eive-obsw/linux/ipcore/PdecHandler.h

356 lines
11 KiB
C
Raw Permalink Normal View History

2021-11-01 12:41:20 +01:00
#ifndef LINUX_OBC_PDECHANDLER_H_
#define LINUX_OBC_PDECHANDLER_H_
#include <fsfw/timemanager/Countdown.h>
2023-04-14 13:11:11 +02:00
#include <atomic>
2021-11-08 12:25:12 +01:00
#include "OBSWConfig.h"
2021-11-01 12:41:20 +01:00
#include "PdecConfig.h"
2023-01-23 11:52:46 +01:00
#include "eive/definitions.h"
2022-01-17 15:58:27 +01:00
#include "fsfw/action/ActionHelper.h"
#include "fsfw/action/HasActionsIF.h"
#include "fsfw/objectmanager/SystemObject.h"
2023-02-23 15:27:24 +01:00
#include "fsfw/parameters/ParameterHelper.h"
#include "fsfw/parameters/ReceivesParameterMessagesIF.h"
2022-08-24 17:27:47 +02:00
#include "fsfw/returnvalues/returnvalue.h"
2021-11-01 12:41:20 +01:00
#include "fsfw/storagemanager/StorageManagerIF.h"
#include "fsfw/tasks/ExecutableObjectIF.h"
2022-01-17 15:58:27 +01:00
#include "fsfw/tmtcservices/AcceptsTelecommandsIF.h"
#include "fsfw_hal/common/gpio/gpioDefinitions.h"
#include "fsfw_hal/linux/gpio/LinuxLibgpioIF.h"
2021-11-01 12:41:20 +01:00
2022-10-27 10:49:52 +02:00
struct UioNames {
const char* configMemory;
const char* ramMemory;
const char* registers;
const char* irq;
};
2021-11-01 12:41:20 +01:00
/**
* @brief This class controls the PDEC IP Core implemented in the programmable logic of the
* Zynq-7020. All registers and memories of the PDEC IP Core are accessed via UIO
* drivers.
*
* @details The PDEC IP Core is responsible for processing data received in form of CLTUs from the
* S-Band transceiver. This comprises the BCH decoding of the CLTUs and reconstruction of
* telecommand transfer frames. Finally the PDEC stores the TC segment transported with
* the TC transfer frame in a register. As soon as a new TC has been received a new
* frame acceptance report (FAR) will be generated. If the FAR confirms the validity of
* a received TC segment, the data can be read out from the associated register.
* Currently, the ground software only supports transmissions of CLTUs containing one
* space packet.
* Link to datasheet of PDEC IP Core: https://eive-cloud.irs.uni-stuttgart.de/index.php/
* apps/files/?dir=/EIVE_IRS/Arbeitsdaten/08_Used%20Components/CCSDS_IP_Cores&fileid=1108967
*
* @author J. Meier
*/
2023-02-13 11:28:27 +01:00
class PdecHandler : public SystemObject,
public ExecutableObjectIF,
public HasActionsIF,
public ReceivesParameterMessagesIF {
2022-01-17 15:58:27 +01:00
public:
2022-10-27 10:49:52 +02:00
static constexpr dur_millis_t IRQ_TIMEOUT_MS = 500;
2023-09-12 12:54:24 +02:00
static constexpr uint32_t PDEC_CFG_MEM_SIZE = 0x1000;
static constexpr uint32_t PDEC_RAM_SIZE = 0x10000;
2022-10-27 10:49:52 +02:00
2022-10-26 14:35:47 +02:00
enum class Modes { POLLED, IRQ };
2022-01-17 15:58:27 +01:00
/**
* @brief Constructor
* @param objectId Object ID of PDEC handler system object
* @param tcDestinationId Object ID of object responsible for processing TCs.
* @param gpioComIF Pointer to GPIO interace responsible for driving GPIOs.
* @param pdecReset GPIO ID of GPIO connected to the reset signal of the PDEC.
* @param uioConfigMemory String of uio device file same mapped to the PDEC memory space
* @param uioregsiters String of uio device file same mapped to the PDEC register space
*/
PdecHandler(object_id_t objectId, object_id_t tcDestinationId, LinuxLibgpioIF* gpioComIF,
2023-10-24 15:00:10 +02:00
gpioId_t pdecReset, UioNames names, uint32_t cfgMemPhyAddr, uint32_t pdecRamPhyAddr);
2022-01-17 15:58:27 +01:00
virtual ~PdecHandler();
ReturnValue_t performOperation(uint8_t operationCode = 0);
ReturnValue_t initialize() override;
MessageQueueId_t getCommandQueue() const;
ReturnValue_t executeAction(ActionId_t actionId, MessageQueueId_t commandedBy,
const uint8_t* data, size_t size) override;
2023-02-13 11:28:27 +01:00
ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueIdentifier,
ParameterWrapper* parameterWrapper, const ParameterWrapper* newValues,
uint16_t startAtIndex) override;
2022-01-17 15:58:27 +01:00
private:
2022-11-02 16:32:00 +01:00
static constexpr Modes OP_MODE = Modes::IRQ;
2022-10-26 14:35:47 +02:00
2023-01-23 11:52:46 +01:00
static const uint32_t QUEUE_SIZE = config::CCSDS_HANDLER_QUEUE_SIZE;
2022-01-17 15:58:27 +01:00
2022-03-27 10:56:40 +02:00
#ifdef TE0720_1CFA
2022-01-17 15:58:27 +01:00
static const int CONFIG_MEMORY_MAP_SIZE = 0x400;
static const int RAM_MAP_SIZE = 0x4000;
static const int REGISTER_MAP_SIZE = 0x10000;
2021-11-08 12:25:12 +01:00
#else
2022-01-17 15:58:27 +01:00
static const int CONFIG_MEMORY_MAP_SIZE = 0x400;
static const int RAM_MAP_SIZE = 0x4000;
static const int REGISTER_MAP_SIZE = 0x4000;
2021-11-08 12:25:12 +01:00
#endif /* BOARD_TE0720 == 1 */
2021-11-01 12:41:20 +01:00
2022-01-17 15:58:27 +01:00
static const size_t MAX_TC_SEGMENT_SIZE = 1017;
static const uint8_t MAP_ID_MASK = 0x3F;
2021-11-01 12:41:20 +01:00
2022-01-17 15:58:27 +01:00
// Expected value stored in FAR register after reset
static const uint32_t FAR_RESET = 0x7FE0;
static const uint32_t TC_SEGMENT_LEN = 1017;
static const uint32_t NO_RF_MASK = 0x8000;
static const uint32_t NO_BITLOCK_MASK = 0x4000;
static const uint32_t MAX_INIT_TRIES = 20;
2023-02-13 11:28:27 +01:00
class ParameterId {
2023-02-23 15:27:24 +01:00
public:
// ID of the parameter to update the positive window of AD frames
static const uint8_t POSITIVE_WINDOW = 0;
// ID of the parameter to update the negative window of AD frames
static const uint8_t NEGATIVE_WINDOW = 1;
2023-02-13 11:28:27 +01:00
};
2022-01-17 15:58:27 +01:00
2023-02-20 18:17:27 +01:00
static constexpr uint32_t MAX_ALLOWED_IRQS_PER_WINDOW = 800;
2023-02-20 18:12:33 +01:00
2022-01-17 15:58:27 +01:00
enum class IReason_t : uint8_t {
NO_REPORT,
ERROR_VERSION_NUMBER,
ILLEGAL_COMBINATION,
INVALID_SC_ID,
INVALID_VC_ID_LSB,
INVALID_VC_ID_MSB,
NS_NOT_ZERO,
INCORRECT_BC_CC
};
enum class State : uint8_t { INIT, PDEC_RESET, RUNNING, WAIT_FOR_RECOVERY };
2022-01-17 15:58:27 +01:00
2022-10-27 10:49:52 +02:00
static uint32_t CURRENT_FAR;
2023-02-20 18:12:33 +01:00
Countdown genericCheckCd = Countdown(IRQ_TIMEOUT_MS);
2022-10-27 10:49:52 +02:00
object_id_t tcDestinationId;
2023-04-14 19:42:11 +02:00
int irqFd = 0;
2022-10-27 10:49:52 +02:00
AcceptsTelecommandsIF* tcDestination = nullptr;
LinuxLibgpioIF* gpioComIF = nullptr;
2023-02-20 18:12:33 +01:00
uint32_t interruptCounter = 0;
Countdown interruptWindowCd = Countdown(1000);
2022-10-27 10:49:52 +02:00
/**
* Reset signal is required to hold PDEC in reset state until the configuration has been
* written to the appropriate memory space.
* Can also be used to reboot PDEC in case of erros.
*/
gpioId_t pdecReset = gpio::NO_GPIO;
uint32_t tcAbortCounter = 0;
ActionHelper actionHelper;
StorageManagerIF* tcStore = nullptr;
MessageQueueIF* commandQueue = nullptr;
State state = State::INIT;
/**
* Pointer pointing to base address of the PDEC memory space.
* This address is equivalent with the base address of the section named configuration area in
* the PDEC datasheet.
*/
uint32_t* memoryBaseAddress = nullptr;
uint32_t* ramBaseAddress = nullptr;
// Pointer pointing to base address of register space
uint32_t* registerBaseAddress = nullptr;
uint8_t tcSegment[TC_SEGMENT_LEN];
// Used to check carrier and bit lock changes (default set to no rf and no bitlock)
uint32_t lastClcw = 0xC000;
bool carrierLock = false;
bool bitLock = false;
2023-04-14 13:11:11 +02:00
MessageQueueId_t commandedBy = MessageQueueIF::NO_QUEUE;
bool ptmeResetWithReinitializationPending = false;
2023-10-25 08:23:36 +02:00
uint32_t cfgMemBaseAddr;
uint32_t pdecRamBaseAddr;
2022-10-27 10:49:52 +02:00
UioNames uioNames;
2023-02-13 11:28:27 +01:00
ParameterHelper paramHelper;
PdecConfig pdecConfig;
uint32_t initTries = 0;
2023-04-14 19:58:22 +02:00
// scuffed test counter.
uint8_t testCntr = 0;
/**
* @brief Performs initialization stuff which must be performed in first
* loop of running task
*
* @return OK if successful, otherwise FAILED
*/
ReturnValue_t firstLoop();
2022-01-17 15:58:27 +01:00
/**
* @brief Reads and handles messages stored in the commandQueue
*/
void readCommandQueue(void);
2022-10-26 14:35:47 +02:00
ReturnValue_t polledOperation();
ReturnValue_t irqOperation();
2023-02-27 11:35:43 +01:00
ReturnValue_t handleInitState();
2023-04-14 19:42:11 +02:00
void openIrqFile();
ReturnValue_t checkAndHandleIrqs(uint32_t& info);
2022-10-26 14:35:47 +02:00
2022-10-27 10:49:52 +02:00
uint32_t readFar();
2022-01-17 15:58:27 +01:00
/**
* @brief This functions writes the configuration parameters to the configuration
* section of the PDEC.
*/
2022-11-02 18:58:29 +01:00
void writePdecConfigDuringReset(PdecConfig& config);
2022-01-17 15:58:27 +01:00
/**
* @brief Reading the FAR resets the set stat flag which signals a new TC. Without clearing
* this flag no new TC will be excepted. After start up the flag is set and needs
* to be reset.
* Stat flag 0 - new TC received
* Stat flag 1 - old TC (ready to receive next TC)
*/
ReturnValue_t resetFarStatFlag();
/**
* @brief Releases the PDEC from reset state. PDEC will start with loading the written
* configuration parameters.
*/
ReturnValue_t releasePdec();
/**
* @brief Will set PDEC in reset state. Use releasePdec() to release PDEC
* from reset state
*
* @return OK if successful, otherwise error return value
*/
ReturnValue_t pdecToReset();
2022-01-17 15:58:27 +01:00
/**
* @brief Reads the FAR register and checks if a new TC has been received.
*/
bool newTcReceived();
/**
* @brief Checks if carrier lock or bit lock has been detected and triggers appropriate
* event.
*/
2023-04-14 13:11:11 +02:00
void doPeriodicWork();
2022-01-17 15:58:27 +01:00
void checkLocks();
2023-02-20 18:41:26 +01:00
void resetIrqLimiters();
2022-01-17 15:58:27 +01:00
/**
* @brief Analyzes the FramAna field (frame analysis data) of a FAR report.
*
* @return True if frame valid, otherwise false.
*/
bool checkFrameAna(uint32_t pdecFar);
/**
* @brief This function handles the IReason field of the frame analysis report.
*
* @details In case frame as been declared illegal for multiple reasons, the reason with the
* lowest value will be shown.
*/
void handleIReason(uint32_t pdecFar, ReturnValue_t parameter1);
/**
* @brief Checks if PDEC configuration is still correct
*/
void checkConfig();
2022-01-17 15:58:27 +01:00
/**
* @brief Handles the reception of new TCs. Reads the pointer to the storage location of the
* new TC segment, extracts the PUS packet and forwards the data to the object
* responsible for processing the TC.
*/
void handleNewTc();
/**
* @brief Function reads the last received TC segment from the PDEC memory and copies
* the data to the tcSegement array.
*
* @param tcLength The length of the received TC.
*
*/
ReturnValue_t readTc(uint32_t& tcLength);
/**
* @brief Prints the tc segment data
*/
void printTC(uint32_t tcLength);
/**
* @brief This function calculates the entry for the configuration of the MAP ID routing.
*
* @param mapAddr The MAP ID to configure
* @param moduleId The destination module where all TCs with the map id mapAddr will be routed
* to.
*
* @details The PDEC has different modules where the TCs can be routed to. A lookup table is
* used which links the MAP ID field to the destination module. The entry for this
* lookup table is created by this function and must be stored in the configuration
* memory region of the PDEC. The entry has a specific format
*/
uint8_t calcMapAddrEntry(uint8_t moduleId);
/**
* brief Returns the 32-bit wide communication link control word (CLCW)
*/
uint32_t getClcw();
/**
* @brief Returns the PDEC monitor register content
*
*/
uint32_t getPdecMon();
/**
* @brief Reads and prints the CLCW. Can be useful for debugging.
*/
void printClcw();
/**
* @brief Prints monitor register information to debug console.
*/
void printPdecMon();
2023-04-14 13:26:44 +02:00
void pdecResetNoInit();
ReturnValue_t postResetOperation();
2023-04-14 19:42:11 +02:00
void initializeReset();
2023-04-14 13:11:11 +02:00
void initFailedHandler(ReturnValue_t reason);
2022-01-17 15:58:27 +01:00
std::string getMonStatusString(uint32_t status);
2021-11-01 12:41:20 +01:00
};
#endif /* LINUX_OBC_PDECHANDLER_H_ */