):
StaticLocalDataSet(sid_t(owner, DEMO_SET_ID)),
variable1(variable1, this, pool_rwm_t::VAR_READ),
variable2(variable2, this, pool_rwm_t::VAR_READ),
variable3(variable3, this, pool_rwm_t::VAR_READ) {}
lp_var_t<uint32_t> variable1;
lp_var_t<uint32_t> variable2;
lp_var_t<uint32_t> variable3;
private:
};
#endif /* MISSION_DEMO_DEMODEFINITIONS_H_ */

View File

@@ -1,3 +1,4 @@
target_sources(${TARGET_NAME} PRIVATE
TestAssembly.cpp
)
utility.cpp
TmFunnel.cpp
)

View File

@@ -0,0 +1,10 @@
#include <fsfw/tmtcpacket/pus/tc.h>
#include <fsfw/tmtcpacket/pus/tm.h>
#include <fsfw/globalfunctions/arrayprinter.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <mission/utility/PusPacketCreator.h>
void PusPacketCreator::createPusPacketAndPrint() {
// TODO: use TC packet stored here instead..
}

View File

@@ -1,9 +1,9 @@
#include "TmFunnel.h"
#include <fsfw/ipc/QueueFactory.h>
#include <fsfw/objectmanager/ObjectManager.h>
#include <fsfw/tmtcpacket/pus/TmPacketStored.h>
#include <fsfw/tmtcpacket/pus/tm.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/tmtcpacket/pus/TmPacketPusC.h>
#include <mission/utility/TmFunnel.h>
object_id_t TmFunnel::downlinkDestination = objects::NO_OBJECT;
object_id_t TmFunnel::storageDestination = objects::NO_OBJECT;

View File

@@ -0,0 +1,22 @@
#include "utility.h"
#include <FSFWConfig.h>
#include <OBSWVersion.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
void utility::commonInitPrint(const char *const os, const char* const board) {
if(os == nullptr or board == nullptr) {
return;
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
std::cout << "-- FSFW Example (" << os<< ") v" << FSFW_EXAMPLE_VERSION << "." <<
FSFW_EXAMPLE_SUBVERSION << "." << FSFW_EXAMPLE_REVISION << " --" << std::endl;
std::cout << "-- Compiled for " << board << " --" << std::endl;
std::cout << "-- Compiled on " << __DATE__ << " " << __TIME__ << " --" << std::endl;
#else
printf("\n\r-- FSFW Example (%s) v%d.%d.%d --\n", os, FSFW_EXAMPLE_VERSION,
FSFW_EXAMPLE_SUBVERSION, FSFW_EXAMPLE_REVISION);
printf("-- Compiled for %s --\n", board);
printf("-- Compiled on %s %s --\n", __DATE__, __TIME__);
#endif
}

11
example/utility/utility.h Normal file
View File

@@ -0,0 +1,11 @@
#ifndef COMMON_UTILITY_UTILITY_H_
#define COMMON_UTILITY_UTILITY_H_
namespace utility {
void commonInitPrint(const char *const os, const char* const board);
}
#endif /* COMMON_UTILITY_UTILITY_H_ */

View File

@@ -1,200 +0,0 @@
#include <mission/assemblies/TestAssembly.h>
#include <common/config/commonSystemObjects.h>
#include <fsfw/objectmanager/ObjectManager.h>
TestAssembly::TestAssembly(object_id_t objectId, object_id_t parentId):
AssemblyBase(objectId, parentId) {
ModeListEntry newModeListEntry;
newModeListEntry.setObject(objects::TEST_DEVICE_HANDLER_0);
newModeListEntry.setMode(MODE_OFF);
newModeListEntry.setSubmode(SUBMODE_NONE);
commandTable.insert(newModeListEntry);
newModeListEntry.setObject(objects::TEST_DEVICE_HANDLER_1);
newModeListEntry.setMode(MODE_OFF);
newModeListEntry.setSubmode(SUBMODE_NONE);
commandTable.insert(newModeListEntry);
}
TestAssembly::~TestAssembly() {
}
ReturnValue_t TestAssembly::commandChildren(Mode_t mode,
Submode_t submode) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestAssembly: Received command to go to mode " << mode <<
" submode " << (int) submode << std::endl;
#else
sif::printInfo("TestAssembly: Received command to go to mode %d submode %d\n", mode, submode);
#endif
ReturnValue_t result = RETURN_OK;
if(mode == MODE_OFF){
commandTable[0].setMode(MODE_OFF);
commandTable[0].setSubmode(SUBMODE_NONE);
commandTable[1].setMode(MODE_OFF);
commandTable[1].setSubmode(SUBMODE_NONE);
}
else if(mode == DeviceHandlerIF::MODE_NORMAL) {
if(submode == submodes::SINGLE){
commandTable[0].setMode(MODE_OFF);
commandTable[0].setSubmode(SUBMODE_NONE);
commandTable[1].setMode(MODE_OFF);
commandTable[1].setSubmode(SUBMODE_NONE);
// We try to prefer 0 here but we try to switch to 1 even if it might fail
if(isDeviceAvailable(objects::TEST_DEVICE_HANDLER_0)) {
if (childrenMap[objects::TEST_DEVICE_HANDLER_0].mode == MODE_ON) {
commandTable[0].setMode(mode);
commandTable[0].setSubmode(SUBMODE_NONE);
}
else {
commandTable[0].setMode(MODE_ON);
commandTable[0].setSubmode(SUBMODE_NONE);
result = NEED_SECOND_STEP;
}
}
else {
if (childrenMap[objects::TEST_DEVICE_HANDLER_1].mode == MODE_ON) {
commandTable[1].setMode(mode);
commandTable[1].setSubmode(SUBMODE_NONE);
}
else{
commandTable[1].setMode(MODE_ON);
commandTable[1].setSubmode(SUBMODE_NONE);
result = NEED_SECOND_STEP;
}
}
}
else{
// Dual Mode Normal
if (childrenMap[objects::TEST_DEVICE_HANDLER_0].mode == MODE_ON) {
commandTable[0].setMode(mode);
commandTable[0].setSubmode(SUBMODE_NONE);
}
else{
commandTable[0].setMode(MODE_ON);
commandTable[0].setSubmode(SUBMODE_NONE);
result = NEED_SECOND_STEP;
}
if (childrenMap[objects::TEST_DEVICE_HANDLER_1].mode == MODE_ON) {
commandTable[1].setMode(mode);
commandTable[1].setSubmode(SUBMODE_NONE);
}
else{
commandTable[1].setMode(MODE_ON);
commandTable[1].setSubmode(SUBMODE_NONE);
result = NEED_SECOND_STEP;
}
}
}
else{
//Mode ON
if(submode == submodes::SINGLE){
commandTable[0].setMode(MODE_OFF);
commandTable[0].setSubmode(SUBMODE_NONE);
commandTable[1].setMode(MODE_OFF);
commandTable[1].setSubmode(SUBMODE_NONE);
// We try to prefer 0 here but we try to switch to 1 even if it might fail
if(isDeviceAvailable(objects::TEST_DEVICE_HANDLER_0)){
commandTable[0].setMode(MODE_ON);
commandTable[0].setSubmode(SUBMODE_NONE);
}
else{
commandTable[1].setMode(MODE_ON);
commandTable[1].setSubmode(SUBMODE_NONE);
}
}
else{
commandTable[0].setMode(MODE_ON);
commandTable[0].setSubmode(SUBMODE_NONE);
commandTable[1].setMode(MODE_ON);
commandTable[1].setSubmode(SUBMODE_NONE);
}
}
HybridIterator<ModeListEntry> iter(commandTable.begin(),
commandTable.end());
executeTable(iter);
return result;
}
ReturnValue_t TestAssembly::isModeCombinationValid(Mode_t mode,
Submode_t submode) {
switch (mode) {
case MODE_OFF:
if (submode == SUBMODE_NONE) {
return RETURN_OK;
} else {
return INVALID_SUBMODE;
}
case DeviceHandlerIF::MODE_NORMAL:
case MODE_ON:
if (submode < 3) {
return RETURN_OK;
} else {
return INVALID_SUBMODE;
}
}
return INVALID_MODE;
}
ReturnValue_t TestAssembly::initialize() {
ReturnValue_t result = AssemblyBase::initialize();
if(result != RETURN_OK){
return result;
}
handler0 = ObjectManager::instance()->get<TestDevice>(objects::TEST_DEVICE_HANDLER_0);
handler1 = ObjectManager::instance()->get<TestDevice>(objects::TEST_DEVICE_HANDLER_1);
if((handler0 == nullptr) or (handler1 == nullptr)){
return HasReturnvaluesIF::RETURN_FAILED;
}
handler0->setParentQueue(this->getCommandQueue());
handler1->setParentQueue(this->getCommandQueue());
result = registerChild(objects::TEST_DEVICE_HANDLER_0);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = registerChild(objects::TEST_DEVICE_HANDLER_1);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
return result;
}
ReturnValue_t TestAssembly::checkChildrenStateOn(
Mode_t wantedMode, Submode_t wantedSubmode) {
if(submode == submodes::DUAL){
for(const auto& info:childrenMap) {
if(info.second.mode != wantedMode or info.second.mode != wantedSubmode){
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
}
return RETURN_OK;
}
else if(submode == submodes::SINGLE) {
for(const auto& info:childrenMap) {
if(info.second.mode == wantedMode and info.second.mode != wantedSubmode){
return RETURN_OK;
}
}
}
return INVALID_SUBMODE;
}
bool TestAssembly::isDeviceAvailable(object_id_t object) {
if(healthHelper.healthTable->getHealth(object) == HasHealthIF::HEALTHY){
return true;
}
else{
return false;
}
}

View File

@@ -1,53 +0,0 @@
#ifndef MISSION_ASSEMBLIES_TESTASSEMBLY_H_
#define MISSION_ASSEMBLIES_TESTASSEMBLY_H_
#include <fsfw/devicehandlers/AssemblyBase.h>
#include "../devices/TestDeviceHandler.h"
class TestAssembly: public AssemblyBase {
public:
TestAssembly(object_id_t objectId, object_id_t parentId);
virtual ~TestAssembly();
ReturnValue_t initialize() override;
enum submodes: Submode_t{
SINGLE = 0,
DUAL = 1
};
protected:
/**
* Command children to reach [mode,submode] combination
* Can be done by setting #commandsOutstanding correctly,
* or using executeTable()
* @param mode
* @param submode
* @return
* - @c RETURN_OK if ok
* - @c NEED_SECOND_STEP if children need to be commanded again
*/
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
/**
* Check whether desired assembly mode was achieved by checking the modes
* or/and health states of child device handlers.
* The assembly template class will also call this function if a health
* or mode change of a child device handler was detected.
* @param wantedMode
* @param wantedSubmode
* @return
*/
ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode)
override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode,
Submode_t wantedSubmode) override;
private:
FixedArrayList<ModeListEntry, 2> commandTable;
TestDevice* handler0 = nullptr;
TestDevice* handler1 = nullptr;
bool isDeviceAvailable(object_id_t object);
};
#endif /* MISSION_ASSEMBLIES_TESTASSEMBLY_H_ */

View File

@@ -1,3 +0,0 @@
target_sources(${TARGET_NAME} PRIVATE
TestController.cpp
)

View File

@@ -1,214 +0,0 @@
#include "TestController.h"
#include "OBSWConfig.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/objectmanager/ObjectManager.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
TestController::TestController(object_id_t objectId, size_t commandQueueDepth):
ExtendedControllerBase(objectId, objects::NO_OBJECT, commandQueueDepth),
deviceDataset0(objects::TEST_DEVICE_HANDLER_0),
deviceDataset1(objects::TEST_DEVICE_HANDLER_1) {
}
TestController::~TestController() {
}
ReturnValue_t TestController::handleCommandMessage(CommandMessage *message) {
return HasReturnvaluesIF::RETURN_OK;
}
void TestController::performControlOperation() {
/* We will trace vaiables if we received an update notification or snapshots */
#if OBSW_CONTROLLER_PRINTOUT == 1
if(not traceVariable) {
return;
}
switch(currentTraceType) {
case(NONE): {
break;
}
case(TRACE_DEV_0_UINT8): {
if(traceCounter == 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Tracing finished" << std::endl;
#else
sif::printInfo("Tracing finished\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
traceVariable = false;
traceCounter = traceCycles;
currentTraceType = TraceTypes::NONE;
break;
}
PoolReadGuard readHelper(&deviceDataset0.testUint8Var);
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Tracing device 0 variable 0 (UINT8), current value: " <<
static_cast<int>(deviceDataset0.testUint8Var.value) << std::endl;
#else
sif::printInfo("Tracing device 0 variable 0 (UINT8), current value: %d\n",
deviceDataset0.testUint8Var.value);
#endif
traceCounter--;
break;
}
case(TRACE_DEV_0_VECTOR): {
break;
}
}
#endif /* OBSW_CONTROLLER_PRINTOUT == 1 */
}
void TestController::handleChangedDataset(sid_t sid, store_address_t storeId, bool* clearMessage) {
using namespace std;
#if OBSW_CONTROLLER_PRINTOUT == 1
char const* printout = nullptr;
if(storeId == storeId::INVALID_STORE_ADDRESS) {
printout = "Notification";
}
else {
printout = "Snapshot";
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestController::handleChangedDataset: " << printout << " update from object "
"ID " << setw(8) << setfill('0') << hex << sid.objectId <<
" and set ID " << sid.ownerSetId << dec << setfill(' ') << endl;
#else
sif::printInfo("TestController::handleChangedPoolVariable: %s update from object ID 0x%08x and "
"set ID %lu\n", printout, sid.objectId, sid.ownerSetId);
#endif
if (storeId == storeId::INVALID_STORE_ADDRESS) {
if(sid.objectId == objects::TEST_DEVICE_HANDLER_0) {
PoolReadGuard readHelper(&deviceDataset0.testFloat3Vec);
float floatVec[3];
floatVec[0] = deviceDataset0.testFloat3Vec.value[0];
floatVec[1] = deviceDataset0.testFloat3Vec.value[1];
floatVec[2] = deviceDataset0.testFloat3Vec.value[2];
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Current float vector (3) values: [" << floatVec[0] << ", " <<
floatVec[1] << ", " << floatVec[2] << "]" << std::endl;
#else
sif::printInfo("Current float vector (3) values: [%f, %f, %f]\n",
floatVec[0], floatVec[1], floatVec[2]);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
}
#endif /* OBSW_CONTROLLER_PRINTOUT == 1 */
/* We will trace the variables for snapshots and update notifications */
if(not traceVariable) {
traceVariable = true;
traceCounter = traceCycles;
currentTraceType = TraceTypes::TRACE_DEV_0_VECTOR;
}
}
void TestController::handleChangedPoolVariable(gp_id_t globPoolId, store_address_t storeId,
bool* clearMessage) {
using namespace std;
#if OBSW_CONTROLLER_PRINTOUT == 1
char const* printout = nullptr;
if (storeId == storeId::INVALID_STORE_ADDRESS) {
printout = "Notification";
}
else {
printout = "Snapshot";
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestController::handleChangedPoolVariable: " << printout << " update from object "
"ID 0x" << setw(8) << setfill('0') << hex << globPoolId.objectId <<
" and local pool ID " << globPoolId.localPoolId << dec << setfill(' ') << endl;
#else
sif::printInfo("TestController::handleChangedPoolVariable: %s update from object ID 0x%08x and "
"local pool ID %lu\n", printout, globPoolId.objectId, globPoolId.localPoolId);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
if (storeId == storeId::INVALID_STORE_ADDRESS) {
if(globPoolId.objectId == objects::TEST_DEVICE_HANDLER_0) {
PoolReadGuard readHelper(&deviceDataset0.testUint8Var);
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Current test variable 0 (UINT8) value: " << static_cast<int>(
deviceDataset0.testUint8Var.value) << std::endl;
#else
sif::printInfo("Current test variable 0 (UINT8) value %d\n",
deviceDataset0.testUint8Var.value);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
}
#endif /* OBSW_CONTROLLER_PRINTOUT == 1 */
/* We will trace the variables for snapshots and update notifications */
if(not traceVariable) {
traceVariable = true;
traceCounter = traceCycles;
currentTraceType = TraceTypes::TRACE_DEV_0_UINT8;
}
}
LocalPoolDataSetBase* TestController::getDataSetHandle(sid_t sid) {
return nullptr;
}
ReturnValue_t TestController::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestController::initializeAfterTaskCreation() {
namespace td = testdevice;
HasLocalDataPoolIF* device0 = ObjectManager::instance()->get<HasLocalDataPoolIF>(
objects::TEST_DEVICE_HANDLER_0);
if(device0 == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TestController::initializeAfterTaskCreation: Test device handler 0 "
"handle invalid!" << std::endl;
#else
sif::printWarning("TestController::initializeAfterTaskCreation: Test device handler 0 "
"handle invalid!");
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
}
ProvidesDataPoolSubscriptionIF* subscriptionIF = device0->getSubscriptionInterface();
if(subscriptionIF != nullptr) {
/* For DEVICE_0, we only subscribe for notifications */
subscriptionIF->subscribeForSetUpdateMessage(td::TEST_SET_ID, getObjectId(),
getCommandQueue(), false);
subscriptionIF->subscribeForVariableUpdateMessage(td::PoolIds::TEST_UINT8_ID,
getObjectId(), getCommandQueue(), false);
}
HasLocalDataPoolIF* device1 = ObjectManager::instance()->get<HasLocalDataPoolIF>(
objects::TEST_DEVICE_HANDLER_1);
if(device1 == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TestController::initializeAfterTaskCreation: Test device handler 1 "
"handle invalid!" << std::endl;
#else
sif::printWarning("TestController::initializeAfterTaskCreation: Test device handler 1 "
"handle invalid!");
#endif
}
subscriptionIF = device1->getSubscriptionInterface();
if(subscriptionIF != nullptr) {
/* For DEVICE_1, we will subscribe for snapshots */
subscriptionIF->subscribeForSetUpdateMessage(td::TEST_SET_ID, getObjectId(),
getCommandQueue(), true);
subscriptionIF->subscribeForVariableUpdateMessage(td::PoolIds::TEST_UINT8_ID,
getObjectId(), getCommandQueue(), true);
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestController::checkModeCommand(Mode_t mode, Submode_t submode,
uint32_t *msToReachTheMode) {
return HasReturnvaluesIF::RETURN_OK;
}

View File

@@ -1,50 +0,0 @@
#ifndef MISSION_CONTROLLER_TESTCONTROLLER_H_
#define MISSION_CONTROLLER_TESTCONTROLLER_H_
#include "../devices/devicedefinitions/testDeviceDefinitions.h"
#include <fsfw/controller/ExtendedControllerBase.h>
class TestController:
public ExtendedControllerBase {
public:
TestController(object_id_t objectId, size_t commandQueueDepth = 10);
virtual~ TestController();
protected:
testdevice::TestDataSet deviceDataset0;
testdevice::TestDataSet deviceDataset1;
/* Extended Controller Base overrides */
ReturnValue_t handleCommandMessage(CommandMessage *message) override;
void performControlOperation() override;
/* HasLocalDatapoolIF callbacks */
void handleChangedDataset(sid_t sid, store_address_t storeId, bool* clearMessage) override;
void handleChangedPoolVariable(gp_id_t globPoolId, store_address_t storeId,
bool* clearMessage) override;
LocalPoolDataSetBase* getDataSetHandle(sid_t sid) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
ReturnValue_t checkModeCommand(Mode_t mode, Submode_t submode,
uint32_t *msToReachTheMode) override;
ReturnValue_t initializeAfterTaskCreation() override;
private:
bool traceVariable = false;
uint8_t traceCycles = 5;
uint8_t traceCounter = traceCycles;
enum TraceTypes {
NONE,
TRACE_DEV_0_UINT8,
TRACE_DEV_0_VECTOR
};
TraceTypes currentTraceType = TraceTypes::NONE;
};
#endif /* MISSION_CONTROLLER_TESTCONTROLLER_H_ */

View File

@@ -1,18 +0,0 @@
#ifndef MISSION_CONTROLLER_CTRLDEFINITIONS_TESTCTRLDEFINITIONS_H_
#define MISSION_CONTROLLER_CTRLDEFINITIONS_TESTCTRLDEFINITIONS_H_
#include <fsfw/objectmanager/SystemObjectIF.h>
#include <OBSWConfig.h>
namespace testcontroller {
enum sourceObjectIds: object_id_t {
DEVICE_0_ID = objects::TEST_DEVICE_HANDLER_0,
DEVICE_1_ID = objects::TEST_DEVICE_HANDLER_1,
};
}
#endif /* MISSION_CONTROLLER_CTRLDEFINITIONS_TESTCTRLDEFINITIONS_H_ */

View File

@@ -1,6 +0,0 @@
target_sources(${TARGET_NAME}
PRIVATE
TestCookie.cpp
TestDeviceHandler.cpp
TestEchoComIF.cpp
)

View File

@@ -1,14 +0,0 @@
#include "TestCookie.h"
DummyCookie::DummyCookie(address_t address, size_t replyMaxLen):
address(address), replyMaxLen(replyMaxLen) {}
DummyCookie::~DummyCookie() {}
address_t DummyCookie::getAddress() const {
return address;
}
size_t DummyCookie::getReplyMaxLen() const {
return replyMaxLen;
}

View File

@@ -1,22 +0,0 @@
#ifndef MISSION_DEVICES_TESTCOOKIE_H_
#define MISSION_DEVICES_TESTCOOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h>
#include <cstddef>
/**
* @brief Really simple cookie which does not do a lot.
*/
class DummyCookie: public CookieIF {
public:
DummyCookie(address_t address, size_t maxReplyLen);
virtual ~DummyCookie();
address_t getAddress() const;
size_t getReplyMaxLen() const;
private:
address_t address = 0;
size_t replyMaxLen = 0;
};
#endif /* MISSION_DEVICES_TESTCOOKIE_H_ */

View File

@@ -1,804 +0,0 @@
#include "TestDeviceHandler.h"
#include <OBSWConfig.h>
#include <fsfw/datapool/PoolReadGuard.h>
#include <cstdlib>
TestDevice::TestDevice(object_id_t objectId, object_id_t comIF,
CookieIF * cookie, testdevice::DeviceIndex deviceIdx, bool fullInfoPrintout,
bool changingDataset):
DeviceHandlerBase(objectId, comIF, cookie), deviceIdx(deviceIdx),
dataset(this), fullInfoPrintout(fullInfoPrintout) {
}
TestDevice::~TestDevice() {}
void TestDevice::performOperationHook() {
if(periodicPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::performOperationHook: Alive!" << std::endl;
#else
sif::printInfo("TestDevice%d::performOperationHook: Alive!", deviceIdx);
#endif
}
if(oneShot) {
oneShot = false;
}
}
void TestDevice::doStartUp() {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::doStartUp: Switching On" << std::endl;
#else
sif::printInfo("TestDevice%d::doStartUp: Switching On\n", static_cast<int>(deviceIdx));
#endif
}
setMode(_MODE_TO_ON);
return;
}
void TestDevice::doShutDown() {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::doShutDown: Switching Off" << std::endl;
#else
sif::printInfo("TestDevice%d::doShutDown: Switching Off\n", static_cast<int>(deviceIdx));
#endif
}
setMode(_MODE_SHUT_DOWN);
return;
}
ReturnValue_t TestDevice::buildNormalDeviceCommand(DeviceCommandId_t* id) {
using namespace testdevice;
*id = TEST_NORMAL_MODE_CMD;
if(DeviceHandlerBase::isAwaitingReply()) {
return NOTHING_TO_SEND;
}
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t TestDevice::buildTransitionDeviceCommand(DeviceCommandId_t* id) {
if(mode == _MODE_TO_ON) {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTransitionDeviceCommand: Was called"
" from _MODE_TO_ON mode" << std::endl;
#else
sif::printInfo("TestDevice%d::buildTransitionDeviceCommand: "
"Was called from _MODE_TO_ON mode\n", deviceIdx);
#endif
}
}
if(mode == _MODE_TO_NORMAL) {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTransitionDeviceCommand: Was called "
"from _MODE_TO_NORMAL mode" << std::endl;
#else
sif::printInfo("TestDevice%d::buildTransitionDeviceCommand: Was called from "
" _MODE_TO_NORMAL mode\n", deviceIdx);
#endif
}
setMode(MODE_NORMAL);
}
if(mode == _MODE_SHUT_DOWN) {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTransitionDeviceCommand: Was called "
"from _MODE_SHUT_DOWN mode" << std::endl;
#else
sif::printInfo("TestDevice%d::buildTransitionDeviceCommand: Was called from "
"_MODE_SHUT_DOWN mode\n", deviceIdx);
#endif
}
setMode(MODE_OFF);
}
return NOTHING_TO_SEND;
}
void TestDevice::doTransition(Mode_t modeFrom, Submode_t submodeFrom) {
if(mode == _MODE_TO_NORMAL) {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::doTransition: Custom transition to "
"normal mode" << std::endl;
#else
sif::printInfo("TestDevice%d::doTransition: Custom transition to normal mode\n",
deviceIdx);
#endif
}
}
else {
DeviceHandlerBase::doTransition(modeFrom, submodeFrom);
}
}
ReturnValue_t TestDevice::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t* commandData,
size_t commandDataLen) {
using namespace testdevice;
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(deviceCommand) {
case(TEST_NORMAL_MODE_CMD): {
commandSent = true;
result = buildNormalModeCommand(deviceCommand, commandData, commandDataLen);
break;
}
case(TEST_COMMAND_0): {
commandSent = true;
result = buildTestCommand0(deviceCommand, commandData, commandDataLen);
break;
}
case(TEST_COMMAND_1): {
commandSent = true;
result = buildTestCommand1(deviceCommand, commandData, commandDataLen);
break;
}
case(TEST_NOTIF_SNAPSHOT_VAR): {
if(changingDatasets) {
changingDatasets = false;
}
PoolReadGuard readHelper(&dataset.testUint8Var);
if(deviceIdx == testdevice::DeviceIndex::DEVICE_0) {
/* This will trigger a variable notification to the demo controller */
dataset.testUint8Var = 220;
dataset.testUint8Var.setValid(true);
}
else if(deviceIdx == testdevice::DeviceIndex::DEVICE_1) {
/* This will trigger a variable snapshot to the demo controller */
dataset.testUint8Var = 30;
dataset.testUint8Var.setValid(true);
}
break;
}
case(TEST_NOTIF_SNAPSHOT_SET): {
if(changingDatasets) {
changingDatasets = false;
}
PoolReadGuard readHelper(&dataset.testFloat3Vec);
if(deviceIdx == testdevice::DeviceIndex::DEVICE_0) {
/* This will trigger a variable notification to the demo controller */
dataset.testFloat3Vec.value[0] = 60;
dataset.testFloat3Vec.value[1] = 70;
dataset.testFloat3Vec.value[2] = 55;
dataset.testFloat3Vec.setValid(true);
}
else if(deviceIdx == testdevice::DeviceIndex::DEVICE_1) {
/* This will trigger a variable notification to the demo controller */
dataset.testFloat3Vec.value[0] = -60;
dataset.testFloat3Vec.value[1] = -70;
dataset.testFloat3Vec.value[2] = -55;
dataset.testFloat3Vec.setValid(true);
}
break;
}
default:
result = DeviceHandlerIF::COMMAND_NOT_SUPPORTED;
}
return result;
}
ReturnValue_t TestDevice::buildNormalModeCommand(DeviceCommandId_t deviceCommand,
const uint8_t* commandData, size_t commandDataLen) {
if(fullInfoPrintout) {
#if OBSW_VERBOSE_LEVEL >= 3
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice::buildTestCommand1: Building normal command" << std::endl;
#else
sif::printInfo("TestDevice::buildTestCommand1: Building command from TEST_COMMAND_1\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* OBSW_VERBOSE_LEVEL >= 3 */
}
if(commandDataLen > MAX_BUFFER_SIZE - sizeof(DeviceCommandId_t)) {
return DeviceHandlerIF::INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
/* The command is passed on in the command buffer as it is */
passOnCommand(deviceCommand, commandData, commandDataLen);
return RETURN_OK;
}
ReturnValue_t TestDevice::buildTestCommand0(DeviceCommandId_t deviceCommand,
const uint8_t* commandData, size_t commandDataLen) {
using namespace testdevice;
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTestCommand0: Executing simple command "
" with completion reply" << std::endl;
#else
sif::printInfo("TestDevice%d::buildTestCommand0: Executing simple command with "
"completion reply\n", deviceIdx);
#endif
}
if(commandDataLen > MAX_BUFFER_SIZE - sizeof(DeviceCommandId_t)) {
return DeviceHandlerIF::INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
/* The command is passed on in the command buffer as it is */
passOnCommand(deviceCommand, commandData, commandDataLen);
return RETURN_OK;
}
ReturnValue_t TestDevice::buildTestCommand1(DeviceCommandId_t deviceCommand,
const uint8_t* commandData,
size_t commandDataLen) {
using namespace testdevice;
if(commandDataLen < 7) {
return DeviceHandlerIF::INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::buildTestCommand1: Executing command with "
"data reply" << std::endl;
#else
sif::printInfo("TestDevice%d:buildTestCommand1: Executing command with data reply\n",
deviceIdx);
#endif
}
deviceCommand = EndianConverter::convertBigEndian(deviceCommand);
memcpy(commandBuffer, &deviceCommand, sizeof(deviceCommand));
/* Assign and check parameters */
uint16_t parameter1 = 0;
size_t size = commandDataLen;
ReturnValue_t result = SerializeAdapter::deSerialize(&parameter1,
&commandData, &size, SerializeIF::Endianness::BIG);
if(result == HasReturnvaluesIF::RETURN_FAILED) {
return result;
}
/* Parameter 1 needs to be correct */
if(parameter1 != testdevice::COMMAND_1_PARAM1) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
uint64_t parameter2 = 0;
result = SerializeAdapter::deSerialize(&parameter2,
&commandData, &size, SerializeIF::Endianness::BIG);
if(parameter2!= testdevice::COMMAND_1_PARAM2){
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
/* Pass on the parameters to the Echo IF */
commandBuffer[4] = (parameter1 & 0xFF00) >> 8;
commandBuffer[5] = (parameter1 & 0xFF);
parameter2 = EndianConverter::convertBigEndian(parameter2);
memcpy(commandBuffer + 6, &parameter2, sizeof(parameter2));
rawPacket = commandBuffer;
rawPacketLen = sizeof(deviceCommand) + sizeof(parameter1) +
sizeof(parameter2);
return RETURN_OK;
}
void TestDevice::passOnCommand(DeviceCommandId_t command, const uint8_t *commandData,
size_t commandDataLen) {
DeviceCommandId_t deviceCommandBe = EndianConverter::convertBigEndian(command);
memcpy(commandBuffer, &deviceCommandBe, sizeof(deviceCommandBe));
memcpy(commandBuffer + 4, commandData, commandDataLen);
rawPacket = commandBuffer;
rawPacketLen = sizeof(deviceCommandBe) + commandDataLen;
}
void TestDevice::fillCommandAndReplyMap() {
namespace td = testdevice;
insertInCommandAndReplyMap(testdevice::TEST_NORMAL_MODE_CMD, 5, &dataset);
insertInCommandAndReplyMap(testdevice::TEST_COMMAND_0, 5);
insertInCommandAndReplyMap(testdevice::TEST_COMMAND_1, 5);
/* No reply expected for these commands */
insertInCommandMap(td::TEST_NOTIF_SNAPSHOT_SET);
insertInCommandMap(td::TEST_NOTIF_SNAPSHOT_VAR);
}
ReturnValue_t TestDevice::scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) {
using namespace testdevice;
/* Unless a command was sent explicitely, we don't expect any replies and ignore this
the packet. On a real device, there might be replies which are sent without a previous
command. */
if(not commandSent) {
return DeviceHandlerBase::IGNORE_FULL_PACKET;
}
else {
commandSent = false;
}
if(len < sizeof(object_id_t)) {
return DeviceHandlerIF::LENGTH_MISSMATCH;
}
size_t size = len;
ReturnValue_t result = SerializeAdapter::deSerialize(foundId, &start, &size,
SerializeIF::Endianness::BIG);
if (result != RETURN_OK) {
return result;
}
DeviceCommandId_t pendingCmd = this->getPendingCommand();
switch(pendingCmd) {
case(TEST_NORMAL_MODE_CMD): {
if(fullInfoPrintout) {
#if OBSW_VERBOSE_LEVEL >= 3
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice::scanForReply: Reply for normal commnand (ID " <<
TEST_NORMAL_MODE_CMD << ") received!" << std::endl;
#else
sif::printInfo("TestDevice%d::scanForReply: Reply for normal command (ID %d) "
"received!\n", deviceIdx, TEST_NORMAL_MODE_CMD);
#endif
#endif
}
*foundLen = len;
*foundId = pendingCmd;
return RETURN_OK;
}
case(TEST_COMMAND_0): {
if(len < TEST_COMMAND_0_SIZE) {
return DeviceHandlerIF::LENGTH_MISSMATCH;
}
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::scanForReply: Reply for simple command "
"(ID " << TEST_COMMAND_0 << ") received!" << std::endl;
#else
sif::printInfo("TestDevice%d::scanForReply: Reply for simple command (ID %d) "
"received!\n", deviceIdx, TEST_COMMAND_0);
#endif
}
*foundLen = TEST_COMMAND_0_SIZE;
*foundId = pendingCmd;
return RETURN_OK;
}
case(TEST_COMMAND_1): {
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::scanForReply: Reply for data command "
"(ID " << TEST_COMMAND_1 << ") received!" << std::endl;
#else
sif::printInfo("TestDevice%d::scanForReply: Reply for data command (ID %d) "
"received\n", deviceIdx, TEST_COMMAND_1);
#endif
}
*foundLen = len;
*foundId = pendingCmd;
return RETURN_OK;
}
default:
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
}
ReturnValue_t TestDevice::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t* packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
/* Periodic replies */
case testdevice::TEST_NORMAL_MODE_CMD: {
result = interpretingNormalModeReply();
break;
}
/* Simple reply */
case testdevice::TEST_COMMAND_0: {
result = interpretingTestReply0(id, packet);
break;
}
/* Data reply */
case testdevice::TEST_COMMAND_1: {
result = interpretingTestReply1(id, packet);
break;
}
default:
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
return result;
}
ReturnValue_t TestDevice::interpretingNormalModeReply() {
CommandMessage directReplyMessage;
if(changingDatasets) {
PoolReadGuard readHelper(&dataset);
if(dataset.testUint8Var.value == 0) {
dataset.testUint8Var.value = 10;
dataset.testUint32Var.value = 777;
dataset.testFloat3Vec.value[0] = 2.5;
dataset.testFloat3Vec.value[1] = -2.5;
dataset.testFloat3Vec.value[2] = 2.5;
dataset.setValidity(true, true);
}
else {
dataset.testUint8Var.value = 0;
dataset.testUint32Var.value = 0;
dataset.testFloat3Vec.value[0] = 0.0;
dataset.testFloat3Vec.value[1] = 0.0;
dataset.testFloat3Vec.value[2] = 0.0;
dataset.setValidity(false, true);
}
return RETURN_OK;
}
PoolReadGuard readHelper(&dataset);
if(dataset.testUint8Var.value == 0) {
/* Reset state */
dataset.testUint8Var.value = 128;
}
else if(dataset.testUint8Var.value > 200) {
if(not resetAfterChange) {
/* This will trigger an update notification to the controller */
dataset.testUint8Var.setChanged(true);
resetAfterChange = true;
/* Decrement by 30 automatically. This will prevent any additional notifications. */
dataset.testUint8Var.value -= 30;
}
}
/* If the value is greater than 0, it will be decremented in a linear way */
else if(dataset.testUint8Var.value > 128) {
size_t sizeToDecrement = 0;
if(dataset.testUint8Var.value > 128 + 30) {
sizeToDecrement = 30;
}
else {
sizeToDecrement = dataset.testUint8Var.value - 128;
resetAfterChange = false;
}
dataset.testUint8Var.value -= sizeToDecrement;
}
else if(dataset.testUint8Var.value < 50) {
if(not resetAfterChange) {
/* This will trigger an update snapshot to the controller */
dataset.testUint8Var.setChanged(true);
resetAfterChange = true;
}
else {
/* Increment by 30 automatically. */
dataset.testUint8Var.value += 30;
}
}
/* Increment in linear way */
else if(dataset.testUint8Var.value < 128) {
size_t sizeToIncrement = 0;
if(dataset.testUint8Var.value < 128 - 20) {
sizeToIncrement = 20;
}
else {
sizeToIncrement = 128 - dataset.testUint8Var.value;
resetAfterChange = false;
}
dataset.testUint8Var.value += sizeToIncrement;
}
/* TODO: Same for vector */
float vectorMean = (dataset.testFloat3Vec.value[0] + dataset.testFloat3Vec.value[1] +
dataset.testFloat3Vec.value[2]) / 3.0;
/* Lambda (private local function) */
auto sizeToAdd = [](bool tooHigh, float currentVal) {
if(tooHigh) {
if(currentVal - 20.0 > 10.0) {
return -10.0;
}
else {
return 20.0 - currentVal;
}
}
else {
if(std::abs(currentVal + 20.0) > 10.0) {
return 10.0;
}
else {
return -20.0 - currentVal;
}
}
};
if(vectorMean > 20.0 and std::abs(vectorMean - 20.0) > 1.0) {
if(not resetAfterChange) {
dataset.testFloat3Vec.setChanged(true);
resetAfterChange = true;
}
else {
float sizeToDecrementVal0 = 0;
float sizeToDecrementVal1 = 0;
float sizeToDecrementVal2 = 0;
sizeToDecrementVal0 = sizeToAdd(true, dataset.testFloat3Vec.value[0]);
sizeToDecrementVal1 = sizeToAdd(true, dataset.testFloat3Vec.value[1]);
sizeToDecrementVal2 = sizeToAdd(true, dataset.testFloat3Vec.value[2]);
dataset.testFloat3Vec.value[0] += sizeToDecrementVal0;
dataset.testFloat3Vec.value[1] += sizeToDecrementVal1;
dataset.testFloat3Vec.value[2] += sizeToDecrementVal2;
}
}
else if (vectorMean < -20.0 and std::abs(vectorMean + 20.0) < 1.0) {
if(not resetAfterChange) {
dataset.testFloat3Vec.setChanged(true);
resetAfterChange = true;
}
else {
float sizeToDecrementVal0 = 0;
float sizeToDecrementVal1 = 0;
float sizeToDecrementVal2 = 0;
sizeToDecrementVal0 = sizeToAdd(false, dataset.testFloat3Vec.value[0]);
sizeToDecrementVal1 = sizeToAdd(false, dataset.testFloat3Vec.value[1]);
sizeToDecrementVal2 = sizeToAdd(false, dataset.testFloat3Vec.value[2]);
dataset.testFloat3Vec.value[0] += sizeToDecrementVal0;
dataset.testFloat3Vec.value[1] += sizeToDecrementVal1;
dataset.testFloat3Vec.value[2] += sizeToDecrementVal2;
}
}
else {
if(resetAfterChange) {
resetAfterChange = false;
}
}
return RETURN_OK;
}
ReturnValue_t TestDevice::interpretingTestReply0(DeviceCommandId_t id, const uint8_t* packet) {
CommandMessage commandMessage;
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice::interpretingTestReply0: Generating step and finish reply" <<
std::endl;
#else
sif::printInfo("TestDevice::interpretingTestReply0: Generating step and finish reply\n");
#endif
}
MessageQueueId_t commander = getCommanderId(id);
/* Generate one step reply and the finish reply */
actionHelper.step(1, commander, id);
actionHelper.finish(true, commander, id);
return RETURN_OK;
}
ReturnValue_t TestDevice::interpretingTestReply1(DeviceCommandId_t id,
const uint8_t* packet) {
CommandMessage directReplyMessage;
if(fullInfoPrintout) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::interpretingReply1: Setting data reply" <<
std::endl;
#else
sif::printInfo("TestDevice%d::interpretingReply1: Setting data reply\n", deviceIdx);
#endif
}
MessageQueueId_t commander = getCommanderId(id);
/* Send reply with data */
ReturnValue_t result = actionHelper.reportData(commander, id, packet,
testdevice::TEST_COMMAND_1_SIZE, false);
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "TestDevice" << deviceIdx << "::interpretingReply1: Sending data "
"reply failed!" << std::endl;
#else
sif::printError("TestDevice%d::interpretingReply1: Sending data reply failed!\n",
deviceIdx);
#endif
return result;
}
if(result == HasReturnvaluesIF::RETURN_OK) {
/* Finish reply */
actionHelper.finish(true, commander, id);
}
else {
/* Finish reply */
actionHelper.finish(false, commander, id, result);
}
return RETURN_OK;
}
uint32_t TestDevice::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) {
return 5000;
}
void TestDevice::enableFullDebugOutput(bool enable) {
this->fullInfoPrintout = enable;
}
ReturnValue_t TestDevice::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
namespace td = testdevice;
localDataPoolMap.emplace(td::PoolIds::TEST_UINT8_ID, new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(td::PoolIds::TEST_UINT32_ID, new PoolEntry<uint32_t>({0}));
localDataPoolMap.emplace(td::PoolIds::TEST_FLOAT_VEC_3_ID,
new PoolEntry<float>({0.0, 0.0, 0.0}));
sid_t sid;
if(deviceIdx == td::DeviceIndex::DEVICE_0) {
sid = td::TEST_SET_DEV_0_SID;
}
else {
sid = td::TEST_SET_DEV_1_SID;
}
/* Subscribe for periodic HK packets but do not enable reporting for now.
Non-diangostic with a period of one second */
poolManager.subscribeForPeriodicPacket(sid, false, 1.0, false);
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestDevice::getParameter(uint8_t domainId, uint8_t uniqueId,
ParameterWrapper* parameterWrapper, const ParameterWrapper* newValues,
uint16_t startAtIndex) {
using namespace testdevice;
switch (uniqueId) {
case ParameterUniqueIds::TEST_UINT32_0: {
if(fullInfoPrintout) {
uint32_t newValue = 0;
ReturnValue_t result = newValues->getElement<uint32_t>(&newValue, 0, 0);
if(result == HasReturnvaluesIF::RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Setting parameter 0 to "
"new value " << newValue << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Setting parameter 0 to new value %lu\n",
deviceIdx, static_cast<unsigned long>(newValue));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
}
parameterWrapper->set(testParameter0);
break;
}
case ParameterUniqueIds::TEST_INT32_1: {
if(fullInfoPrintout) {
int32_t newValue = 0;
ReturnValue_t result = newValues->getElement<int32_t>(&newValue, 0, 0);
if(result == HasReturnvaluesIF::RETURN_OK) {
#if OBSW_DEVICE_HANDLER_PRINTOUT == 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Setting parameter 1 to "
"new value " << newValue << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Setting parameter 1 to new value %lu\n",
deviceIdx, static_cast<unsigned long>(newValue));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* OBSW_DEVICE_HANDLER_PRINTOUT == 1 */
}
}
parameterWrapper->set(testParameter1);
break;
}
case ParameterUniqueIds::TEST_FLOAT_VEC3_2: {
if(fullInfoPrintout) {
float newVector[3];
if(newValues->getElement<float>(newVector, 0, 0) != RETURN_OK or
newValues->getElement<float>(newVector + 1, 0, 1) != RETURN_OK or
newValues->getElement<float>(newVector + 2, 0, 2) != RETURN_OK) {
return HasReturnvaluesIF::RETURN_FAILED;
}
#if OBSW_DEVICE_HANDLER_PRINTOUT == 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Setting parameter 3 to "
"(float vector with 3 entries) to new values [" << newVector[0] << ", " <<
newVector[1] << ", " << newVector[2] << "]" << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Setting parameter 3 to new values "
"[%f, %f, %f]\n", deviceIdx, newVector[0], newVector[1], newVector[2]);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* OBSW_DEVICE_HANDLER_PRINTOUT == 1 */
}
parameterWrapper->setVector(vectorFloatParams2);
break;
}
case(ParameterUniqueIds::PERIODIC_PRINT_ENABLED): {
if(fullInfoPrintout) {
uint8_t enabled = 0;
ReturnValue_t result = newValues->getElement<uint8_t>(&enabled, 0, 0);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
char const* printout = nullptr;
if (enabled) {
printout = "enabled";
}
else {
printout = "disabled";
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Periodic printout " <<
printout << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Periodic printout %s", printout);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
parameterWrapper->set(periodicPrintout);
break;
}
case(ParameterUniqueIds::CHANGING_DATASETS): {
uint8_t enabled = 0;
ReturnValue_t result = newValues->getElement<uint8_t>(&enabled, 0, 0);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if(not enabled) {
PoolReadGuard readHelper(&dataset);
dataset.testUint8Var.value = 0;
dataset.testUint32Var.value = 0;
dataset.testFloat3Vec.value[0] = 0.0;
dataset.testFloat3Vec.value[0] = 0.0;
dataset.testFloat3Vec.value[1] = 0.0;
}
if(fullInfoPrintout) {
char const* printout = nullptr;
if (enabled) {
printout = "enabled";
}
else {
printout = "disabled";
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TestDevice" << deviceIdx << "::getParameter: Changing datasets " <<
printout << std::endl;
#else
sif::printInfo("TestDevice%d::getParameter: Changing datasets %s", printout);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
}
parameterWrapper->set(changingDatasets);
break;
}
default:
return INVALID_IDENTIFIER_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}
LocalPoolObjectBase* TestDevice::getPoolObjectHandle(lp_id_t localPoolId) {
namespace td = testdevice;
if (localPoolId == td::PoolIds::TEST_UINT8_ID) {
return &dataset.testUint8Var;
}
else if (localPoolId == td::PoolIds::TEST_UINT32_ID) {
return &dataset.testUint32Var;
}
else if(localPoolId == td::PoolIds::TEST_FLOAT_VEC_3_ID) {
return &dataset.testFloat3Vec;
}
else {
return nullptr;
}
}

View File

@@ -1,142 +0,0 @@
#ifndef TEST_TESTDEVICES_TESTDEVICEHANDLER_H_
#define TEST_TESTDEVICES_TESTDEVICEHANDLER_H_
#include "devicedefinitions/testDeviceDefinitions.h"
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
#include <fsfw/timemanager/Countdown.h>
/**
* @brief Basic dummy device handler to test device commanding without a physical device.
* @details
* This test device handler provided a basic demo for the device handler object.
* It can also be commanded with the following PUS services, using
* the specified object ID of the test device handler.
*
* 1. PUS Service 8 - Functional commanding
* 2. PUS Service 2 - Device access, raw commanding
* 3. PUS Service 20 - Parameter Management
* 4. PUS Service 3 - Housekeeping
* @author R. Mueller
* @ingroup devices
*/
class TestDevice: public DeviceHandlerBase {
public:
/**
* Build the test device in the factory.
* @param objectId This ID will be assigned to the test device handler.
* @param comIF The ID of the Communication IF used by test device handler.
* @param cookie Cookie object used by the test device handler. This is
* also used and passed to the comIF object.
* @param onImmediately This will start a transition to MODE_ON immediately
* so the device handler jumps into #doStartUp. Should only be used
* in development to reduce need of commanding while debugging.
* @param changingDataset
* Will be used later to change the local datasets containeds in the device.
*/
TestDevice(object_id_t objectId, object_id_t comIF, CookieIF * cookie,
testdevice::DeviceIndex deviceIdx = testdevice::DeviceIndex::DEVICE_0,
bool fullInfoPrintout = false, bool changingDataset = true);
/**
* This can be used to enable and disable a lot of demo print output.
* @param enable
*/
void enableFullDebugOutput(bool enable);
virtual ~ TestDevice();
//! Size of internal buffer used for communication.
static constexpr uint8_t MAX_BUFFER_SIZE = 255;
//! Unique index if the device handler is created multiple times.
testdevice::DeviceIndex deviceIdx = testdevice::DeviceIndex::DEVICE_0;
protected:
testdevice::TestDataSet dataset;
//! This is used to reset the dataset after a commanded change has been made.
bool resetAfterChange = false;
bool commandSent = false;
/** DeviceHandlerBase overrides (see DHB documentation) */
/**
* Hook into the DHB #performOperation call which is executed
* periodically.
*/
void performOperationHook() override;
virtual void doStartUp() override;
virtual void doShutDown() override;
virtual ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t * id) override;
virtual ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t * id) override;
virtual ReturnValue_t buildCommandFromCommand(DeviceCommandId_t
deviceCommand, const uint8_t * commandData,
size_t commandDataLen) override;
virtual void fillCommandAndReplyMap() override;
virtual ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
virtual uint32_t getTransitionDelayMs(Mode_t modeFrom,
Mode_t modeTo) override;
virtual void doTransition(Mode_t modeFrom, Submode_t subModeFrom) override;
virtual ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
virtual LocalPoolObjectBase* getPoolObjectHandle(lp_id_t localPoolId) override;
/* HasParametersIF overrides */
virtual ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex) override;
uint8_t commandBuffer[MAX_BUFFER_SIZE];
bool fullInfoPrintout = false;
bool oneShot = true;
/* Variables for parameter service */
uint32_t testParameter0 = 0;
int32_t testParameter1 = -2;
float vectorFloatParams2[3] = {};
/* Change device handler functionality, changeable via parameter service */
uint8_t periodicPrintout = false;
uint8_t changingDatasets = false;
ReturnValue_t buildNormalModeCommand(DeviceCommandId_t deviceCommand,
const uint8_t* commandData, size_t commandDataLen);
ReturnValue_t buildTestCommand0(DeviceCommandId_t deviceCommand, const uint8_t* commandData,
size_t commandDataLen);
ReturnValue_t buildTestCommand1(DeviceCommandId_t deviceCommand, const uint8_t* commandData,
size_t commandDataLen);
void passOnCommand(DeviceCommandId_t command, const uint8_t* commandData,
size_t commandDataLen);
ReturnValue_t interpretingNormalModeReply();
ReturnValue_t interpretingTestReply0(DeviceCommandId_t id,
const uint8_t* packet);
ReturnValue_t interpretingTestReply1(DeviceCommandId_t id,
const uint8_t* packet);
ReturnValue_t interpretingTestReply2(DeviceCommandId_t id, const uint8_t* packet);
/* Some timer utilities */
static constexpr uint8_t divider1 = 2;
PeriodicOperationDivider opDivider1 = PeriodicOperationDivider(divider1);
static constexpr uint8_t divider2 = 10;
PeriodicOperationDivider opDivider2 = PeriodicOperationDivider(divider2);
static constexpr uint32_t initTimeout = 2000;
Countdown countdown1 = Countdown(initTimeout);
};
#endif /* TEST_TESTDEVICES_TESTDEVICEHANDLER_H_ */

View File

@@ -1,86 +0,0 @@
#include "TestEchoComIF.h"
#include "TestCookie.h"
#include <fsfw/serialize/SerializeAdapter.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/tmtcservices/CommandingServiceBase.h>
#include <fsfw/tmtcpacket/pus/TmPacketStored.h>
TestEchoComIF::TestEchoComIF(object_id_t objectId):
SystemObject(objectId) {
}
TestEchoComIF::~TestEchoComIF() {}
ReturnValue_t TestEchoComIF::initializeInterface(CookieIF * cookie) {
DummyCookie* dummyCookie = dynamic_cast<DummyCookie*>(cookie);
if(dummyCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TestEchoComIF::initializeInterface: Invalid cookie!" << std::endl;
#else
sif::printWarning("TestEchoComIF::initializeInterface: Invalid cookie!\n");
#endif
return NULLPOINTER;
}
auto resultPair = replyMap.emplace(
dummyCookie->getAddress(), ReplyBuffer(dummyCookie->getReplyMaxLen()));
if(not resultPair.second) {
return HasReturnvaluesIF::RETURN_FAILED;
}
return RETURN_OK;
}
ReturnValue_t TestEchoComIF::sendMessage(CookieIF *cookie,
const uint8_t * sendData, size_t sendLen) {
DummyCookie* dummyCookie = dynamic_cast<DummyCookie*>(cookie);
if(dummyCookie == nullptr) {
return NULLPOINTER;
}
ReplyBuffer& replyBuffer = replyMap.find(dummyCookie->getAddress())->second;
if(sendLen > replyBuffer.capacity()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TestEchoComIF::sendMessage: Send length " << sendLen << " larger than "
"current reply buffer length!" << std::endl;
#else
sif::printWarning("TestEchoComIF::sendMessage: Send length %d larger than current "
"reply buffer length!\n", sendLen);
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
replyBuffer.resize(sendLen);
memcpy(replyBuffer.data(), sendData, sendLen);
return RETURN_OK;
}
ReturnValue_t TestEchoComIF::getSendSuccess(CookieIF *cookie) {
return RETURN_OK;
}
ReturnValue_t TestEchoComIF::requestReceiveMessage(CookieIF *cookie,
size_t requestLen) {
return RETURN_OK;
}
ReturnValue_t TestEchoComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t *size) {
DummyCookie* dummyCookie = dynamic_cast<DummyCookie*>(cookie);
if(dummyCookie == nullptr) {
return NULLPOINTER;
}
ReplyBuffer& replyBuffer = replyMap.find(dummyCookie->getAddress())->second;
*buffer = replyBuffer.data();
*size = replyBuffer.size();
dummyReplyCounter ++;
if(dummyReplyCounter == 10) {
// add anything that needs to be read periodically by dummy handler
dummyReplyCounter = 0;
}
return RETURN_OK;
}

View File

@@ -1,56 +0,0 @@
#ifndef TEST_TESTDEVICES_TESTECHOCOMIF_H_
#define TEST_TESTDEVICES_TESTECHOCOMIF_H_
#include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/ipc/MessageQueueIF.h>
#include <fsfw/tmtcservices/AcceptsTelemetryIF.h>
#include <vector>
/**
* @brief Used to simply returned sent data from device handler
* @details Assign this com IF in the factory when creating the device handler
* @ingroup test
*/
class TestEchoComIF: public DeviceCommunicationIF, public SystemObject {
public:
TestEchoComIF(object_id_t objectId);
virtual ~TestEchoComIF();
/**
* DeviceCommunicationIF overrides
* (see DeviceCommunicationIF documentation
*/
ReturnValue_t initializeInterface(CookieIF * cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie, const uint8_t * sendData,
size_t sendLen) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie,
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
private:
/**
* Send TM packet which contains received data as TM[17,130].
* Wiretapping will do the same.
* @param data
* @param len
*/
void sendTmPacket(const uint8_t *data,uint32_t len);
AcceptsTelemetryIF* funnel = nullptr;
MessageQueueIF* tmQueue = nullptr;
size_t replyMaxLen = 0;
using ReplyBuffer = std::vector<uint8_t>;
std::map<address_t, ReplyBuffer> replyMap;
uint8_t dummyReplyCounter = 0;
uint16_t packetSubCounter = 0;
};
#endif /* TEST_TESTDEVICES_TESTECHOCOMIF_H_ */

View File

@@ -1,100 +0,0 @@
#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_TESTDEVICEDEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_TESTDEVICEDEFINITIONS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <commonSystemObjects.h>
namespace testdevice {
enum ParameterUniqueIds: uint8_t {
TEST_UINT32_0,
TEST_INT32_1,
TEST_FLOAT_VEC3_2,
PERIODIC_PRINT_ENABLED,
CHANGING_DATASETS
};
enum DeviceIndex: uint32_t {
DEVICE_0,
DEVICE_1
};
/** Normal mode command. This ID is also used to access the set variable via the housekeeping
service */
static constexpr DeviceCommandId_t TEST_NORMAL_MODE_CMD = 0;
//! Test completion reply
static constexpr DeviceCommandId_t TEST_COMMAND_0 = 1;
//! Test data reply
static constexpr DeviceCommandId_t TEST_COMMAND_1 = 2;
/**
* Can be used to trigger a notification to the demo controller. For DEVICE_0, only notifications
* messages will be generated while for DEVICE_1, snapshot messages will be generated.
*
* DEVICE_0 VAR: Sets the set variable 0 above a treshold (200) to trigger a variable
* notification.
* DEVICE_0 SET: Sets the vector mean values above a treshold (mean larger than 20) to trigger a
* set notification.
*
* DEVICE_1 VAR: Sets the set variable 0 below a treshold (less than 50 but not 0) to trigger a
* variable snapshot.
* DEVICE_1 SET: Sets the set vector mean values below a treshold (mean smaller than -20) to
* trigger a set snapshot message.
*/
static constexpr DeviceCommandId_t TEST_NOTIF_SNAPSHOT_VAR = 3;
static constexpr DeviceCommandId_t TEST_NOTIF_SNAPSHOT_SET = 4;
/**
* Can be used to trigger a snapshot message to the demo controller.
* Depending on the device index, a notification will be triggered for different set variables.
*
* DEVICE_0: Sets the set variable 0 below a treshold (below 50 but not 0) to trigger
* a variable snapshot
* DEVICE_1: Sets the vector mean values below a treshold (mean less than -20) to trigger a
* set snapshot
*/
static constexpr DeviceCommandId_t TEST_SNAPSHOT = 5;
//! Generates a random value for variable 1 of the dataset.
static constexpr DeviceCommandId_t GENERATE_SET_VAR_1_RNG_VALUE = 6;
/**
* These parameters are sent back with the command ID as a data reply
*/
static constexpr uint16_t COMMAND_1_PARAM1 = 0xBAB0; //!< param1, 2 bytes
//! param2, 8 bytes
static constexpr uint64_t COMMAND_1_PARAM2 = 0x000000524F42494E;
static constexpr size_t TEST_COMMAND_0_SIZE = sizeof(TEST_COMMAND_0);
static constexpr size_t TEST_COMMAND_1_SIZE = sizeof(TEST_COMMAND_1) + sizeof(COMMAND_1_PARAM1) +
sizeof(COMMAND_1_PARAM2);
enum PoolIds: lp_id_t {
TEST_UINT8_ID = 0,
TEST_UINT32_ID = 1,
TEST_FLOAT_VEC_3_ID = 2
};
static constexpr uint8_t TEST_SET_ID = TEST_NORMAL_MODE_CMD;
static const sid_t TEST_SET_DEV_0_SID = sid_t(objects::TEST_DEVICE_HANDLER_0, TEST_SET_ID);
static const sid_t TEST_SET_DEV_1_SID = sid_t(objects::TEST_DEVICE_HANDLER_1, TEST_SET_ID);
class TestDataSet: public StaticLocalDataSet<3> {
public:
TestDataSet(HasLocalDataPoolIF* owner): StaticLocalDataSet(owner, TEST_SET_ID) {}
TestDataSet(object_id_t owner): StaticLocalDataSet(sid_t(owner, TEST_SET_ID)) {}
lp_var_t<uint8_t> testUint8Var = lp_var_t<uint8_t>(
gp_id_t(this->getCreatorObjectId(), PoolIds::TEST_UINT8_ID), this);
lp_var_t<uint32_t> testUint32Var = lp_var_t<uint32_t>(
gp_id_t(this->getCreatorObjectId(), PoolIds::TEST_UINT32_ID), this);
lp_vec_t<float ,3> testFloat3Vec = lp_vec_t<float, 3>(
gp_id_t(this->getCreatorObjectId(), PoolIds::TEST_FLOAT_VEC_3_ID), this);
};
}
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_TESTDEVICEDEFINITIONS_H_ */

View File

@@ -1,17 +0,0 @@
# add main and others
CXXSRC += $(wildcard $(CURRENTPATH)/*.cpp)
CSRC += $(wildcard $(CURRENTPATH)/*.c)
CSRC += $(wildcard $(CURRENTPATH)/core/*.c)
CXXSRC += $(wildcard $(CURRENTPATH)/core/*.cpp)
CXXSRC += $(wildcard $(CURRENTPATH)/devices/*.cpp)
CSRC += $(wildcard $(CURRENTPATH)/devices/*.c)
CXXSRC += $(wildcard $(CURRENTPATH)/utility/*.cpp)
CSRC += $(wildcard $(CURRENTPATH)/utility/*.c)
CXXSRC += $(wildcard $(CURRENTPATH)/test/*.cpp)
CSRC += $(wildcard $(CURRENTPATH)/test/*.c)

View File

@@ -1,5 +0,0 @@
target_sources(${TARGET_NAME}
PRIVATE
PusPacketCreator.cpp
TmFunnel.cpp
)

View File

@@ -1,19 +0,0 @@
#include <fsfw/tmtcpacket/pus/TcPacketBase.h>
#include <fsfw/tmtcpacket/pus/TmPacketBase.h>
#include <fsfw/globalfunctions/arrayprinter.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <mission/utility/PusPacketCreator.h>
void PusPacketCreator::createPusPacketAndPrint() {
// TODO: use TC packet stored here instead..
// uint8_t packetStore[TcPacketBase::TC_PACKET_MIN_SIZE];
// TcPacketBase packet(packetStore);
// packet.initSpacePacketHeader(true, true, 0x73, 25);
// packet.initializeTcPacket(0x73, 25, 0, 17, 1);
// packet.setPacketDataLength(sizeof(PUSTcDataFieldHeader)
// + TcPacketBase::CRC_SIZE-1);
// packet.setErrorControl();
// sif::info << "PUS packet created: " << std::endl;
// arrayprinter::print(packet.getWholeData(), packet.getFullSize());
}

9
stm32h7/CMakeLists.txt Normal file
View File

@@ -0,0 +1,9 @@
target_sources(${TARGET_NAME} PRIVATE
STM32TestTask.cpp
)
option(STM32_ADD_NETWORKING_CODE "Add networking code requiring lwIP" ON)
if(STM32_ADD_NETWORKING_CODE)
add_subdirectory(networking)
endif()

33
stm32h7/STM32TestTask.cpp Normal file
View File

@@ -0,0 +1,33 @@
#include "STM32TestTask.h"
#include "stm32h7xx_nucleo.h"
#include "OBSWConfig.h"
STM32TestTask::STM32TestTask(object_id_t objectId, bool enablePrintout,
bool blinkyLed): TestTask(objectId), blinkyLed(blinkyLed) {
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
}
ReturnValue_t STM32TestTask::performPeriodicAction() {
if(blinkyLed) {
#if OBSW_ETHERNET_USE_LEDS == 0
BSP_LED_Toggle(LED1);
BSP_LED_Toggle(LED2);
#endif
BSP_LED_Toggle(LED3);
}
if(testSpi) {
spiTest->performOperation();
}
return TestTask::performPeriodicAction();
}
ReturnValue_t STM32TestTask::initialize() {
if(testSpi) {
spiComIF = new SpiComIF(objects::SPI_COM_IF);
spiTest = new SpiTest(*spiComIF);
}
return TestTask::initialize();
}

25
stm32h7/STM32TestTask.h Normal file
View File

@@ -0,0 +1,25 @@
#ifndef BSP_STM32_BOARDTEST_STM32TESTTASK_H_
#define BSP_STM32_BOARDTEST_STM32TESTTASK_H_
#include "bsp_stm32h7_freertos/boardtest/SpiTest.h"
#include "fsfw_tests/integration/task/TestTask.h"
class STM32TestTask: public TestTask {
public:
STM32TestTask(object_id_t objectId, bool enablePrintout, bool blinkyLed = true);
ReturnValue_t initialize() override;
ReturnValue_t performPeriodicAction() override;
private:
SpiComIF* spiComIF = nullptr;
SpiTest* spiTest = nullptr;
bool blinkyLed = false;
bool testSpi = true;
};
#endif /* BSP_STM32_BOARDTEST_STM32TESTTASK_H_ */

View File

@@ -0,0 +1,14 @@
# These are part of the RTEMS BSP for RTEMS
if(FSFW_OSAL MATCHES freertos)
target_sources(${TARGET_NAME} PRIVATE
ethernetif.c
)
endif()
target_sources(${TARGET_NAME} PRIVATE
UdpTcLwIpPollingTask.cpp
TmTcLwIpUdpBridge.cpp
networking.cpp
app_dhcp.cpp
app_ethernet.cpp
)

View File

@@ -0,0 +1,204 @@
#include "TmTcLwIpUdpBridge.h"
#include "udp_config.h"
#include "app_ethernet.h"
#include "ethernetif.h"
#include <OBSWConfig.h>
#include <fsfw/ipc/MutexGuard.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/serialize/EndianConverter.h>
TmTcLwIpUdpBridge::TmTcLwIpUdpBridge(object_id_t objectId,
object_id_t ccsdsPacketDistributor, object_id_t tmStoreId,
object_id_t tcStoreId):
TmTcBridge(objectId, ccsdsPacketDistributor, tmStoreId, tcStoreId) {
TmTcLwIpUdpBridge::lastAdd.addr = IPADDR_TYPE_ANY;
}
TmTcLwIpUdpBridge::~TmTcLwIpUdpBridge() {}
ReturnValue_t TmTcLwIpUdpBridge::initialize() {
TmTcBridge::initialize();
bridgeLock = MutexFactory::instance()->createMutex();
if(bridgeLock == nullptr) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
ReturnValue_t result = udp_server_init();
return result;
}
ReturnValue_t TmTcLwIpUdpBridge::udp_server_init(void) {
err_t err;
/* Create a new UDP control block */
TmTcLwIpUdpBridge::upcb = udp_new();
if (TmTcLwIpUdpBridge::upcb)
{
/* Bind the upcb to the UDP_PORT port */
/* Using IP_ADDR_ANY allow the upcb to be used by any local interface */
err = udp_bind(TmTcLwIpUdpBridge::upcb, IP_ADDR_ANY, UDP_SERVER_PORT);
if(err == ERR_OK)
{
/* Set a receive callback for the upcb */
udp_recv(TmTcLwIpUdpBridge::upcb, &udp_server_receive_callback,
(void*) this);
return RETURN_OK;
}
else
{
udp_remove(TmTcLwIpUdpBridge::upcb);
return RETURN_FAILED;
}
} else {
return RETURN_FAILED;
}
}
ReturnValue_t TmTcLwIpUdpBridge::performOperation(uint8_t operationCode) {
TmTcBridge::performOperation();
#if TCPIP_RECV_WIRETAPPING == 1
if(connectFlag) {
uint32_t ipAddress = ((ip4_addr*) &lastAdd)->addr;
int ipAddress1 = (ipAddress & 0xFF000000) >> 24;
int ipAddress2 = (ipAddress & 0xFF0000) >> 16;
int ipAddress3 = (ipAddress & 0xFF00) >> 8;
int ipAddress4 = ipAddress & 0xFF;
#if OBSW_VERBOSE_LEVEL == 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "TmTcLwIpUdpBridge: Client IP Address " << std::dec
<< ipAddress4 << "." << ipAddress3 << "." << ipAddress2 << "."
<< ipAddress1 << std::endl;
uint16_t portSwapped = EndianConverter::convertBigEndian(lastPort);
sif::info << "TmTcLwIpUdpBridge: Client IP Port "
<< (int)portSwapped << std::endl;
#else
sif::printInfo("TmTcLwIpUdpBridge: Client IP Address %d.%d.%d.%d\n",
ipAddress4, ipAddress3, ipAddress2, ipAddress1);
uint16_t portSwapped = EndianConverter::convertBigEndian(lastPort);
sif::printInfo("TmTcLwIpUdpBridge: Client IP Port: %d\n", portSwapped);
#endif
#endif
connectFlag = false;
}
#endif
return RETURN_OK;
}
ReturnValue_t TmTcLwIpUdpBridge::sendTm(const uint8_t * data, size_t dataLen) {
struct pbuf *p_tx = pbuf_alloc(PBUF_TRANSPORT, dataLen, PBUF_RAM);
if ((p_tx != nullptr) && (lastAdd.addr != IPADDR_TYPE_ANY) && (upcb != nullptr)) {
/* copy data to pbuf */
err_t err = pbuf_take(p_tx, (char*) data, dataLen);
if(err!=ERR_OK){
pbuf_free(p_tx);
return err;
}
/* Connect to the remote client */
err = udp_connect(TmTcLwIpUdpBridge::upcb, &lastAdd , lastPort);
if(err != ERR_OK){
pbuf_free(p_tx);
return err;
}
/* Tell the client that we have accepted it */
err = udp_send(TmTcLwIpUdpBridge::upcb, p_tx);
pbuf_free(p_tx);
if(err!=ERR_OK){
return err;
}
/* free the UDP connection, so we can accept new clients */
udp_disconnect (TmTcLwIpUdpBridge::upcb);
}
else{
return RETURN_FAILED;
}
return RETURN_OK;
}
void TmTcLwIpUdpBridge::udp_server_receive_callback(void* arg,
struct udp_pcb* upcb_, struct pbuf* p, const ip_addr_t* addr,
u16_t port) {
struct pbuf *p_tx = nullptr;
auto udpBridge = reinterpret_cast<TmTcLwIpUdpBridge*>(arg);
if(udpBridge == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TmTcLwIpUdpBridge::udp_server_receive_callback: Invalid UDP bridge!" <<
std::endl;
#else
sif::printWarning("TmTcLwIpUdpBridge::udp_server_receive_callback: Invalid UDP bridge!\n");
#endif
}
/* allocate pbuf from RAM*/
p_tx = pbuf_alloc(PBUF_TRANSPORT,p->len, PBUF_RAM);
if(p_tx != NULL)
{
if(udpBridge != nullptr) {
MutexGuard lg(udpBridge->bridgeLock);
udpBridge->upcb = upcb_;
udpBridge->lastAdd = *addr;
udpBridge->lastPort = port;
if(not udpBridge->comLinkUp()) {
udpBridge->registerCommConnect();
#if TCPIP_RECV_WIRETAPPING == 1
udpBridge->connectFlag = true;
#endif
/* This should have already been done, but we will still do it */
udpBridge->physicalConnectStatusChange(true);
}
}
pbuf_take(p_tx, (char*)p->payload, p->len);
/* send the received data to the uart port */
char* data = reinterpret_cast<char*>(p_tx->payload);
*(data+p_tx->len) = '\0';
#if TCPIP_RECV_WIRETAPPING == 1
udpBridge->printData(p,data);
#endif
store_address_t storeId;
ReturnValue_t returnValue = udpBridge->tcStore->addData(&storeId,
reinterpret_cast<uint8_t*>(p->payload), p->len);
if (returnValue != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UDP Server: Data storage failed" << std::endl;
#endif
pbuf_free(p_tx);
return;
}
TmTcMessage message(storeId);
if (udpBridge->tmTcReceptionQueue->sendToDefault(&message)
!= RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "TmTcLwIpUdpBridgw::udp_server_receive_callback:"
<< " Sending message to queue failed" << std::endl;
#endif
udpBridge->tcStore->deleteData(storeId);
}
}
/* Free the p_tx buffer */
pbuf_free(p_tx);
}
/* Caller must ensure thread-safety */
bool TmTcLwIpUdpBridge::comLinkUp() const {
return communicationLinkUp;
}
/* Caller must ensure thread-safety */
void TmTcLwIpUdpBridge::physicalConnectStatusChange(bool connect) {
if(connect) {
/* Physical connection does not mean there is a recipient to send packets too.
This will be done by the receive callback! */
physicalConnection = true;
}
else {
physicalConnection = false;
/* If there is no physical connection, we can't send anything back */
registerCommDisconnect();
}
}

View File

@@ -0,0 +1,79 @@
#ifndef BSP_STM32_RTEMS_NETWORKING_TMTCUDPBRIDGE_H_
#define BSP_STM32_RTEMS_NETWORKING_TMTCUDPBRIDGE_H_
#include <fsfw/tmtcservices/TmTcBridge.h>
#include <lwip/udp.h>
#include <lwip/ip_addr.h>
#define TCPIP_RECV_WIRETAPPING 0
/**
* This bridge is used to forward TMTC packets received via LwIP UDP to the internal software bus.
*/
class TmTcLwIpUdpBridge : public TmTcBridge {
friend class UdpTcLwIpPollingTask;
public:
TmTcLwIpUdpBridge(object_id_t objectId,
object_id_t ccsdsPacketDistributor, object_id_t tmStoreId,
object_id_t tcStoreId);
virtual ~TmTcLwIpUdpBridge();
virtual ReturnValue_t initialize() override;
ReturnValue_t udp_server_init();
/**
* In addition to default implementation, ethernet link status is checked.
* @param operationCode
* @return
*/
virtual ReturnValue_t performOperation(uint8_t operationCode = 0) override;
/** TM Send implementation uses udp_send function from lwIP stack
* @param data
* @param dataLen
* @return
*/
virtual ReturnValue_t sendTm(const uint8_t * data, size_t dataLen) override;
/**
* @brief This function is called when an UDP datagram has been
* received on the port UDP_PORT.
* @param arg
* @param upcb_
* @param p
* @param addr Source address which will be bound to TmTcUdpBridge::lastAdd
* @param port
*/
static void udp_server_receive_callback(void *arg,
struct udp_pcb *upcb_, struct pbuf *p, const ip_addr_t *addr,
u16_t port);
/**
* Check whether the communication link is up.
* Caller must ensure thread-safety by using the bridge lock.
* @return
*/
bool comLinkUp() const;
private:
struct udp_pcb *upcb = nullptr;
ip_addr_t lastAdd;
u16_t lastPort = 0;
bool physicalConnection = false;
MutexIF* bridgeLock = nullptr;
#if TCPIP_RECV_WIRETAPPING == 1
bool connectFlag = false;
#endif
/**
* Used to notify bridge about change in the physical ethernet connection.
* Connection does not mean that replies are possible (recipient not set yet), but
* disconnect means that we can't send anything. Caller must ensure thread-safety
* by using the bridge lock.
*/
void physicalConnectStatusChange(bool connect);
};
#endif /* BSP_STM32_RTEMS_NETWORKING_TMTCUDPBRIDGE_H_ */

View File

@@ -0,0 +1,66 @@
#include "UdpTcLwIpPollingTask.h"
#include "TmTcLwIpUdpBridge.h"
#include "app_ethernet.h"
#include "ethernetif.h"
#include "app_dhcp.h"
#include "networking.h"
#include <hardware_init.h>
#include "fsfw/ipc/MutexGuard.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "fsfw/objectmanager/ObjectManager.h"
#include "lwip/timeouts.h"
UdpTcLwIpPollingTask::UdpTcLwIpPollingTask(object_id_t objectId, object_id_t bridgeId,
struct netif* gnetif):
SystemObject(objectId), periodicHandleCounter(0), bridgeId(bridgeId), gnetif(gnetif) {
}
UdpTcLwIpPollingTask::~UdpTcLwIpPollingTask() {
}
ReturnValue_t UdpTcLwIpPollingTask::initialize() {
udpBridge = ObjectManager::instance()->get<TmTcLwIpUdpBridge>(bridgeId);
if(udpBridge == nullptr) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
if (netif_is_link_up(gnetif)) {
networking::setEthCableConnected(true);
}
return RETURN_OK;
}
/* Poll the EMAC Interface and pass content to the network interface (lwIP) */
ReturnValue_t UdpTcLwIpPollingTask::performOperation(uint8_t operationCode) {
/* Read a received packet from the Ethernet buffers and send it
to the lwIP for handling */
ethernetif_input(gnetif);
/* Handle timeouts */
sys_check_timeouts();
#if LWIP_NETIF_LINK_CALLBACK == 1
networking::ethernetLinkPeriodicHandle(gnetif);
#endif
if(udpBridge != nullptr) {
MutexGuard lg(udpBridge->bridgeLock);
/* In case ethernet cable is disconnected */
if(not networking::getEthCableConnected() and udpBridge->comLinkUp()) {
udpBridge->physicalConnectStatusChange(false);
}
else if(networking::getEthCableConnected() and not udpBridge->comLinkUp()) {
udpBridge->physicalConnectStatusChange(true);
}
}
#if LWIP_DHCP == 1
DHCP_Periodic_Handle(gnetif);
#endif
return RETURN_OK;
}

View File

@@ -0,0 +1,41 @@
#ifndef BSP_STM32_RTEMS_EMACPOLLINGTASK_H_
#define BSP_STM32_RTEMS_EMACPOLLINGTASK_H_
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <lwip/netif.h>
class TmTcLwIpUdpBridge;
/**
* @brief Separate task to poll EMAC interface.
* Polled data is passed to the netif (lwIP)
*/
class UdpTcLwIpPollingTask:
public SystemObject,
public ExecutableObjectIF,
public HasReturnvaluesIF {
public:
UdpTcLwIpPollingTask(object_id_t objectId, object_id_t bridgeId, struct netif* gnetif);
virtual ~UdpTcLwIpPollingTask();
virtual ReturnValue_t initialize() override;
/**
* Executed periodically.
* @param operationCode
* @return
*/
virtual ReturnValue_t performOperation(uint8_t operationCode = 0) override;
private:
static const uint8_t PERIODIC_HANDLE_TRIGGER = 5;
uint8_t periodicHandleCounter;
object_id_t bridgeId = 0;
TmTcLwIpUdpBridge* udpBridge = nullptr;
struct netif* gnetif = nullptr;
};
#endif /* BSP_STM32_RTEMS_EMACPOLLINGTASK_H_ */

View File

@@ -0,0 +1,157 @@
#include "OBSWConfig.h"
#include "app_dhcp.h"
#include "app_ethernet.h"
#include "networking.h"
#include "udp_config.h"
#include "ethernetif.h"
#include "lwip/dhcp.h"
#include "stm32h7xx_nucleo.h"
#if LWIP_DHCP == 1
uint8_t DHCP_state = DHCP_OFF;
uint32_t DHCPfineTimer = 0;
void handle_dhcp_timeout(struct netif* netif);
void handle_dhcp_start(struct netif* netif);
void handle_dhcp_wait(struct netif* netif, struct dhcp** dhcp);
void handle_dhcp_down(struct netif* netif);
/**
* @brief DHCP_Process_Handle
* @param None
* @retval None
*/
void DHCP_Process(struct netif *netif)
{
struct dhcp* dhcp = NULL;
switch (DHCP_state) {
case DHCP_START: {
handle_dhcp_start(netif);
break;
}
case DHCP_WAIT_ADDRESS: {
handle_dhcp_wait(netif, &dhcp);
break;
}
case DHCP_LINK_DOWN: {
handle_dhcp_down(netif);
break;
}
default: {
break;
}
}
}
void handle_dhcp_timeout(struct netif* netif) {
ip_addr_t ipaddr;
ip_addr_t netmask;
ip_addr_t gw;
DHCP_state = DHCP_TIMEOUT;
/* Stop DHCP */
dhcp_stop(netif);
/* Static address used */
networking::setLwipAddresses(&ipaddr, &netmask, &gw);
netif_set_addr(netif, &ipaddr, &netmask, &gw);
printf("DHCP Timeout\n\r");
uint8_t iptxt[20];
sprintf((char *)iptxt, "%s", ip4addr_ntoa(netif_ip4_addr(netif)));
printf("Assigning static IP address: %s\n", iptxt);
#if defined FSFW_OSAL_FREERTOS
ETH_HandleTypeDef* handle = getEthernetHandle();
handle->gState = HAL_ETH_STATE_READY;
#endif
#if OBSW_ETHERNET_TMTC_COMMANDING == 1
#if OBSW_ETHERNET_USE_LED1_LED2 == 1
BSP_LED_On(LED1);
BSP_LED_Off(LED2);
#endif
#endif
}
/**
* @brief DHCP periodic check
* @param netif
* @retval None
*/
void DHCP_Periodic_Handle(struct netif *netif)
{
/* Fine DHCP periodic process every 500ms */
if (HAL_GetTick() - DHCPfineTimer >= DHCP_FINE_TIMER_MSECS) {
DHCPfineTimer = HAL_GetTick();
/* process DHCP state machine */
DHCP_Process(netif);
}
}
void handle_dhcp_start(struct netif* netif) {
printf("handle_dhcp_start: Looking for DHCP server ...\n\r");
#if OBSW_ETHERNET_TMTC_COMMANDING == 1
#if OBSW_ETHERNET_USE_LED1_LED2 == 1
BSP_LED_Off(LED1);
BSP_LED_Off(LED2);
#endif
#endif
ip_addr_set_zero_ip4(&netif->ip_addr);
ip_addr_set_zero_ip4(&netif->netmask);
ip_addr_set_zero_ip4(&netif->gw);
dhcp_start(netif);
DHCP_state = DHCP_WAIT_ADDRESS;
}
void handle_dhcp_wait(struct netif* netif, struct dhcp** dhcp) {
if (dhcp_supplied_address(netif)) {
DHCP_state = DHCP_ADDRESS_ASSIGNED;
printf("IP address assigned by a DHCP server: %s\n\r", ip4addr_ntoa(netif_ip4_addr(netif)));
printf("Listener port: %d\n\r", UDP_SERVER_PORT);
#if OBSW_ETHERNET_TMTC_COMMANDING == 1
#if OBSW_ETHERNET_USE_LED1_LED2 == 1
BSP_LED_On(LED1);
BSP_LED_Off(LED2);
#endif
#endif
}
else {
*dhcp = (struct dhcp*) netif_get_client_data(netif, LWIP_NETIF_CLIENT_DATA_INDEX_DHCP);
/* DHCP timeout */
if ((*dhcp)->tries > MAX_DHCP_TRIES)
{
handle_dhcp_timeout(netif);
}
}
}
void handle_dhcp_down(struct netif* netif) {
DHCP_state = DHCP_OFF;
#if OBSW_ETHERNET_TMTC_COMMANDING == 1
printf("DHCP_Process: The network cable is not connected.\n\r");
#if OBSW_ETHERNET_USE_LED1_LED2 == 1
BSP_LED_Off(LED1);
BSP_LED_On(LED2);
#endif
#endif
/* Global boolean to track ethernet connection */
networking::setEthCableConnected(false);
}
uint8_t get_dhcp_state() {
return DHCP_state;
}
void set_dhcp_state(uint8_t new_state) {
DHCP_state = new_state;
}
#endif /* LWIP_DHCP == 1 */

View File

@@ -0,0 +1,34 @@
#ifndef BSP_STM32_STM32CUBEH7_BOARDS_NUCLEO_H743ZI_INC_APP_DHCP_H_
#define BSP_STM32_STM32CUBEH7_BOARDS_NUCLEO_H743ZI_INC_APP_DHCP_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "lwipopts.h"
#if LWIP_DHCP == 1
#include "lwip/netif.h"
/* DHCP process states */
#define DHCP_OFF (uint8_t) 0
#define DHCP_START (uint8_t) 1
#define DHCP_WAIT_ADDRESS (uint8_t) 2
#define DHCP_ADDRESS_ASSIGNED (uint8_t) 3
#define DHCP_TIMEOUT (uint8_t) 4
#define DHCP_LINK_DOWN (uint8_t) 5
uint8_t get_dhcp_state();
void set_dhcp_state(uint8_t new_state);
void DHCP_Process(struct netif *netif);
void DHCP_Periodic_Handle(struct netif *netif);
#endif /* LWIP_DHCP == 1 */
#ifdef __cplusplus
}
#endif
#endif /* BSP_STM32_STM32CUBEH7_BOARDS_NUCLEO_H743ZI_INC_APP_DHCP_H_ */

View File

@@ -0,0 +1,93 @@
/* Includes ------------------------------------------------------------------*/
#include "app_ethernet.h"
#include "ethernetif.h"
#include "udp_config.h"
#include "networking.h"
#if LWIP_DHCP
#include "app_dhcp.h"
#endif
#include <lwipopts.h>
#include <lwip/netif.h>
#include <stm32h7xx_nucleo.h>
#include <OBSWConfig.h>
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
uint32_t ethernetLinkTimer = 0;
/* Private function prototypes -----------------------------------------------*/
void handle_status_change(struct netif* netif, bool link_up);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Notify the User about the network interface config status
* @param netif: the network interface
* @retval None
*/
void networking::ethernetLinkStatusUpdated(struct netif *netif)
{
if (netif_is_link_up(netif))
{
networking::setEthCableConnected(true);
handle_status_change(netif, true);
}
else
{
networking::setEthCableConnected(false);
handle_status_change(netif, false);
}
}
void handle_status_change(struct netif* netif, bool link_up) {
if(link_up) {
#if LWIP_DHCP
/* Update DHCP state machine */
set_dhcp_state(DHCP_START);
#else
uint8_t iptxt[20];
sprintf((char *)iptxt, "%s", ip4addr_ntoa(netif_ip4_addr(netif)));
printf("\rNetwork cable connected. Static IP address: %s | Port: %d\n\r", iptxt,
UDP_SERVER_PORT);
#if OBSW_ETHERNET_USE_LED1_LED2 == 1
BSP_LED_On(LED1);
BSP_LED_Off(LED2);
#endif
#endif /* LWIP_DHCP */
}
else {
printf("Network cable disconnected\n\r");
#if LWIP_DHCP
/* Update DHCP state machine */
set_dhcp_state(DHCP_LINK_DOWN);
#else
#if OBSW_ETHERNET_USE_LED1_LED2 == 1
BSP_LED_Off(LED1);
BSP_LED_On(LED2);
#endif
#endif /* LWIP_DHCP */
}
}
#if LWIP_NETIF_LINK_CALLBACK
/**
* @brief Ethernet Link periodic check
* @param netif
* @retval None
*/
void networking::ethernetLinkPeriodicHandle(struct netif *netif)
{
/* Ethernet Link every 100ms */
if (HAL_GetTick() - ethernetLinkTimer >= 100)
{
ethernetLinkTimer = HAL_GetTick();
ethernet_link_check_state(netif);
}
}
#endif /* LWIP_NETIF_LINK_CALLBACK */

View File

@@ -0,0 +1,78 @@
/**
******************************************************************************
* @file LwIP/LwIP_UDP_Echo_Client/Inc/app_ethernet.h
* @author MCD Application Team
* @brief Header for app_ethernet.c module
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics International N.V.
* All rights reserved.</center></h2>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef EXAMPLE_COMMON_APP_ETHERNET_H
#define EXAMPLE_COMMON_APP_ETHERNET_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include <lwip/netif.h>
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
namespace networking {
void ethernetLinkStatusUpdated(struct netif *netif);
void ethernetLinkPeriodicHandle(struct netif *netif);
}
#ifdef __cplusplus
}
#endif
#endif /* EXAMPLE_COMMON_APP_ETHERNET_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,614 @@
/**
******************************************************************************
* @file LwIP/LwIP_UDP_Echo_Client/Src/ethernetif.c
* @author MCD Application Team
* @brief This file implements Ethernet network interface drivers for lwIP
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics International N.V.
* All rights reserved.</center></h2>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "fsfw/FSFW.h"
#include "ethernetif.h"
#include <string.h>
#include <lan8742.h>
#include <stm32h7xx_hal.h>
#include <lwip/netif.h>
#include <lwip/opt.h>
#include <lwip/timeouts.h>
#include <netif/etharp.h>
#ifdef FSFW_OSAL_RTEMS
#include <rtems.h>
#endif
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Network interface name */
#define IFNAME0 's'
#define IFNAME1 't'
#define DMA_DESCRIPTOR_ALIGNMENT 0x20
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/*
@Note: This interface is implemented to operate in zero-copy mode only:
- Rx buffers are allocated statically and passed directly to the LwIP stack
they will return back to DMA after been processed by the stack.
- Tx Buffers will be allocated from LwIP stack memory heap,
then passed to ETH HAL driver.
@Notes:
1.a. ETH DMA Rx descriptors must be contiguous, the default count is 4,
to customize it please redefine ETH_RX_DESC_CNT in stm32xxxx_hal_conf.h
1.b. ETH DMA Tx descriptors must be contiguous, the default count is 4,
to customize it please redefine ETH_TX_DESC_CNT in stm32xxxx_hal_conf.h
2.a. Rx Buffers number must be between ETH_RX_DESC_CNT and 2*ETH_RX_DESC_CNT
2.b. Rx Buffers must have the same size: ETH_RX_BUFFER_SIZE, this value must
passed to ETH DMA in the init field (EthHandle.Init.RxBuffLen)
*/
#if defined ( __ICCARM__ ) /*!< IAR Compiler */
#pragma location=0x30040000
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
#pragma location=0x30040060
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
#pragma location=0x30040200
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_RX_BUFFER_SIZE]; /* Ethernet Receive Buffers */
#elif defined ( __CC_ARM ) /* MDK ARM Compiler */
__attribute__((section(".RxDecripSection"))) ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
__attribute__((section(".TxDecripSection"))) ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
__attribute__((section(".RxArraySection"))) uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_RX_BUFFER_SIZE]; /* Ethernet Receive Buffer */
#elif defined ( __GNUC__ ) /* GNU Compiler */
#ifdef FSFW_OSAL_RTEMS
/* Put into special RTEMS section and align correctly */
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT] __attribute__((section(".bsp_nocache"), __aligned__(DMA_DESCRIPTOR_ALIGNMENT))); /* Ethernet Rx DMA Descriptors */
/* Put into special RTEMS section and align correctly */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT] __attribute__((section(".bsp_nocache"), __aligned__(DMA_DESCRIPTOR_ALIGNMENT))); /* Ethernet Tx DMA Descriptors */
/* Ethernet Receive Buffers. Just place somewhere is BSS instead of explicitely placing it */
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_RX_BUFFER_SIZE];
#elif defined FSFW_OSAL_FREERTOS
/* Placement and alignment specified in linker script here */
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT] __attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT] __attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_RX_BUFFER_SIZE] __attribute__((section(".RxArraySection"))); /* Ethernet Receive Buffers */
#endif /* FSFW_FREERTOS */
#endif /* defined ( __GNUC__ ) */
/* Global boolean to track ethernet connection */
bool ethernet_cable_connected;
struct pbuf_custom rx_pbuf[ETH_RX_DESC_CNT];
uint32_t current_pbuf_idx =0;
ETH_HandleTypeDef EthHandle;
ETH_TxPacketConfig TxConfig;
lan8742_Object_t LAN8742;
/* Private function prototypes -----------------------------------------------*/
u32_t sys_now(void);
void pbuf_free_custom(struct pbuf *p);
int32_t ETH_PHY_IO_Init(void);
int32_t ETH_PHY_IO_DeInit (void);
int32_t ETH_PHY_IO_ReadReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t *pRegVal);
int32_t ETH_PHY_IO_WriteReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t RegVal);
int32_t ETH_PHY_IO_GetTick(void);
lan8742_IOCtx_t LAN8742_IOCtx = {ETH_PHY_IO_Init,
ETH_PHY_IO_DeInit,
ETH_PHY_IO_WriteReg,
ETH_PHY_IO_ReadReg,
ETH_PHY_IO_GetTick};
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
LL Driver Interface ( LwIP stack --> ETH)
*******************************************************************************/
/**
* @brief In this function, the hardware should be initialized.
* Called from ethernetif_init().
*
* @param netif the already initialized lwip network interface structure
* for this ethernetif
*/
static void low_level_init(struct netif *netif)
{
uint32_t idx = 0;
uint8_t macaddress[6]= {ETH_MAC_ADDR0, ETH_MAC_ADDR1, ETH_MAC_ADDR2, ETH_MAC_ADDR3, ETH_MAC_ADDR4, ETH_MAC_ADDR5};
EthHandle.Instance = ETH;
EthHandle.Init.MACAddr = macaddress;
EthHandle.Init.MediaInterface = HAL_ETH_RMII_MODE;
EthHandle.Init.RxDesc = DMARxDscrTab;
EthHandle.Init.TxDesc = DMATxDscrTab;
EthHandle.Init.RxBuffLen = ETH_RX_BUFFER_SIZE;
/* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
HAL_ETH_Init(&EthHandle);
/* set MAC hardware address length */
netif->hwaddr_len = ETHARP_HWADDR_LEN;
/* set MAC hardware address */
netif->hwaddr[0] = 0x02;
netif->hwaddr[1] = 0x00;
netif->hwaddr[2] = 0x00;
netif->hwaddr[3] = 0x00;
netif->hwaddr[4] = 0x00;
netif->hwaddr[5] = 0x00;
/* maximum transfer unit */
netif->mtu = ETH_MAX_PAYLOAD;
/* device capabilities */
/* don't set NETIF_FLAG_ETHARP if this device is not an ethernet one */
netif->flags |= NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP;
for(idx = 0; idx < ETH_RX_DESC_CNT; idx ++)
{
HAL_ETH_DescAssignMemory(&EthHandle, idx, Rx_Buff[idx], NULL);
/* Set Custom pbuf free function */
rx_pbuf[idx].custom_free_function = pbuf_free_custom;
}
/* Set Tx packet config common parameters */
memset(&TxConfig, 0 , sizeof(ETH_TxPacketConfig));
TxConfig.Attributes = ETH_TX_PACKETS_FEATURES_CSUM | ETH_TX_PACKETS_FEATURES_CRCPAD;
TxConfig.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC;
TxConfig.CRCPadCtrl = ETH_CRC_PAD_INSERT;
/* Set PHY IO functions */
LAN8742_RegisterBusIO(&LAN8742, &LAN8742_IOCtx);
/* Initialize the LAN8742 ETH PHY */
LAN8742_Init(&LAN8742);
ethernet_link_check_state(netif);
}
/**
* @brief This function should do the actual transmission of the packet. The packet is
* contained in the pbuf that is passed to the function. This pbuf
* might be chained.
*
* @param netif the lwip network interface structure for this ethernetif
* @param p the MAC packet to send (e.g. IP packet including MAC addresses and type)
* @return ERR_OK if the packet could be sent
* an err_t value if the packet couldn't be sent
*
* @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to
* strange results. You might consider waiting for space in the DMA queue
* to become availale since the stack doesn't retry to send a packet
* dropped because of memory failure (except for the TCP timers).
*/
static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
uint32_t i=0, framelen = 0;
struct pbuf *q;
err_t errval = ERR_OK;
ETH_BufferTypeDef Txbuffer[ETH_TX_DESC_CNT];
for(q = p; q != NULL; q = q->next)
{
if(i >= ETH_TX_DESC_CNT)
return ERR_IF;
Txbuffer[i].buffer = q->payload;
Txbuffer[i].len = q->len;
framelen += q->len;
if(i>0)
{
Txbuffer[i-1].next = &Txbuffer[i];
}
if(q->next == NULL)
{
Txbuffer[i].next = NULL;
}
i++;
}
TxConfig.Length = framelen;
TxConfig.TxBuffer = Txbuffer;
HAL_StatusTypeDef ret = HAL_ETH_Transmit(&EthHandle, &TxConfig, 20);
if(ret != HAL_OK) {
printf("low_level_output: Could not transmit ethernet packet, code %d!\n\r", ret);
}
return errval;
}
/**
* @brief Should allocate a pbuf and transfer the bytes of the incoming
* packet from the interface into the pbuf.
*
* @param netif the lwip network interface structure for this ethernetif
* @return a pbuf filled with the received packet (including MAC header)
* NULL on memory error
*/
static struct pbuf * low_level_input(struct netif *netif)
{
struct pbuf *p = NULL;
ETH_BufferTypeDef RxBuff;
uint32_t framelength = 0;
if (HAL_ETH_IsRxDataAvailable(&EthHandle))
{
HAL_ETH_GetRxDataBuffer(&EthHandle, &RxBuff);
HAL_ETH_GetRxDataLength(&EthHandle, &framelength);
/* Invalidate data cache for ETH Rx Buffers */
SCB_InvalidateDCache_by_Addr((uint32_t *)Rx_Buff, (ETH_RX_DESC_CNT*ETH_RX_BUFFER_SIZE));
p = pbuf_alloced_custom(PBUF_RAW, framelength, PBUF_POOL, &rx_pbuf[current_pbuf_idx], RxBuff.buffer, ETH_RX_BUFFER_SIZE);
if(current_pbuf_idx < (ETH_RX_DESC_CNT -1))
{
current_pbuf_idx++;
}
else
{
current_pbuf_idx = 0;
}
return p;
}
else
{
return NULL;
}
}
/**
* @brief This function is the ethernetif_input task, it is processed when a packet
* is ready to be read from the interface. It uses the function low_level_input()
* that should handle the actual reception of bytes from the network
* interface. Then the type of the received packet is determined and
* the appropriate input function is called.
*
* @param netif the lwip network interface structure for this ethernetif
*/
void ethernetif_input(struct netif *netif)
{
err_t err;
struct pbuf *p;
/* move received packet into a new pbuf */
p = low_level_input(netif);
/* no packet could be read, silently ignore this */
if (p == NULL) return;
/* entry point to the LwIP stack */
err = netif->input(p, netif);
if (err != ERR_OK)
{
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_input: IP input error\n"));
pbuf_free(p);
p = NULL;
}
HAL_ETH_BuildRxDescriptors(&EthHandle);
}
/**
* @brief Should be called at the beginning of the program to set up the
* network interface. It calls the function low_level_init() to do the
* actual setup of the hardware.
*
* This function should be passed as a parameter to netif_add().
*
* @param netif the lwip network interface structure for this ethernetif
* @return ERR_OK if the loopif is initialized
* ERR_MEM if private data couldn't be allocated
* any other err_t on error
*/
err_t ethernetif_init(struct netif *netif)
{
LWIP_ASSERT("netif != NULL", (netif != NULL));
#if LWIP_NETIF_HOSTNAME
/* Initialize interface hostname */
netif->hostname = "lwip";
#endif /* LWIP_NETIF_HOSTNAME */
netif->name[0] = IFNAME0;
netif->name[1] = IFNAME1;
/* We directly use etharp_output() here to save a function call.
* You can instead declare your own function an call etharp_output()
* from it if you have to do some checks before sending (e.g. if link
* is available...) */
netif->output = etharp_output;
netif->linkoutput = low_level_output;
/* initialize the hardware */
low_level_init(netif);
return ERR_OK;
}
/**
* @brief Custom Rx pbuf free callback
* @param pbuf: pbuf to be freed
* @retval None
*/
void pbuf_free_custom(struct pbuf *p)
{
if(p != NULL)
{
p->flags = 0;
p->next = NULL;
p->len = p->tot_len = 0;
p->ref = 0;
p->payload = NULL;
}
}
/**
* @brief Returns the current time in milliseconds
* when LWIP_TIMERS == 1 and NO_SYS == 1
* @param None
* @retval Current Time value
*/
u32_t sys_now(void)
{
return HAL_GetTick();
}
/*******************************************************************************
Ethernet MSP Routines
*******************************************************************************/
/**
* @brief Initializes the ETH MSP.
* @param heth: ETH handle
* @retval None
*/
void HAL_ETH_MspInit(ETH_HandleTypeDef *heth)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Ethernett MSP init: RMII Mode */
/* Enable GPIOs clocks */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/* Ethernet pins configuration ************************************************/
/*
RMII_REF_CLK ----------------------> PA1
RMII_MDIO -------------------------> PA2
RMII_MDC --------------------------> PC1
RMII_MII_CRS_DV -------------------> PA7
RMII_MII_RXD0 ---------------------> PC4
RMII_MII_RXD1 ---------------------> PC5
RMII_MII_RXER ---------------------> PG2
RMII_MII_TX_EN --------------------> PG11
RMII_MII_TXD0 ---------------------> PG13
RMII_MII_TXD1 ---------------------> PB13
*/
/* Configure PA1, PA2 and PA7 */
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Alternate = GPIO_AF11_ETH;
GPIO_InitStructure.Pin = GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_7;
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Configure PB13 */
GPIO_InitStructure.Pin = GPIO_PIN_13;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Configure PC1, PC4 and PC5 */
GPIO_InitStructure.Pin = GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5;
HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);
/* Configure PG2, PG11, PG13 and PG14 */
GPIO_InitStructure.Pin = GPIO_PIN_2 | GPIO_PIN_11 | GPIO_PIN_13;
HAL_GPIO_Init(GPIOG, &GPIO_InitStructure);
#if NO_SYS == 0
/* Enable the Ethernet global Interrupt */
HAL_NVIC_SetPriority(ETH_IRQn, 0x7, 0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
#endif
/* Enable Ethernet clocks */
__HAL_RCC_ETH1MAC_CLK_ENABLE();
__HAL_RCC_ETH1TX_CLK_ENABLE();
__HAL_RCC_ETH1RX_CLK_ENABLE();
}
/*******************************************************************************
PHI IO Functions
*******************************************************************************/
/**
* @brief Initializes the MDIO interface GPIO and clocks.
* @param None
* @retval 0 if OK, -1 if ERROR
*/
int32_t ETH_PHY_IO_Init(void)
{
/* We assume that MDIO GPIO configuration is already done
in the ETH_MspInit() else it should be done here
*/
/* Configure the MDIO Clock */
HAL_ETH_SetMDIOClockRange(&EthHandle);
return 0;
}
/**
* @brief De-Initializes the MDIO interface .
* @param None
* @retval 0 if OK, -1 if ERROR
*/
int32_t ETH_PHY_IO_DeInit (void)
{
return 0;
}
/**
* @brief Read a PHY register through the MDIO interface.
* @param DevAddr: PHY port address
* @param RegAddr: PHY register address
* @param pRegVal: pointer to hold the register value
* @retval 0 if OK -1 if Error
*/
int32_t ETH_PHY_IO_ReadReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t *pRegVal)
{
if(HAL_ETH_ReadPHYRegister(&EthHandle, DevAddr, RegAddr, pRegVal) != HAL_OK)
{
return -1;
}
return 0;
}
/**
* @brief Write a value to a PHY register through the MDIO interface.
* @param DevAddr: PHY port address
* @param RegAddr: PHY register address
* @param RegVal: Value to be written
* @retval 0 if OK -1 if Error
*/
int32_t ETH_PHY_IO_WriteReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t RegVal)
{
if(HAL_ETH_WritePHYRegister(&EthHandle, DevAddr, RegAddr, RegVal) != HAL_OK)
{
return -1;
}
return 0;
}
/**
* @brief Get the time in millisecons used for internal PHY driver process.
* @retval Time value
*/
int32_t ETH_PHY_IO_GetTick(void)
{
return HAL_GetTick();
}
/**
* @brief
* @retval None
*/
void ethernet_link_check_state(struct netif *netif)
{
ETH_MACConfigTypeDef MACConf;
uint32_t PHYLinkState;
uint32_t linkchanged = 0, speed = 0, duplex =0;
PHYLinkState = LAN8742_GetLinkState(&LAN8742);
if(netif_is_link_up(netif) && (PHYLinkState <= LAN8742_STATUS_LINK_DOWN))
{
HAL_ETH_Stop(&EthHandle);
netif_set_down(netif);
netif_set_link_down(netif);
}
else if(!netif_is_link_up(netif) && (PHYLinkState > LAN8742_STATUS_LINK_DOWN))
{
switch (PHYLinkState)
{
case LAN8742_STATUS_100MBITS_FULLDUPLEX:
duplex = ETH_FULLDUPLEX_MODE;
speed = ETH_SPEED_100M;
linkchanged = 1;
break;
case LAN8742_STATUS_100MBITS_HALFDUPLEX:
duplex = ETH_HALFDUPLEX_MODE;
speed = ETH_SPEED_100M;
linkchanged = 1;
break;
case LAN8742_STATUS_10MBITS_FULLDUPLEX:
duplex = ETH_FULLDUPLEX_MODE;
speed = ETH_SPEED_10M;
linkchanged = 1;
break;
case LAN8742_STATUS_10MBITS_HALFDUPLEX:
duplex = ETH_HALFDUPLEX_MODE;
speed = ETH_SPEED_10M;
linkchanged = 1;
break;
default:
break;
}
if(linkchanged)
{
/* Get MAC Config MAC */
HAL_ETH_GetMACConfig(&EthHandle, &MACConf);
MACConf.DuplexMode = duplex;
MACConf.Speed = speed;
HAL_ETH_SetMACConfig(&EthHandle, &MACConf);
HAL_ETH_Start(&EthHandle);
netif_set_up(netif);
netif_set_link_up(netif);
}
}
}
ETH_HandleTypeDef* getEthernetHandle() {
return &EthHandle;
}
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,75 @@
/**
******************************************************************************
* @file LwIP/LwIP_HTTP_Server_Netconn_RTOS/Inc/ethernetif.h
* @author MCD Application Team
* @brief Header for ethernetif.c module
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics International N.V.
* All rights reserved.</center></h2>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#ifndef __ETHERNETIF_H__
#define __ETHERNETIF_H__
#include "lwip/err.h"
#include "lwip/netif.h"
#include <stm32h7xx_hal.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
#define ETH_RX_BUFFER_SIZE (1536UL)
/* Exported types ------------------------------------------------------------*/
ETH_HandleTypeDef* getEthernetHandle();
err_t ethernetif_init(struct netif *netif);
void ethernetif_input(struct netif *netif);
void ethernet_link_check_state(struct netif *netif);
extern ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT];
extern ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT];
extern uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_RX_BUFFER_SIZE];
#ifdef __cplusplus
}
#endif
#endif /* __ETHERNETIF_H__ */

View File

@@ -0,0 +1,19 @@
#include "udp_config.h"
#include "networking.h"
bool ethernetCableConnected = false;
void networking::setEthCableConnected(bool status) {
ethernetCableConnected = status;
}
bool networking::getEthCableConnected() {
return ethernetCableConnected;
}
void networking::setLwipAddresses(ip_addr_t* ipaddr, ip_addr_t* netmask, ip_addr_t* gw) {
IP4_ADDR(ipaddr, IP_ADDR0, IP_ADDR1, IP_ADDR2, IP_ADDR3);
IP4_ADDR(netmask, NETMASK_ADDR0, NETMASK_ADDR1 ,
NETMASK_ADDR2, NETMASK_ADDR3);
IP4_ADDR(gw, GW_ADDR0, GW_ADDR1, GW_ADDR2, GW_ADDR3);
}

View File

@@ -0,0 +1,14 @@
#ifndef BSP_STM32H7_RTEMS_NETWORKING_NETWORKING_H_
#define BSP_STM32H7_RTEMS_NETWORKING_NETWORKING_H_
#include <lwip/netif.h>
namespace networking {
void setEthCableConnected(bool status);
bool getEthCableConnected();
void setLwipAddresses(ip_addr_t* ipaddr, ip_addr_t* netmask, ip_addr_t* gw);
}
#endif /* BSP_STM32H7_RTEMS_NETWORKING_NETWORKING_H_ */

View File

@@ -0,0 +1,39 @@
#ifndef COMMON_STM32_NUCLEO_NETWORKING_UDP_CONFIG_H_
#define COMMON_STM32_NUCLEO_NETWORKING_UDP_CONFIG_H_
#ifdef __cplusplus
extern "C" {
#endif
/* UDP local connection port. Client needs to bind to this port */
#define UDP_SERVER_PORT 7
/*Static DEST IP ADDRESS: DEST_IP_ADDR0.DEST_IP_ADDR1.DEST_IP_ADDR2.DEST_IP_ADDR3 */
#define DEST_IP_ADDR0 ((uint8_t)169U)
#define DEST_IP_ADDR1 ((uint8_t)254U)
#define DEST_IP_ADDR2 ((uint8_t)39U)
#define DEST_IP_ADDR3 ((uint8_t)2U)
/*Static IP ADDRESS*/
#define IP_ADDR0 169
#define IP_ADDR1 254
#define IP_ADDR2 1
#define IP_ADDR3 38
/*NETMASK*/
#define NETMASK_ADDR0 255
#define NETMASK_ADDR1 255
#define NETMASK_ADDR2 0
#define NETMASK_ADDR3 0
/*Gateway Address*/
#define GW_ADDR0 192
#define GW_ADDR1 168
#define GW_ADDR2 178
#define GW_ADDR3 1
#ifdef __cplusplus
}
#endif
#endif /* COMMON_STM32_NUCLEO_NETWORKING_UDP_CONFIG_H_ */