The framework code.
Go to file
2021-06-20 17:16:35 +02:00
action object manager is now a singleton 2021-06-05 19:52:38 +02:00
container coverity fixes 2021-04-08 18:53:22 +02:00
contrib/sgp4 renormalized files 2020-09-18 13:15:14 +02:00
controller Merge remote-tracking branch 'upstream/mueller/master' into mueller/master 2021-06-08 15:37:13 +02:00
coordinates msvc tests 2020-12-20 15:32:03 +01:00
datalinklayer object manager is now a singleton 2021-06-05 19:52:38 +02:00
datapool added all coverity fixes 2021-04-11 21:54:48 +02:00
datapoollocal default color is magneta now for wanring 2021-06-12 15:03:18 +02:00
defaultcfg max tm packet size now configurable 2021-06-14 15:14:57 +02:00
devicehandlers NO_COMMANDER was not using NO_QUEUE in DHB 2021-06-15 16:47:24 +02:00
doc typo 2021-05-18 15:37:05 +02:00
events Merge branch 'mueller/master' of https://egit.irs.uni-stuttgart.de/KSat/fsfw into mueller/master 2021-06-05 19:59:51 +02:00
fdir object manager is now a singleton 2021-06-05 19:52:38 +02:00
globalfunctions adapted object factory to fsfw changes 2021-04-24 22:54:18 +02:00
health object manager is now a singleton 2021-06-05 19:52:38 +02:00
housekeeping object manager is now a singleton 2021-06-05 19:52:38 +02:00
internalError pool read guard in scope 2021-03-23 14:28:01 +01:00
ipc added clear message 2021-06-08 15:13:49 +02:00
logo Added the new logos, colors are WIP at the moment 2020-11-30 18:30:58 +01:00
memory indentation 2021-06-14 15:05:40 +02:00
modes Merge branch 'development' into mueller/cmake-init 2020-12-09 10:07:22 +01:00
monitoring object manager is now a singleton 2021-06-05 19:52:38 +02:00
objectmanager Merge remote-tracking branch 'upstream/development' into eive/develop 2021-06-12 15:24:08 +02:00
osal Merge branch 'development' into gaisser_clock_leap_seconds_move 2021-06-14 15:27:37 +02:00
parameters object manager is now a singleton 2021-06-05 19:52:38 +02:00
power object manager is now a singleton 2021-06-05 19:52:38 +02:00
pus cleaned up a bit 2021-06-14 10:19:01 +02:00
returnvalues added HAL gpio class ID 2021-06-15 13:32:11 +02:00
rmap clened up a bit 2020-12-13 22:12:57 +01:00
serialize Added Network Byte Order 2021-05-11 15:02:04 +02:00
serviceinterface default color is magneta now for wanring 2021-06-12 15:03:18 +02:00
storagemanager object manager is now a singleton 2021-06-05 19:52:38 +02:00
subsystem object manager is now a singleton 2021-06-05 19:52:38 +02:00
tasks more doc 2021-03-23 11:33:40 +01:00
tcdistribution fixes for pus tc c 2021-06-14 11:44:39 +02:00
thermal object manager is now a singleton 2021-06-05 19:52:38 +02:00
timemanager Removed wrong static 2021-06-15 16:12:25 +02:00
tmstorage cleaned up a bit 2021-06-14 10:19:01 +02:00
tmtcpacket Merge remote-tracking branch 'upstream/development' into mueller/master 2021-06-20 17:16:35 +02:00
tmtcservices const correctness 2021-06-14 11:16:56 +02:00
unittest Merge branch 'mueller/master' of https://egit.irs.uni-stuttgart.de/KSat/fsfw into mueller/master 2021-06-05 19:59:51 +02:00
.gitignore Added .gitignore for eclipse project files 2018-07-12 17:13:04 +02:00
.gitmodules unittest now contained directly 2020-10-20 17:11:23 +02:00
CHANGELOG changelog update 2021-06-15 14:21:46 +02:00
CMakeLists.txt Merge remote-tracking branch 'upstream/mueller/master' into mueller/master 2021-05-31 17:06:07 +02:00
FSFW.h added pus a tc 2021-06-13 12:34:06 +02:00
fsfw.mk Squashed commit of the following: 2021-01-13 11:53:34 +01:00
FSFWVersion.h bumped version to 1.0.0 2021-04-11 21:22:58 +02:00
LICENSE updating code from Flying Laptop 2018-07-12 16:29:32 +02:00
NOTICE Added the new logos, colors are WIP at the moment 2020-11-30 18:30:58 +01:00
platform.h some more preprocessor replacements 2021-05-12 17:32:40 +02:00
README.md update README 2021-05-18 15:35:47 +02:00

FSFW Logo

Flight Software Framework (FSFW)

The Flight Software Framework is a C++ Object Oriented Framework for unmanned, automated systems like Satellites.

The initial version of the Flight Software Framework was developed during the Flying Laptop Project by the University of Stuttgart in cooperation with Airbus Defence and Space GmbH.

Quick facts

The framework is designed for systems, which communicate with external devices, perform control loops, receive telecommands and send telemetry, and need to maintain a high level of availability. Therefore, a mode and health system provides control over the states of the software and the controlled devices. In addition, a simple mechanism of event based fault detection, isolation and recovery is implemented as well.

The FSFW provides abstraction layers for operating systems to provide a uniform operating system abstraction layer (OSAL). Some components of this OSAL are required internally by the FSFW but is also very useful for developers to implement the same application logic on different operating systems with a uniform interface.

Currently, the FSFW provides the following OSALs:

  • Linux
  • Host
  • FreeRTOS
  • RTEMS

The recommended hardware is a microprocessor with more than 1 MB of RAM and 1 MB of non-volatile Memory. For reference, current applications use a Cobham Gaisler UT699 (LEON3FT), a ISISPACE IOBC or a Zynq-7020 SoC. The fsfw was also successfully run on the STM32H743ZI-Nucleo board and on a Raspberry Pi and is currently running on the active satellite mission Flying Laptop.

Getting started

The FSFW example provides a good starting point and a demo to see the FSFW capabilities and build it with the Make or the CMake build system. It is recommended to evaluate the FSFW by building and playing around with the demo application.

Generally, the FSFW is included in a project by compiling the FSFW sources and providing a configuration folder and adding it to the include path. There are some functions like printChar which are different depending on the target architecture and need to be implemented by the mission developer.

A template configuration folder was provided and can be copied into the project root to have a starting point. The configuration section provides more specific information about the possible options.

Index

1. High-level overview
2. Core components
3. Configuration
4. OSAL overview
5. PUS services
6. Device Handler overview
7. Controller overview
8. Local Data Pools