Refactored GPIO module

- The GPIO module uses type-level programming now
- Implementation heavily based on the ATSAMD GPIO HAL:
  https://docs.rs/atsamd-hal/0.13.0/atsamd_hal/gpio/v2/index.html
- Changes to API, but no passing of peripheral references necessary
  anymore. All examples and tests updated accordingly
This commit is contained in:
Robin Müller 2021-11-11 17:20:19 +01:00
parent 47e64c2606
commit 63be6ed5fe
15 changed files with 1851 additions and 758 deletions

View File

@ -11,6 +11,12 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
## [0.2.0]
### Changed
- New GPIO implementation which uses type-level programming. Implementation heavily based on the
ATSAMD GPIO HAL: https://docs.rs/atsamd-hal/0.13.0/atsamd_hal/gpio/v2/index.html
- Changes to API, therefore minor version bump
### Added
- UART implementation

View File

@ -1,6 +1,6 @@
[package]
name = "va108xx-hal"
version = "0.1.0"
version = "0.2.0"
authors = ["Robin Mueller <robin.mueller.m@gmail.com>"]
edition = "2021"
description = "HAL for the Vorago VA108xx family of microcontrollers"
@ -14,6 +14,7 @@ categories = ["embedded", "no-std", "hardware-support"]
cortex-m = "0.7"
cortex-m-rt = "0.7"
nb = "1"
paste = "1.0"
embedded-hal = { features = ["unproven"], version = "0.2.6" }
void = { version = "1.0", default-features = false }
once_cell = { version = "1.8.0", default-features = false }

View File

@ -77,7 +77,7 @@ is contained within the
embedded-hal = "0.2.6"
[dependencies.va108xx-hal]
version = "0.1"
version = "0.2"
features = ["rt"]
```

View File

@ -9,21 +9,15 @@
use cortex_m_rt::entry;
use embedded_hal::digital::v2::ToggleableOutputPin;
use panic_halt as _;
use va108xx_hal::{pac, prelude::*};
use va108xx_hal::{gpio::PinsA, pac, prelude::*};
#[entry]
fn main() -> ! {
let mut dp = pac::Peripherals::take().unwrap();
let porta = dp.PORTA.split(&mut dp.SYSCONFIG).unwrap();
let mut led1 = porta
.pa10
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA);
let mut led2 = porta
.pa7
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA);
let mut led3 = porta
.pa6
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA);
let porta = PinsA::new(&mut dp.SYSCONFIG, Some(dp.IOCONFIG), dp.PORTA);
let mut led1 = porta.pa10.into_push_pull_output();
let mut led2 = porta.pa7.into_push_pull_output();
let mut led3 = porta.pa6.into_push_pull_output();
for _ in 0..10 {
led1.set_low().ok();
led2.set_low().ok();

View File

@ -6,11 +6,10 @@
#![no_std]
use cortex_m_rt::entry;
use embedded_hal::digital::v2::{InputPin, OutputPin, StatefulOutputPin, ToggleableOutputPin};
use embedded_hal::digital::v2::{InputPin, OutputPin, ToggleableOutputPin};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_hal::gpio::{porta, portb, PinState};
use va108xx_hal::prelude::*;
use va108xx_hal::gpio::{PinState, PinsA, PinsB};
#[allow(dead_code)]
#[derive(Debug)]
@ -20,6 +19,8 @@ enum TestCase {
TestPullup,
TestPulldown,
TestMask,
// Tie PORTB[22] to PORTB[23] for this test
PortB,
Perid,
// Tie PA0 to an oscilloscope and configure pulse detection
Pulse,
@ -32,11 +33,9 @@ fn main() -> ! {
rtt_init_print!();
rprintln!("-- VA108xx Test Application --");
let mut dp = va108xx::Peripherals::take().unwrap();
let porta = dp.PORTA.split(&mut dp.SYSCONFIG).unwrap();
let _portb = dp.PORTB.split(&mut dp.SYSCONFIG).unwrap();
let mut led1 = porta
.pa10
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA);
let pinsa = PinsA::new(&mut dp.SYSCONFIG, None, dp.PORTA);
let pinsb = PinsB::new(&mut dp.SYSCONFIG, Some(dp.IOCONFIG), dp.PORTB);
let mut led1 = pinsa.pa10.into_push_pull_output();
let test_case = TestCase::Delay;
match test_case {
@ -56,82 +55,70 @@ fn main() -> ! {
match test_case {
TestCase::TestBasic => {
// Tie PORTA[0] to PORTA[1] for these tests!
let mut out = porta
.pa0
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA)
.enable_input(&mut dp.IOCONFIG, true);
let input = porta
.pa1
.into_floating_input(&mut dp.IOCONFIG, &mut dp.PORTA);
let mut out = pinsa.pa0.into_readable_push_pull_output();
let input = pinsa.pa1.into_floating_input();
out.set_high().unwrap();
assert!(out.is_set_high().unwrap());
assert!(input.is_high().unwrap());
out.set_low().unwrap();
assert!(out.is_set_low().unwrap());
assert!(input.is_low().unwrap());
}
TestCase::TestPullup => {
// Tie PORTA[0] to PORTA[1] for these tests!
let input = porta
.pa1
.into_pull_up_input(&mut dp.IOCONFIG, &mut dp.PORTA);
let input = pinsa.pa1.into_pull_up_input();
assert!(input.is_high().unwrap());
let mut out = porta
.pa0
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA);
let mut out = pinsa.pa0.into_readable_push_pull_output();
out.set_low().unwrap();
assert!(input.is_low().unwrap());
out.set_high().unwrap();
assert!(input.is_high().unwrap());
out.into_floating_input(&mut dp.IOCONFIG, &mut dp.PORTA);
out.into_floating_input();
assert!(input.is_high().unwrap());
}
TestCase::TestPulldown => {
// Tie PORTA[0] to PORTA[1] for these tests!
let input = porta
.pa1
.into_pull_down_input(&mut dp.IOCONFIG, &mut dp.PORTA);
let input = pinsa.pa1.into_pull_down_input();
assert!(input.is_low().unwrap());
let mut out = porta
.pa0
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA);
let mut out = pinsa.pa0.into_push_pull_output();
out.set_low().unwrap();
assert!(input.is_low().unwrap());
out.set_high().unwrap();
assert!(input.is_high().unwrap());
out.into_floating_input(&mut dp.IOCONFIG, &mut dp.PORTA);
out.into_floating_input();
assert!(input.is_low().unwrap());
}
TestCase::TestMask => {
// Tie PORTA[0] to PORTA[1] for these tests!
let input = porta
.pa1
.into_pull_down_input(&mut dp.IOCONFIG, &mut dp.PORTA)
.clear_datamask(&mut dp.PORTA);
assert!(!input.datamask(&dp.PORTA));
let out = porta
.pa0
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA)
.clear_datamask(&mut dp.PORTA);
assert!(input.is_low_masked(&mut dp.PORTA).is_err());
assert!(out.set_high_masked(&mut dp.PORTA).is_err());
let input = pinsa.pa1.into_pull_down_input().clear_datamask();
assert!(!input.datamask());
let mut out = pinsa.pa0.into_push_pull_output().clear_datamask();
assert!(input.is_low_masked().is_err());
assert!(out.set_high_masked().is_err());
}
TestCase::PortB => {
// Tie PORTB[22] to PORTB[23] for these tests!
let mut out = pinsb.pb22.into_readable_push_pull_output();
let input = pinsb.pb23.into_floating_input();
out.set_high().unwrap();
assert!(input.is_high().unwrap());
out.set_low().unwrap();
assert!(input.is_low().unwrap());
}
TestCase::Perid => {
assert_eq!(porta::get_perid(&dp.PORTA), 0x004007e1);
assert_eq!(portb::get_perid(&dp.PORTB), 0x004007e1);
assert_eq!(PinsA::get_perid(), 0x004007e1);
assert_eq!(PinsB::get_perid(), 0x004007e1);
}
TestCase::Pulse => {
let mut output_pulsed = porta
let mut output_pulsed = pinsa
.pa0
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA)
.pulse_mode(&mut dp.PORTA, true, PinState::Low);
.into_push_pull_output()
.pulse_mode(true, PinState::Low);
rprintln!("Pulsing high 10 times..");
output_pulsed.set_low().unwrap();
for _ in 0..10 {
output_pulsed.set_high().unwrap();
cortex_m::asm::delay(25_000_000);
}
let mut output_pulsed = output_pulsed.pulse_mode(&mut dp.PORTA, true, PinState::High);
let mut output_pulsed = output_pulsed.pulse_mode(true, PinState::High);
rprintln!("Pulsing low 10 times..");
for _ in 0..10 {
output_pulsed.set_low().unwrap();
@ -139,18 +126,9 @@ fn main() -> ! {
}
}
TestCase::Delay => {
let mut out_0 = porta
.pa0
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA)
.delay(&mut dp.PORTA, true, false);
let mut out_1 = porta
.pa1
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA)
.delay(&mut dp.PORTA, false, true);
let mut out_2 = porta
.pa3
.into_push_pull_output(&mut dp.IOCONFIG, &mut dp.PORTA)
.delay(&mut dp.PORTA, true, true);
let mut out_0 = pinsa.pa0.into_push_pull_output().delay(true, false);
let mut out_1 = pinsa.pa1.into_push_pull_output().delay(false, true);
let mut out_2 = pinsa.pa3.into_push_pull_output().delay(true, true);
for _ in 0..20 {
out_0.toggle().unwrap();
out_1.toggle().unwrap();

View File

@ -7,18 +7,18 @@ use core::fmt::Write;
use cortex_m_rt::entry;
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_hal::{pac, prelude::*, uart};
use va108xx_hal::{gpio::PinsB, pac, prelude::*, uart};
#[entry]
fn main() -> ! {
rtt_init_print!();
rprintln!("-- VA108xx UART test application--");
rprintln!("-- VA108xx UART example application--");
let mut dp = pac::Peripherals::take().unwrap();
let gpiob = dp.PORTB.split(&mut dp.SYSCONFIG).unwrap();
let tx = gpiob.pb21.into_funsel_1(&mut dp.IOCONFIG);
let rx = gpiob.pb20.into_funsel_1(&mut dp.IOCONFIG);
let gpiob = PinsB::new(&mut dp.SYSCONFIG, Some(dp.IOCONFIG), dp.PORTB);
let tx = gpiob.pb21.into_funsel_1();
let rx = gpiob.pb20.into_funsel_1();
let uartb = uart::Uart::uartb(
dp.UARTB,

View File

@ -1,663 +0,0 @@
//! API for the GPIO pins
//!
//! ## Examples
//!
//! - [Blinky example](https://github.com/robamu-org/va108xx-hal-rs/blob/main/examples/blinky.rs)
use crate::pac::SYSCONFIG;
use core::convert::Infallible;
use core::marker::PhantomData;
use cortex_m::singleton;
use embedded_hal::digital::v2::{InputPin, OutputPin, StatefulOutputPin, ToggleableOutputPin};
use va108xx::IOCONFIG;
/// Extension trait to split a GPIO peripheral in independent pins and registers
pub trait GpioExt {
/// The parts to split the GPIO into.
type Parts;
/// Splits the GPIO block into independent pins and registers.
fn split(&mut self, syscfg: &mut SYSCONFIG) -> Option<Self::Parts>;
}
#[derive(Debug, PartialEq)]
pub enum PinModeError {
InputDisabledForOutput,
IsMasked,
}
#[derive(Debug, PartialEq)]
pub enum PinState {
Low = 0,
High = 1,
}
enum PortId {
A,
B,
}
trait GpioRegExt {
fn is_low(&self, pos: u8) -> bool;
fn is_set_low(&self, pos: usize, port_id: &PortId) -> Result<bool, PinModeError>;
fn input_enabled_for_output(&self, pos: usize, port_id: &PortId) -> bool;
fn set_high(&self, pos: u8);
fn set_low(&self, pos: u8);
fn toggle(&self, pos: u8);
}
/// Input mode (type state)
pub struct Input<MODE> {
_mode: PhantomData<MODE>,
}
/// Output mode (type state)
pub struct Output<MODE> {
_mode: PhantomData<MODE>,
}
/// Floating input (type state)
pub struct Floating;
/// Pulled down input (type state)
pub struct PullDown;
/// Pulled up input (type state)
pub struct PullUp;
/// Open drain output (type state)
pub struct OpenDrain;
// Push-pull output (type state)
pub struct PushPull;
pub struct OutputInverted;
pub struct InputInverted;
// FUNSEL0 is the regular GPIO port configuration
pub struct FUNSEL1;
pub struct FUNSEL2;
pub struct FUNSEL3;
/// Function select (type state)
pub struct AltFunc<FUN> {
_mode: PhantomData<FUN>,
}
pub enum FilterType {
SystemClock = 0,
DirectInputWithSynchronization = 1,
FilterOneClockCycle = 2,
FilterTwoClockCycles = 3,
FilterThreeClockCycles = 4,
FilterFourClockCycles = 5,
}
pub enum FilterClkSel {
SysClk = 0,
Clk1 = 1,
Clk2 = 2,
Clk3 = 3,
Clk4 = 4,
Clk5 = 5,
Clk6 = 6,
Clk7 = 7,
}
/// Fully erased pin
pub struct Pin<MODE> {
i: u8,
port_id: PortId,
port: *const dyn GpioRegExt,
_mode: PhantomData<MODE>,
}
// NOTE(unsafe) this only enables read access to the same pin from multiple threads
unsafe impl<MODE> Send for Pin<MODE> {}
impl<MODE> StatefulOutputPin for Pin<Output<MODE>> {
#[inline(always)]
fn is_set_high(&self) -> Result<bool, Self::Error> {
self.is_set_low().map(|v| !v)
}
#[inline(always)]
fn is_set_low(&self) -> Result<bool, Self::Error> {
unsafe { (*self.port).is_set_low(self.i.into(), &self.port_id) }
}
}
impl<MODE> OutputPin for Pin<Output<MODE>> {
type Error = PinModeError;
#[inline(always)]
fn set_high(&mut self) -> Result<(), Self::Error> {
unsafe { (*self.port).set_high(self.i) };
Ok(())
}
#[inline(always)]
fn set_low(&mut self) -> Result<(), Self::Error> {
unsafe { (*self.port).set_low(self.i) }
Ok(())
}
}
impl<MODE> ToggleableOutputPin for Pin<Output<MODE>> {
type Error = Infallible;
#[inline(always)]
fn toggle(&mut self) -> Result<(), Self::Error> {
unsafe { (*self.port).toggle(self.i) }
Ok(())
}
}
impl InputPin for Pin<Output<OpenDrain>> {
type Error = Infallible;
#[inline(always)]
fn is_high(&self) -> Result<bool, Self::Error> {
self.is_low().map(|v| !v)
}
#[inline(always)]
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(unsafe { (*self.port).is_low(self.i) })
}
}
impl<MODE> InputPin for Pin<Input<MODE>> {
type Error = Infallible;
#[inline(always)]
fn is_high(&self) -> Result<bool, Self::Error> {
self.is_low().map(|v| !v)
}
#[inline(always)]
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(unsafe { (*self.port).is_low(self.i) })
}
}
// This is only needs to be implemented for PORTA because PORTB is derived
// from PORTA
impl GpioRegExt for crate::pac::porta::RegisterBlock {
#[inline(always)]
fn is_low(&self, pos: u8) -> bool {
self.datainraw().read().bits() & (1 << pos) == 0
}
#[inline(always)]
fn is_set_low(&self, pos: usize, port_id: &PortId) -> Result<bool, PinModeError> {
if self.input_enabled_for_output(pos, port_id) {
Ok(self.datainraw().read().bits() & (1 << pos) == 0)
} else {
Err(PinModeError::InputDisabledForOutput)
}
}
#[inline(always)]
fn set_high(&self, pos: u8) {
unsafe { self.setout().write(|w| w.bits(1 << pos)) }
}
#[inline(always)]
fn set_low(&self, pos: u8) {
unsafe { self.clrout().write(|w| w.bits(1 << pos)) }
}
#[inline(always)]
fn toggle(&self, pos: u8) {
unsafe { self.togout().write(|w| w.bits(1 << pos)) }
}
#[inline(always)]
fn input_enabled_for_output(&self, pos: usize, port_id: &PortId) -> bool {
unsafe {
let iocfg = &(*IOCONFIG::ptr());
match port_id {
PortId::A => iocfg.porta[pos].read().iewo().bit_is_set(),
PortId::B => iocfg.portb[pos].read().iewo().bit_is_set(),
}
}
}
}
macro_rules! gpio {
($PORTX:ident, $portx:ident, $port_id:path, [
$($PXi:ident: ($pxi:ident, $i:expr),)+
]) => {
pub mod $portx {
use core::marker::PhantomData;
use core::convert::Infallible;
use super::{
FUNSEL1, FUNSEL2, FUNSEL3, Floating, AltFunc, GpioExt, Input, OpenDrain,
PullUp, Output, FilterType, FilterClkSel, Pin, GpioRegExt, PushPull,
PinModeError, PinState, PortId, singleton
};
use crate::{pac::$PORTX, pac::SYSCONFIG, pac::IOCONFIG};
use embedded_hal::digital::v2::{
InputPin, OutputPin, StatefulOutputPin, ToggleableOutputPin
};
pub struct Parts {
$(
pub $pxi: $PXi<Input<Floating>>,
)+
}
pub fn get_perid(port: &$PORTX) -> u32 {
port.perid.read().bits()
}
impl GpioExt for $PORTX {
type Parts = Parts;
/// This function splits the PORT into the individual pins
/// Should only be called once and returns None on subsequent calls
fn split(&mut self, syscfg: &mut SYSCONFIG) -> Option<Parts> {
let _: &'static mut bool = singleton!(: bool = false)?;
syscfg.peripheral_clk_enable.modify(|_, w| {
w.$portx().set_bit();
w.gpio().set_bit();
w.ioconfig().set_bit();
w
});
Some(Parts {
$(
$pxi: $PXi { _mode : PhantomData },
)+
})
}
}
fn _set_alternate_mode(iocfg: &mut IOCONFIG, index: usize, mode: u8) {
iocfg.$portx[index].modify(|_, w| unsafe {
w.funsel().bits(mode)
});
}
$(
pub struct $PXi<MODE> {
_mode: PhantomData<MODE>,
}
impl<MODE> $PXi<MODE> {
pub fn into_funsel_1(self, iocfg: &mut IOCONFIG) -> $PXi<AltFunc<FUNSEL1>> {
_set_alternate_mode(iocfg, $i, 1);
$PXi { _mode: PhantomData }
}
pub fn into_funsel_2(self, iocfg: &mut IOCONFIG) -> $PXi<AltFunc<FUNSEL2>> {
_set_alternate_mode(iocfg, $i, 2);
$PXi { _mode: PhantomData }
}
pub fn into_funsel_3(self, iocfg: &mut IOCONFIG) -> $PXi<AltFunc<FUNSEL3>> {
_set_alternate_mode(iocfg, $i, 3);
$PXi { _mode: PhantomData }
}
// Get DATAMASK bit for this particular pin
#[inline(always)]
pub fn datamask(&self, port: &$PORTX) -> bool {
(port.datamask().read().bits() >> $i) == 1
}
/// Set DATAMASK bit for this particular pin. 1 is the default
/// state of the bit and allows access of the corresponding bit
#[inline(always)]
pub fn set_datamask(self, port: &mut $PORTX) -> Self {
unsafe {
port.datamask().modify(|r, w| w.bits(r.bits() | (1 << $i)))
}
self
}
/// Clear DATAMASK bit for this particular pin. This prevents access
/// of the corresponding bit for output and input operations
#[inline(always)]
pub fn clear_datamask(self, port: &mut $PORTX) -> Self {
unsafe {
port.datamask().modify(|r, w| w.bits(r.bits() & !(1 << $i)))
}
self
}
pub fn into_floating_input(
self, iocfg: &mut IOCONFIG, port: &mut $PORTX
) -> $PXi<Input<Floating>> {
unsafe {
iocfg.$portx[$i].modify(|_, w| {
w.funsel().bits(0);
w.pen().clear_bit();
w.opendrn().clear_bit()
});
port.dir().modify(|r,w| w.bits(r.bits() & !(1 << $i)));
}
$PXi { _mode: PhantomData }
}
pub fn into_pull_up_input(self, iocfg: &mut IOCONFIG, port: &mut $PORTX) -> $PXi<Input<PullUp>> {
unsafe {
iocfg.$portx[$i].modify(|_, w| {
w.funsel().bits(0);
w.pen().set_bit();
w.plevel().set_bit();
w.opendrn().clear_bit()
});
port.dir().modify(|r,w| w.bits(r.bits() & !(1 << $i)));
}
$PXi { _mode: PhantomData }
}
pub fn into_pull_down_input(
self, iocfg: &mut IOCONFIG, port: &mut $PORTX
) -> $PXi<Input<PullUp>> {
unsafe {
iocfg.$portx[$i].modify(|_, w| {
w.funsel().bits(0);
w.pen().set_bit();
w.plevel().clear_bit();
w.opendrn().clear_bit()
});
port.dir().modify(|r,w| w.bits(r.bits() & !(1 << $i)));
}
$PXi { _mode: PhantomData }
}
pub fn into_open_drain_output(
self, iocfg: &mut IOCONFIG
) -> $PXi<Output<OpenDrain>> {
unsafe {
iocfg.$portx[$i].modify(|_, w| {
w.funsel().bits(0);
w.pen().clear_bit();
w.opendrn().set_bit()
});
let port_reg = &(*$PORTX::ptr());
port_reg.dir().modify(|r,w| w.bits(r.bits() | (1 << $i)));
}
$PXi { _mode: PhantomData }
}
pub fn into_push_pull_output(
self, iocfg: &mut IOCONFIG, port_reg: &mut $PORTX
) -> $PXi<Output<PushPull>> {
unsafe {
iocfg.$portx[$i].modify(|_, w| {
w.funsel().bits(0);
w.opendrn().clear_bit()
});
port_reg.dir().modify(|r,w| w.bits(r.bits() | (1 << $i)));
port_reg.clrout().write(|w| w.bits(1 << $i))
}
$PXi { _mode: PhantomData }
}
pub fn filter_type(
self, iocfg: &mut IOCONFIG, filter: FilterType, clksel: FilterClkSel
) -> Self {
unsafe {
iocfg.$portx[$i].modify(|_, w| {
w.flttype().bits(filter as u8);
w.fltclk().bits(clksel as u8)
});
}
self
}
}
impl<MODE> $PXi<Input<MODE>> {
pub fn input_inversion(self, iocfg: &mut IOCONFIG, enable: bool) -> Self {
if enable {
iocfg.$portx[$i].modify(|_, w| w.invinp().set_bit());
} else {
iocfg.$portx[$i].modify(|_, w| w.invinp().clear_bit());
}
self
}
/// This function takes account for the data mask register
#[inline(always)]
pub fn is_high_masked(&self, port: &$PORTX) -> Result<bool, PinModeError> {
self.is_low_masked(port).map(|v| !v)
}
/// This function takes account for the data mask register
#[inline(always)]
pub fn is_low_masked(&self, port: &$PORTX) -> Result<bool, PinModeError> {
if ((port.datamask().read().bits() >> $i) & 1) == 0 {
Err(PinModeError::IsMasked)
} else {
Ok(port.datain().read().bits() & (1 << $i) == 0)
}
}
}
impl<MODE> $PXi<Output<MODE>> {
pub fn output_inversion(self, iocfg: &mut IOCONFIG, enable: bool) -> Self {
if enable {
iocfg.$portx[$i].modify(|_, w| w.invout().set_bit());
} else {
iocfg.$portx[$i].modify(|_, w| w.invout().clear_bit());
}
self
}
/// Enable Input even when in output mode. In
/// this mode the input receiver is enabled even
/// if the direction is configured as an output.
/// This allows monitoring of output values
pub fn enable_input(self, iocfg: &mut IOCONFIG, enable: bool) -> Self {
if enable {
iocfg.$portx[$i].modify(|_, w| w.iewo().set_bit());
} else {
iocfg.$portx[$i].modify(|_, w| w.iewo().clear_bit());
}
self
}
/// Enable Pull up/down even when output is active. The Default is to
/// disable pull up/down when output is actively driven. This bit enables the
/// pull up/down all the time.
///
/// # Arguments
///
/// `enable` - Enable the peripheral functionality
/// `enable_pullup` - Enable the pullup itself
pub fn enable_pull_up(
self, iocfg: &mut IOCONFIG, enable: bool, enable_pullup: bool
) -> Self {
iocfg.$portx[$i].modify(|_, w| {
if enable { w.pwoa().set_bit(); } else { w.pwoa().clear_bit(); }
if enable_pullup { w.pen().set_bit(); } else { w.pen().clear_bit(); }
w.plevel().set_bit()
});
self
}
/// Enable Pull up/down even when output is active. The Default is to disable
/// pull up/down when output is actively driven. This bit enables the
/// pull up/down all the time.
///
/// # Arguments
///
/// `enable` - Enable the peripheral functionality
/// `enable_pullup` - Enable the pulldown itself
pub fn enable_pull_down(
self, iocfg: &mut IOCONFIG, enable: bool, enable_pulldown: bool
) -> Self {
iocfg.$portx[$i].modify(|_, w| {
if enable { w.pwoa().set_bit(); } else { w.pwoa().clear_bit(); }
if enable_pulldown { w.pen().set_bit(); } else { w.pen().clear_bit(); }
w.plevel().clear_bit()
});
self
}
}
impl<MODE> $PXi<Output<MODE>> {
/// Erases the pin number from the type
///
/// This is useful when you want to collect the pins into an array where you
/// need all the elements to have the same type
pub fn downgrade(self) -> Pin<Output<MODE>> {
Pin {
i: $i,
port_id: $port_id,
port: $PORTX::ptr() as *const dyn GpioRegExt,
_mode: self._mode,
}
}
/// This function takes account for the data mask register
#[inline(always)]
pub fn set_low_masked(&self, port: &$PORTX) -> Result<(), PinModeError> {
if ((port.datamask().read().bits() >> $i) & 1) == 0 {
Err(PinModeError::IsMasked)
} else {
Ok(unsafe { (*$PORTX::ptr()).set_low($i) })
}
}
/// This function takes account for the data mask register
#[inline(always)]
pub fn set_high_masked(&self, port: &$PORTX) -> Result<(), PinModeError> {
if ((port.datamask().read().bits() >> $i) & 1) == 0 {
Err(PinModeError::IsMasked)
} else {
Ok(unsafe { (*$PORTX::ptr()).set_high($i) })
}
}
pub fn pulse_mode(self, port: &mut $PORTX, enable: bool, default_state: PinState) -> Self {
unsafe {
if enable {
port.pulse().modify(|r, w| w.bits(r.bits() | (1 << $i)));
} else {
port.pulse().modify(|r, w| w.bits(r.bits() & !(1 << $i)));
}
if default_state == PinState::Low {
port.pulsebase().modify(|r,w| w.bits(r.bits() & !(1 << $i)));
}
else {
port.pulsebase().modify(|r,w| w.bits(r.bits() | (1 << $i)));
}
}
self
}
pub fn delay(self, port: &mut $PORTX, delay_1: bool, delay_2: bool) -> Self {
unsafe {
if delay_1 {
port.delay1().modify(|r, w| w.bits(r.bits() | (1 << $i)));
} else {
port.delay1().modify(|r, w| w.bits(r.bits() & !(1 << $i)));
}
if delay_2 {
port.delay2().modify(|r, w| w.bits(r.bits() | (1 << $i)));
} else {
port.delay2().modify(|r, w| w.bits(r.bits() & !(1 << $i)));
}
}
self
}
}
impl<MODE> StatefulOutputPin for $PXi<Output<MODE>> {
#[inline(always)]
fn is_set_high(&self) -> Result<bool, Self::Error> {
self.is_set_low().map(|v| !v)
}
#[inline(always)]
fn is_set_low(&self) -> Result<bool, Self::Error> {
unsafe {
(*$PORTX::ptr()).is_set_low($i, &$port_id)
}
}
}
impl<MODE> OutputPin for $PXi<Output<MODE>> {
type Error = PinModeError;
#[inline(always)]
fn set_high(&mut self) -> Result<(), Self::Error> {
Ok(unsafe { (*$PORTX::ptr()).set_high($i) })
}
#[inline(always)]
fn set_low(&mut self) -> Result<(), Self::Error> {
Ok(unsafe { (*$PORTX::ptr()).set_low($i) })
}
}
impl<MODE> ToggleableOutputPin for $PXi<Output<MODE>> {
type Error = Infallible;
#[inline(always)]
fn toggle(&mut self) -> Result<(), Self::Error> {
Ok(unsafe { (*$PORTX::ptr()).toggle($i) })
}
}
impl<MODE> $PXi<Input<MODE>> {
/// Erases the pin number from the type
///
/// This is useful when you want to collect the pins into an array where you
/// need all the elements to have the same type
pub fn downgrade(self) -> Pin<Input<MODE>> {
Pin {
i: $i,
port_id: $port_id,
port: $PORTX::ptr() as *const dyn GpioRegExt,
_mode: self._mode,
}
}
}
impl<MODE> InputPin for $PXi<Input<MODE>> {
type Error = Infallible;
#[inline(always)]
fn is_high(&self) -> Result<bool, Self::Error> {
self.is_low().map(|v| !v)
}
#[inline(always)]
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(unsafe { (*$PORTX::ptr()).is_low($i) })
}
}
)+
}
}
}
gpio!(PORTA, porta, PortId::A, [
PA0: (pa0, 0),
PA1: (pa1, 1),
PA2: (pa2, 2),
PA3: (pa3, 3),
PA4: (pa4, 4),
PA5: (pa5, 5),
PA6: (pa6, 6),
PA7: (pa7, 7),
PA8: (pa8, 8),
PA9: (pa9, 9),
PA10: (pa10, 10),
PA11: (pa11, 11),
PA12: (pa12, 12),
PA13: (pa13, 13),
PA14: (pa14, 14),
PA15: (pa15, 15),
PA16: (pa16, 16),
PA17: (pa17, 17),
PA18: (pa18, 18),
PA19: (pa19, 19),
PA20: (pa20, 20),
PA21: (pa21, 21),
PA22: (pa22, 22),
PA23: (pa23, 23),
PA24: (pa24, 24),
PA25: (pa25, 25),
PA26: (pa26, 26),
PA27: (pa27, 27),
PA28: (pa28, 28),
PA29: (pa29, 29),
PA30: (pa30, 30),
PA31: (pa31, 31),
]);
gpio!(PORTB, portb, PortId::B, [
PB0: (pb0, 0),
PB1: (pb1, 1),
PB2: (pb2, 2),
PB3: (pb3, 3),
PB4: (pb4, 4),
PB5: (pb5, 5),
PB6: (pb6, 6),
PB7: (pb7, 7),
PB8: (pb8, 8),
PB9: (pb9, 9),
PB10: (pb10, 10),
PB11: (pb11, 11),
PB12: (pb12, 12),
PB13: (pb13, 13),
PB14: (pb14, 14),
PB15: (pb15, 15),
PB16: (pb16, 16),
PB17: (pb17, 17),
PB18: (pb18, 18),
PB19: (pb19, 19),
PB20: (pb20, 20),
PB21: (pb21, 21),
PB22: (pb22, 22),
PB23: (pb23, 23),
]);

491
src/gpio/dynpins.rs Normal file
View File

@ -0,0 +1,491 @@
//! # Type-erased, value-level module for GPIO pins
//!
//! Although the type-level API is generally preferred, it is not suitable in
//! all cases. Because each pin is represented by a distinct type, it is not
//! possible to store multiple pins in a homogeneous data structure. The
//! value-level API solves this problem by erasing the type information and
//! tracking the pin at run-time.
//!
//! Value-level pins are represented by the [`DynPin`] type. [`DynPin`] has two
//! fields, `id` and `mode` with types [`DynPinId`] and [`DynPinMode`]
//! respectively. The implementation of these types closely mirrors the
//! type-level API.
//!
//! Instances of [`DynPin`] cannot be created directly. Rather, they must be
//! created from their type-level equivalents using [`From`]/[`Into`].
//!
//! ```
//! // Move a pin out of the Pins struct and convert to a DynPin
//! let pa0: DynPin = pins.pa0.into();
//! ```
//!
//! Conversions between pin modes use a value-level version of the type-level
//! API.
//!
//! ```
//! // Use one of the literal function names
//! pa0.into_floating_input();
//! // Use a method and a DynPinMode variant
//! pa0.into_mode(DYN_FLOATING_INPUT);
//! ```
//!
//! Because the pin state cannot be tracked at compile-time, many [`DynPin`]
//! operations become fallible. Run-time checks are inserted to ensure that
//! users don't try to, for example, set the output level of an input pin.
//!
//! Users may try to convert value-level pins back to their type-level
//! equivalents. However, this option is fallible, because the compiler cannot
//! guarantee the pin has the correct ID or is in the correct mode at
//! compile-time. Use [`TryFrom`](core::convert::TryFrom)/
//! [`TryInto`](core::convert::TryInto) for this conversion.
//!
//! ```
//! // Convert to a `DynPin`
//! let pa0: DynPin = pins.pa0.into();
//! // Change pin mode
//! pa0.into_floating_input();
//! // Convert back to a `Pin`
//! let pa0: Pin<PA0, FloatingInput> = pa0.try_into().unwrap();
//! ```
//!
//! # Embedded HAL traits
//!
//! This module implements all of the embedded HAL GPIO traits for [`DynPin`].
//! However, whereas the type-level API uses
//! `Error = core::convert::Infallible`, the value-level API can return a real
//! error. If the [`DynPin`] is not in the correct [`DynPinMode`] for the
//! operation, the trait functions will return
//! [`InvalidPinType`](Error::InvalidPinType).
use super::pins::{FilterClkSel, FilterType, Pin, PinError, PinId, PinMode, PinState};
use super::reg::RegisterInterface;
use embedded_hal::digital::v2::{InputPin, OutputPin, ToggleableOutputPin};
//==================================================================================================
// DynPinMode configurations
//==================================================================================================
/// Value-level `enum` for disabled configurations
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum DynDisabled {
Floating,
PullDown,
PullUp,
}
/// Value-level `enum` for input configurations
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum DynInput {
Floating,
PullDown,
PullUp,
}
/// Value-level `enum` for output configurations
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum DynOutput {
PushPull,
OpenDrain,
ReadablePushPull,
ReadableOpenDrain,
}
/// Value-level `enum` for alternate peripheral function configurations
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum DynAlternate {
Funsel1,
Funsel2,
Funsel3,
}
//==================================================================================================
// DynPinMode
//==================================================================================================
/// Value-level `enum` representing pin modes
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum DynPinMode {
Input(DynInput),
Output(DynOutput),
Alternate(DynAlternate),
}
/// Value-level variant of [`DynPinMode`] for floating input mode
pub const DYN_FLOATING_INPUT: DynPinMode = DynPinMode::Input(DynInput::Floating);
/// Value-level variant of [`DynPinMode`] for pull-down input mode
pub const DYN_PULL_DOWN_INPUT: DynPinMode = DynPinMode::Input(DynInput::PullDown);
/// Value-level variant of [`DynPinMode`] for pull-up input mode
pub const DYN_PULL_UP_INPUT: DynPinMode = DynPinMode::Input(DynInput::PullUp);
/// Value-level variant of [`DynPinMode`] for push-pull output mode
pub const DYN_PUSH_PULL_OUTPUT: DynPinMode = DynPinMode::Output(DynOutput::PushPull);
/// Value-level variant of [`DynPinMode`] for open-drain output mode
pub const DYN_OPEN_DRAIN_OUTPUT: DynPinMode = DynPinMode::Output(DynOutput::OpenDrain);
/// Value-level variant of [`DynPinMode`] for readable push-pull output mode
pub const DYN_RD_PUSH_PULL_OUTPUT: DynPinMode = DynPinMode::Output(DynOutput::ReadablePushPull);
/// Value-level variant of [`DynPinMode`] for readable opendrain output mode
pub const DYN_RD_OPEN_DRAIN_OUTPUT: DynPinMode = DynPinMode::Output(DynOutput::ReadableOpenDrain);
/// Value-level variant of [`DynPinMode`] for function select 1
pub const DYN_ALT_FUNC_1: DynPinMode = DynPinMode::Alternate(DynAlternate::Funsel1);
/// Value-level variant of [`DynPinMode`] for function select 2
pub const DYN_ALT_FUNC_2: DynPinMode = DynPinMode::Alternate(DynAlternate::Funsel2);
/// Value-level variant of [`DynPinMode`] for function select 3
pub const DYN_ALT_FUNC_3: DynPinMode = DynPinMode::Alternate(DynAlternate::Funsel3);
//==================================================================================================
// DynGroup & DynPinId
//==================================================================================================
/// Value-level `enum` for pin groups
#[derive(PartialEq, Clone, Copy)]
pub enum DynGroup {
A,
B,
}
/// Value-level `struct` representing pin IDs
#[derive(PartialEq, Clone, Copy)]
pub struct DynPinId {
pub group: DynGroup,
pub num: u8,
}
//==================================================================================================
// DynRegisters
//==================================================================================================
/// Provide a safe register interface for [`DynPin`]s
///
/// This `struct` takes ownership of a [`DynPinId`] and provides an API to
/// access the corresponding regsiters.
struct DynRegisters {
id: DynPinId,
}
// [`DynRegisters`] takes ownership of the [`DynPinId`], and [`DynPin`]
// guarantees that each pin is a singleton, so this implementation is safe.
unsafe impl RegisterInterface for DynRegisters {
#[inline]
fn id(&self) -> DynPinId {
self.id
}
}
impl DynRegisters {
/// Create a new instance of [`DynRegisters`]
///
/// # Safety
///
/// Users must never create two simultaneous instances of this `struct` with
/// the same [`DynPinId`]
#[inline]
unsafe fn new(id: DynPinId) -> Self {
DynRegisters { id }
}
}
//==================================================================================================
// DynPin
//==================================================================================================
/// A value-level pin, parameterized by [`DynPinId`] and [`DynPinMode`]
///
/// This type acts as a type-erased version of [`Pin`]. Every pin is represented
/// by the same type, and pins are tracked and distinguished at run-time.
pub struct DynPin {
regs: DynRegisters,
mode: DynPinMode,
}
impl DynPin {
/// Create a new [`DynPin`]
///
/// # Safety
///
/// Each [`DynPin`] must be a singleton. For a given [`DynPinId`], there
/// must be at most one corresponding [`DynPin`] in existence at any given
/// time. Violating this requirement is `unsafe`.
#[inline]
unsafe fn new(id: DynPinId, mode: DynPinMode) -> Self {
DynPin {
regs: DynRegisters::new(id),
mode,
}
}
/// Return a copy of the pin ID
#[inline]
pub fn id(&self) -> DynPinId {
self.regs.id
}
/// Return a copy of the pin mode
#[inline]
pub fn mode(&self) -> DynPinMode {
self.mode
}
/// Convert the pin to the requested [`DynPinMode`]
#[inline]
pub fn into_mode(&mut self, mode: DynPinMode) {
// Only modify registers if we are actually changing pin mode
if mode != self.mode {
self.regs.change_mode(mode);
self.mode = mode;
}
}
#[inline]
pub fn into_funsel_1(&mut self) {
self.into_mode(DYN_ALT_FUNC_1);
}
#[inline]
pub fn into_funsel_2(&mut self) {
self.into_mode(DYN_ALT_FUNC_2);
}
#[inline]
pub fn into_funsel_3(&mut self) {
self.into_mode(DYN_ALT_FUNC_3);
}
/// Configure the pin to operate as a floating input
#[inline]
pub fn into_floating_input(&mut self) {
self.into_mode(DYN_FLOATING_INPUT);
}
/// Configure the pin to operate as a pulled down input
#[inline]
pub fn into_pull_down_input(&mut self) {
self.into_mode(DYN_PULL_DOWN_INPUT);
}
/// Configure the pin to operate as a pulled up input
#[inline]
pub fn into_pull_up_input(&mut self) {
self.into_mode(DYN_PULL_UP_INPUT);
}
/// Configure the pin to operate as a push-pull output
#[inline]
pub fn into_push_pull_output(&mut self) {
self.into_mode(DYN_PUSH_PULL_OUTPUT);
}
/// Configure the pin to operate as a push-pull output
#[inline]
pub fn into_open_drain_output(&mut self) {
self.into_mode(DYN_OPEN_DRAIN_OUTPUT);
}
/// Configure the pin to operate as a push-pull output
#[inline]
pub fn into_readable_push_pull_output(&mut self) {
self.into_mode(DYN_RD_PUSH_PULL_OUTPUT);
}
/// Configure the pin to operate as a push-pull output
#[inline]
pub fn into_readable_open_drain_output(&mut self) {
self.into_mode(DYN_RD_OPEN_DRAIN_OUTPUT);
}
#[inline]
pub fn datamask(&self) -> bool {
self.regs.datamask()
}
#[inline]
pub fn clear_datamask(self) -> Self {
self.regs.clear_datamask();
self
}
#[inline]
pub fn set_datamask(self) -> Self {
self.regs.set_datamask();
self
}
#[inline]
pub fn is_high_masked(&self) -> Result<bool, PinError> {
self.regs.read_pin_masked()
}
#[inline]
pub fn is_low_masked(&self) -> Result<bool, PinError> {
self.regs.read_pin_masked().map(|v| !v)
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), PinError> {
self.regs.write_pin_masked(true)
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), PinError> {
self.regs.write_pin_masked(false)
}
/// See p.53 of the programmers guide for more information.
/// Possible delays in clock cycles:
/// - Delay 1: 1
/// - Delay 2: 2
/// - Delay 1 + Delay 2: 3
#[inline]
pub fn delay(self, delay_1: bool, delay_2: bool) -> Result<Self, PinError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.delay(delay_1, delay_2);
Ok(self)
}
_ => Err(PinError::InvalidPinType),
}
}
/// See p.52 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
pub fn pulse_mode(self, enable: bool, default_state: PinState) -> Result<Self, PinError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.pulse_mode(enable, default_state);
Ok(self)
}
_ => Err(PinError::InvalidPinType),
}
}
/// See p.37 and p.38 of the programmers guide for more information.
#[inline]
pub fn filter_type(self, filter: FilterType, clksel: FilterClkSel) -> Result<Self, PinError> {
match self.mode {
DynPinMode::Input(_) => {
self.regs.filter_type(filter, clksel);
Ok(self)
}
_ => Err(PinError::InvalidPinType),
}
}
#[inline]
fn _read(&self) -> Result<bool, PinError> {
match self.mode {
DynPinMode::Input(_) | DYN_RD_OPEN_DRAIN_OUTPUT | DYN_RD_PUSH_PULL_OUTPUT => {
Ok(self.regs.read_pin())
}
_ => Err(PinError::InvalidPinType),
}
}
#[inline]
fn _write(&mut self, bit: bool) -> Result<(), PinError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.write_pin(bit);
Ok(())
}
_ => Err(PinError::InvalidPinType),
}
}
#[inline]
fn _toggle(&mut self) -> Result<(), PinError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.toggle();
Ok(())
}
_ => Err(PinError::InvalidPinType),
}
}
#[inline]
fn _is_low(&self) -> Result<bool, PinError> {
self._read().map(|v| !v)
}
#[inline]
fn _is_high(&self) -> Result<bool, PinError> {
self._read()
}
#[inline]
fn _set_low(&mut self) -> Result<(), PinError> {
self._write(false)
}
#[inline]
fn _set_high(&mut self) -> Result<(), PinError> {
self._write(true)
}
}
//==================================================================================================
// Convert between Pin and DynPin
//==================================================================================================
impl<I: PinId, M: PinMode> From<Pin<I, M>> for DynPin {
/// Erase the type-level information in a [`Pin`] and return a value-level
/// [`DynPin`]
#[inline]
fn from(_pin: Pin<I, M>) -> Self {
// The `Pin` is consumed, so it is safe to replace it with the
// corresponding `DynPin`
unsafe { DynPin::new(I::DYN, M::DYN) }
}
}
impl<I: PinId, M: PinMode> TryFrom<DynPin> for Pin<I, M> {
type Error = PinError;
/// Try to recreate a type-level [`Pin`] from a value-level [`DynPin`]
///
/// There is no way for the compiler to know if the conversion will be
/// successful at compile-time. We must verify the conversion at run-time
/// or refuse to perform it.
#[inline]
fn try_from(pin: DynPin) -> Result<Self, PinError> {
if pin.regs.id == I::DYN && pin.mode == M::DYN {
// The `DynPin` is consumed, so it is safe to replace it with the
// corresponding `Pin`
Ok(unsafe { Self::new() })
} else {
Err(PinError::InvalidPinType)
}
}
}
//==================================================================================================
// Embedded HAL traits
//==================================================================================================
impl OutputPin for DynPin {
type Error = PinError;
#[inline]
fn set_high(&mut self) -> Result<(), Self::Error> {
self._set_high()
}
#[inline]
fn set_low(&mut self) -> Result<(), Self::Error> {
self._set_low()
}
}
impl InputPin for DynPin {
type Error = PinError;
#[inline]
fn is_high(&self) -> Result<bool, Self::Error> {
self._is_high()
}
#[inline]
fn is_low(&self) -> Result<bool, Self::Error> {
self._is_low()
}
}
impl ToggleableOutputPin for DynPin {
type Error = PinError;
#[inline]
fn toggle(&mut self) -> Result<(), Self::Error> {
self._toggle()
}
}

30
src/gpio/mod.rs Normal file
View File

@ -0,0 +1,30 @@
//! # GPIO module
//!
//! The implementation of this GPIO module is heavily based on the
//! [ATSAMD HAL implementation](https://docs.rs/atsamd-hal/0.13.0/atsamd_hal/gpio/v2/index.html).
//!
//! This API provides two different submodules, [`pin`] and [`dynpin`],
//! representing two different ways to handle GPIO pins. The default, [`pin`],
//! is a type-level API that tracks the state of each pin at compile-time. The
//! alternative, [`dynpin`] is a type-erased, value-level API that tracks the
//! state of each pin at run-time.
//!
//! The type-level API is strongly preferred. By representing the state of each
//! pin within the type system, the compiler can detect logic errors at
//! compile-time. Furthermore, the type-level API has absolutely zero run-time
//! cost.
//!
//! If needed, [`dynpin`] can be used to erase the type-level differences
//! between pins. However, by doing so, pins must now be tracked at run-time,
//! and each pin has a non-zero memory footprint.
//!
//! ## Examples
//!
//! - [Blinky example](https://github.com/robamu-org/va108xx-hal-rs/blob/main/examples/blinky.rs)
pub mod dynpins;
pub use dynpins::*;
pub mod pins;
pub use pins::*;
mod reg;

821
src/gpio/pins.rs Normal file
View File

@ -0,0 +1,821 @@
//! # Type-level module for GPIO pins
//!
//! This module provides a type-level API for GPIO pins. It uses the type system
//! to track the state of pins at compile-time. Representing GPIO pins in this
//! manner incurs no run-time overhead. Each [`Pin`] struct is zero-sized, so
//! there is no data to copy around. Instead, real code is generated as a side
//! effect of type transformations, and the resulting assembly is nearly
//! identical to the equivalent, hand-written C.
//!
//! To track the state of pins at compile-time, this module uses traits to
//! represent [type classes] and types as instances of those type classes. For
//! example, the trait [`InputConfig`] acts as a [type-level enum] of the
//! available input configurations, and the types [`Floating`], [`PullDown`] and
//! [`PullUp`] are its type-level variants.
//!
//! Type-level [`Pin`]s are parameterized by two type-level enums, [`PinId`] and
//! [`PinMode`].
//!
//! ```
//! pub struct Pin<I, M>
//! where
//! I: PinId,
//! M: PinMode,
//! {
//! // ...
//! }
//! ```
//!
//! A `PinId` identifies a pin by it's group (A, B) and pin number. Each
//! `PinId` instance is named according to its datasheet identifier, e.g.
//! [`PA02`].
//!
//! A `PinMode` represents the various pin modes. The available `PinMode`
//! variants are [`Input`], [`Output`] and [`Alternate`], each with its own corresponding
//! configurations.
//!
//! It is not possible for users to create new instances of a [`Pin`]. Singleton
//! instances of each pin are made available to users through the [`Pins`]
//! struct.
//!
//! To create the [`PinsA`] or [`PinsB`] struct, users must supply the PAC
//! [`PORTA`](crate::pac::PORTA) or [`PORTB`](crate::pac::PORTB)peripheral.
//! The struct takes ownership of the port and provides the corresponding pins. Each [`Pin`]
//! within the [`PinsA`] or [`PinsB`] struct can be moved out and used individually.
//! The pins structure can also consume the [`IOCONFIG`] structure optionally by
//! passing it as an option
//!
//! ```
//! let mut peripherals = Peripherals::take().unwrap();
//! let pins = Pins::new(&mut dp.SYSCONFIG, Some(dp.IOCONFIG), dp.PORTA);
//! ```
//!
//! Pins can be converted between modes using several different methods.
//!
//! ```
//! // Use one of the literal function names
//! let pa0 = pins.pa0.into_floating_input();
//! // Use a generic method and one of the `PinMode` variant types
//! let pa0 = pins.pa0.into_mode::<FloatingInput>();
//! // Specify the target type and use `From`/`Into`
//! let pa0: Pin<PA0, FloatingInput> = pins.pa0.into();
//! ```
//!
//! # Embedded HAL traits
//!
//! This module implements all of the embedded HAL GPIO traits for each [`Pin`]
//! in the corresponding [`PinMode`]s, namely: [`InputPin`], [`OutputPin`],
//! [`ToggleableOutputPin`].
//!
//! For example, you can control the logic level of an `OutputPin` like so
//!
//! ```
//! use atsamd_hal::pac::Peripherals;
//! use atsamd_hal::gpio::v2::Pins;
//! use embedded_hal::digital::v2::OutputPin;
//!
//! let mut peripherals = Peripherals::take().unwrap();
//! let mut pins = Pins::new(&mut dp.SYSCONFIG, Some(dp.IOCONFIG), dp.PORTA);
//! pins.pa0.set_high();
//! ```
//!
//! # Type-level features
//!
//! This module also provides additional, type-level tools to work with GPIO
//! pins.
//!
//! The [`OptionalPinId`] and [`OptionalPin`] traits use the [`OptionalKind`]
//! pattern to act as type-level versions of [`Option`] for `PinId` and `Pin`
//! respectively. And the [`AnyPin`] trait defines an [`AnyKind`] type class
//! for all `Pin` types.
//!
//! [type classes]: crate::typelevel#type-classes
//! [type-level enum]: crate::typelevel#type-level-enum
//! [`OptionalKind`]: crate::typelevel#optionalkind-trait-pattern
//! [`AnyKind`]: crate::typelevel#anykind-trait-pattern
use super::dynpins::{DynAlternate, DynGroup, DynInput, DynOutput, DynPinId, DynPinMode};
use super::reg::RegisterInterface;
use crate::pac::{IOCONFIG, PORTA, PORTB, SYSCONFIG};
use crate::typelevel::Is;
use crate::Sealed;
use core::convert::Infallible;
use core::marker::PhantomData;
use embedded_hal::digital::v2::{InputPin, OutputPin, ToggleableOutputPin};
use paste::paste;
//==================================================================================================
// Errors and Definitions
//==================================================================================================
#[derive(Debug, PartialEq)]
pub enum PinState {
Low = 0,
High = 1,
}
/// GPIO error type
///
/// [`DynPin`]s are not tracked and verified at compile-time, so run-time
/// operations are fallible. This `enum` represents the corresponding errors.
#[derive(Debug, PartialEq)]
pub enum PinError {
/// The pin did not have the correct ID or mode for the requested operation
InvalidPinType,
InputDisabledForOutput,
IsMasked,
}
//==================================================================================================
// Input configuration
//==================================================================================================
/// Type-level enum for input configurations
///
/// The valid options are [`Floating`], [`PullDown`] and [`PullUp`].
pub trait InputConfig: Sealed {
/// Corresponding [`DynInput`](super::DynInput)
const DYN: DynInput;
}
pub enum Floating {}
pub enum PullDown {}
pub enum PullUp {}
impl InputConfig for Floating {
const DYN: DynInput = DynInput::Floating;
}
impl InputConfig for PullDown {
const DYN: DynInput = DynInput::PullDown;
}
impl InputConfig for PullUp {
const DYN: DynInput = DynInput::PullUp;
}
impl Sealed for Floating {}
impl Sealed for PullDown {}
impl Sealed for PullUp {}
/// Type-level variant of [`PinMode`] for floating input mode
pub type InputFloating = Input<Floating>;
/// Type-level variant of [`PinMode`] for pull-down input mode
pub type InputPullDown = Input<PullDown>;
/// Type-level variant of [`PinMode`] for pull-up input mode
pub type InputPullUp = Input<PullUp>;
/// Type-level variant of [`PinMode`] for input modes
///
/// Type `C` is one of three input configurations: [`Floating`], [`PullDown`] or
/// [`PullUp`]
pub struct Input<C: InputConfig> {
cfg: PhantomData<C>,
}
impl<C: InputConfig> Sealed for Input<C> {}
pub enum FilterType {
SystemClock = 0,
DirectInputWithSynchronization = 1,
FilterOneClockCycle = 2,
FilterTwoClockCycles = 3,
FilterThreeClockCycles = 4,
FilterFourClockCycles = 5,
}
pub enum FilterClkSel {
SysClk = 0,
Clk1 = 1,
Clk2 = 2,
Clk3 = 3,
Clk4 = 4,
Clk5 = 5,
Clk6 = 6,
Clk7 = 7,
}
//==================================================================================================
// Output configuration
//==================================================================================================
pub trait OutputConfig: Sealed {
const DYN: DynOutput;
}
/// Type-level variant of [`OutputConfig`] for a push-pull configuration
pub enum PushPull {}
/// Type-level variant of [`OutputConfig`] for an open drain configuration
pub enum OpenDrain {}
/// Type-level variant of [`OutputConfig`] for a readable push-pull configuration
pub enum ReadablePushPull {}
/// Type-level variant of [`OutputConfig`] for a readable open-drain configuration
pub enum ReadableOpenDrain {}
impl Sealed for PushPull {}
impl Sealed for OpenDrain {}
impl Sealed for ReadableOpenDrain {}
impl Sealed for ReadablePushPull {}
impl OutputConfig for PushPull {
const DYN: DynOutput = DynOutput::PushPull;
}
impl OutputConfig for OpenDrain {
const DYN: DynOutput = DynOutput::OpenDrain;
}
impl OutputConfig for ReadablePushPull {
const DYN: DynOutput = DynOutput::ReadablePushPull;
}
impl OutputConfig for ReadableOpenDrain {
const DYN: DynOutput = DynOutput::ReadableOpenDrain;
}
/// Type-level variant of [`PinMode`] for output modes
///
/// Type `C` is one of two output configurations: [`PushPull`] or [`Readable`]
pub struct Output<C: OutputConfig> {
cfg: PhantomData<C>,
}
impl<C: OutputConfig> Sealed for Output<C> {}
/// Type-level variant of [`PinMode`] for push-pull output mode
pub type PushPullOutput = Output<PushPull>;
/// Type-level variant of [`PinMode`] for open drain output mode
pub type OutputOpenDrain = Output<OpenDrain>;
pub type OutputReadablePushPull = Output<ReadablePushPull>;
pub type OutputReadableOpenDrain = Output<ReadableOpenDrain>;
//==================================================================================================
// Alternate configurations
//==================================================================================================
/// Type-level enum for alternate peripheral function configurations
pub trait AlternateConfig: Sealed {
const DYN: DynAlternate;
}
pub enum Funsel1 {}
pub enum Funsel2 {}
pub enum Funsel3 {}
impl AlternateConfig for Funsel1 {
const DYN: DynAlternate = DynAlternate::Funsel1;
}
impl AlternateConfig for Funsel2 {
const DYN: DynAlternate = DynAlternate::Funsel2;
}
impl AlternateConfig for Funsel3 {
const DYN: DynAlternate = DynAlternate::Funsel3;
}
impl Sealed for Funsel1 {}
impl Sealed for Funsel2 {}
impl Sealed for Funsel3 {}
/// Type-level variant of [`PinMode`] for alternate peripheral functions
///
/// Type `C` is an [`AlternateConfig`]
pub struct Alternate<C: AlternateConfig> {
cfg: PhantomData<C>,
}
impl<C: AlternateConfig> Sealed for Alternate<C> {}
pub type AltFunc1 = Alternate<Funsel1>;
pub type AltFunc2 = Alternate<Funsel2>;
pub type AltFunc3 = Alternate<Funsel3>;
/// Type alias for the [`PinMode`] at reset
pub type Reset = InputFloating;
//==================================================================================================
// Pin modes
//==================================================================================================
/// Type-level enum representing pin modes
///
/// The valid options are [`Input`], [`Output`] and [`Alternate`].
pub trait PinMode: Sealed {
/// Corresponding [`DynPinMode`](super::DynPinMode)
const DYN: DynPinMode;
}
impl<C: InputConfig> PinMode for Input<C> {
const DYN: DynPinMode = DynPinMode::Input(C::DYN);
}
impl<C: OutputConfig> PinMode for Output<C> {
const DYN: DynPinMode = DynPinMode::Output(C::DYN);
}
impl<C: AlternateConfig> PinMode for Alternate<C> {
const DYN: DynPinMode = DynPinMode::Alternate(C::DYN);
}
//==================================================================================================
// Pin IDs
//==================================================================================================
/// Type-level enum for pin IDs
pub trait PinId: Sealed {
/// Corresponding [`DynPinId`](super::DynPinId)
const DYN: DynPinId;
}
macro_rules! pin_id {
($Group:ident, $Id:ident, $NUM:literal) => {
// Need paste macro to use ident in doc attribute
paste! {
#[doc = "Pin ID representing pin " $Id]
pub enum $Id {}
impl Sealed for $Id {}
impl PinId for $Id {
const DYN: DynPinId = DynPinId {
group: DynGroup::$Group,
num: $NUM,
};
}
}
};
}
//==================================================================================================
// Pin
//==================================================================================================
/// A type-level GPIO pin, parameterized by [`PinId`] and [`PinMode`] types
pub struct Pin<I: PinId, M: PinMode> {
pub(in crate::gpio) regs: Registers<I>,
mode: PhantomData<M>,
}
impl<I: PinId, M: PinMode> Sealed for Pin<I, M> {}
impl<I: PinId, M: PinMode> AnyPin for Pin<I, M> {
type Id = I;
type Mode = M;
}
impl<I: PinId, M: PinMode> Pin<I, M> {
/// Create a new [`Pin`]
///
/// # Safety
///
/// Each [`Pin`] must be a singleton. For a given [`PinId`], there must be
/// at most one corresponding [`Pin`] in existence at any given time.
/// Violating this requirement is `unsafe`.
#[inline]
pub(crate) unsafe fn new() -> Pin<I, M> {
Pin {
regs: Registers::new(),
mode: PhantomData,
}
}
/// Convert the pin to the requested [`PinMode`]
#[inline]
pub fn into_mode<N: PinMode>(mut self) -> Pin<I, N> {
// Only modify registers if we are actually changing pin mode
// This check should compile away
if N::DYN != M::DYN {
self.regs.change_mode::<N>();
}
// Safe because we drop the existing Pin
unsafe { Pin::new() }
}
/// Configure the pin for function select 1. See Programmer Guide p.40 for the function table
#[inline]
pub fn into_funsel_1(self) -> Pin<I, AltFunc1> {
self.into_mode()
}
/// Configure the pin for function select 2. See Programmer Guide p.40 for the function table
#[inline]
pub fn into_funsel_2(self) -> Pin<I, AltFunc2> {
self.into_mode()
}
/// Configure the pin for function select 3. See Programmer Guide p.40 for the function table
#[inline]
pub fn into_funsel_3(self) -> Pin<I, AltFunc3> {
self.into_mode()
}
/// Configure the pin to operate as a floating input
#[inline]
pub fn into_floating_input(self) -> Pin<I, InputFloating> {
self.into_mode()
}
/// Configure the pin to operate as a pulled down input
#[inline]
pub fn into_pull_down_input(self) -> Pin<I, InputPullDown> {
self.into_mode()
}
/// Configure the pin to operate as a pulled up input
#[inline]
pub fn into_pull_up_input(self) -> Pin<I, InputPullUp> {
self.into_mode()
}
/// Configure the pin to operate as a push-pull output
#[inline]
pub fn into_push_pull_output(self) -> Pin<I, PushPullOutput> {
self.into_mode()
}
/// Configure the pin to operate as a readable push-pull output
#[inline]
pub fn into_readable_push_pull_output(self) -> Pin<I, OutputReadablePushPull> {
self.into_mode()
}
/// Configure the pin to operate as a readable open-drain output
#[inline]
pub fn into_readable_open_drain_output(self) -> Pin<I, OutputReadableOpenDrain> {
self.into_mode()
}
#[inline]
pub fn datamask(&self) -> bool {
self.regs.datamask()
}
#[inline]
pub fn clear_datamask(self) -> Self {
self.regs.clear_datamask();
self
}
#[inline]
pub fn set_datamask(self) -> Self {
self.regs.set_datamask();
self
}
#[inline]
pub fn is_high_masked(&self) -> Result<bool, PinError> {
self.regs.read_pin_masked()
}
#[inline]
pub fn is_low_masked(&self) -> Result<bool, PinError> {
self.regs.read_pin_masked().map(|v| !v)
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), PinError> {
self.regs.write_pin_masked(true)
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), PinError> {
self.regs.write_pin_masked(false)
}
#[inline]
pub(crate) fn _set_high(&mut self) {
self.regs.write_pin(true)
}
#[inline]
pub(crate) fn _set_low(&mut self) {
self.regs.write_pin(false)
}
#[inline]
pub(crate) fn _toggle(&mut self) {
self.regs.toggle();
}
#[inline]
pub(crate) fn _is_low(&self) -> bool {
!self.regs.read_pin()
}
#[inline]
pub(crate) fn _is_high(&self) -> bool {
self.regs.read_pin()
}
}
pub type SpecificPin<P> = Pin<<P as AnyPin>::Id, <P as AnyPin>::Mode>;
//==================================================================================================
// AnyPin
//==================================================================================================
/// Type class for [`Pin`] types
///
/// This trait uses the [`AnyKind`] trait pattern to create a [type class] for
/// [`Pin`] types. See the `AnyKind` documentation for more details on the
/// pattern.
pub trait AnyPin: Is<Type = SpecificPin<Self>> {
type Id: PinId;
type Mode: PinMode;
}
impl<I: PinId, M: PinMode> AsRef<Self> for Pin<I, M> {
#[inline]
fn as_ref(&self) -> &Self {
self
}
}
impl<I: PinId, M: PinMode> AsMut<Self> for Pin<I, M> {
#[inline]
fn as_mut(&mut self) -> &mut Self {
self
}
}
//==================================================================================================
// Additional functionality
//==================================================================================================
impl<I: PinId, C: OutputConfig> Pin<I, Output<C>> {
/// See p.53 of the programmers guide for more information.
/// Possible delays in clock cycles:
/// - Delay 1: 1
/// - Delay 2: 2
/// - Delay 1 + Delay 2: 3
#[inline]
pub fn delay(self, delay_1: bool, delay_2: bool) -> Self {
self.regs.delay(delay_1, delay_2);
self
}
/// See p.52 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
pub fn pulse_mode(self, enable: bool, default_state: PinState) -> Self {
self.regs.pulse_mode(enable, default_state);
self
}
}
impl<I: PinId, C: InputConfig> Pin<I, Input<C>> {
/// See p.37 and p.38 of the programmers guide for more information.
#[inline]
pub fn filter_type(self, filter: FilterType, clksel: FilterClkSel) -> Self {
self.regs.filter_type(filter, clksel);
self
}
}
//==================================================================================================
// Embedded HAL traits
//==================================================================================================
impl<I: PinId, C: OutputConfig> OutputPin for Pin<I, Output<C>> {
type Error = Infallible;
#[inline]
fn set_high(&mut self) -> Result<(), Self::Error> {
self._set_high();
Ok(())
}
#[inline]
fn set_low(&mut self) -> Result<(), Self::Error> {
self._set_low();
Ok(())
}
}
impl<I: PinId, C: OutputConfig> ToggleableOutputPin for Pin<I, Output<C>> {
type Error = Infallible;
#[inline]
fn toggle(&mut self) -> Result<(), Self::Error> {
self._toggle();
Ok(())
}
}
impl<I: PinId, C: InputConfig> InputPin for Pin<I, Input<C>> {
type Error = Infallible;
#[inline]
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self._is_high())
}
#[inline]
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self._is_low())
}
}
impl<I: PinId> InputPin for Pin<I, OutputReadableOpenDrain> {
type Error = Infallible;
#[inline]
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self._is_high())
}
#[inline]
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self._is_low())
}
}
impl<I: PinId> InputPin for Pin<I, OutputReadablePushPull> {
type Error = Infallible;
#[inline]
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self._is_high())
}
#[inline]
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self._is_low())
}
}
//==================================================================================================
// Registers
//==================================================================================================
/// Provide a safe register interface for [`Pin`]s
///
/// This `struct` takes ownership of a [`PinId`] and provides an API to
/// access the corresponding regsiters.
pub(in crate::gpio) struct Registers<I: PinId> {
id: PhantomData<I>,
}
// [`Registers`] takes ownership of the [`PinId`], and [`Pin`] guarantees that
// each pin is a singleton, so this implementation is safe.
unsafe impl<I: PinId> RegisterInterface for Registers<I> {
#[inline]
fn id(&self) -> DynPinId {
I::DYN
}
}
impl<I: PinId> Registers<I> {
/// Create a new instance of [`Registers`]
///
/// # Safety
///
/// Users must never create two simultaneous instances of this `struct` with
/// the same [`PinId`]
#[inline]
unsafe fn new() -> Self {
Registers { id: PhantomData }
}
/// Provide a type-level equivalent for the
/// [`RegisterInterface::change_mode`] method.
#[inline]
pub(in crate::gpio) fn change_mode<M: PinMode>(&mut self) {
RegisterInterface::change_mode(self, M::DYN);
}
}
//==================================================================================================
// Pin definitions
//==================================================================================================
macro_rules! pins {
(
$Port:ident, $PinsName:ident, $($Id:ident,)+,
) => {
paste!(
/// Collection of all the individual [`Pin`]s for a given port (PORTA or PORTB)
pub struct $PinsName {
iocfg: Option<IOCONFIG>,
port: $Port,
$(
#[doc = "Pin " $Id]
pub [<$Id:lower>]: Pin<$Id, Reset>,
)+
}
impl $PinsName{
/// Create a new struct containing all the Pins. Passing the IOCONFIG peripheral
/// is optional because it might be required to create pin definitions for both
/// ports.
#[inline]
pub fn new(
syscfg: &mut SYSCONFIG,
iocfg: Option<IOCONFIG>,
port: $Port
) -> $PinsName {
syscfg.peripheral_clk_enable.modify(|_, w| {
w.[<$Port:lower>]().set_bit();
w.gpio().set_bit();
w.ioconfig().set_bit()
});
$PinsName {
iocfg,
port,
// Safe because we only create one `Pin` per `PinId`
$(
[<$Id:lower>]: unsafe { Pin::new() },
)+
}
}
/// Get the peripheral ID
/// Safety: Read-only register
pub fn get_perid() -> u32 {
let port = unsafe { &(*$Port::ptr()) };
port.perid.read().bits()
}
/// Consumes the Pins struct and returns the port definitions
pub fn release(self) -> (Option<IOCONFIG>, $Port) {
(self.iocfg, self.port)
}
}
);
}
}
macro_rules! declare_pins {
(
$Group:ident, $PinsName:ident, $Port:ident, [$(($Id:ident, $NUM:literal),)+]
) => {
pins!($Port, $PinsName, $($Id,)+,);
$(
pin_id!($Group, $Id, $NUM);
)+
}
}
declare_pins!(
A,
PinsA,
PORTA,
[
(PA0, 0),
(PA1, 1),
(PA2, 2),
(PA3, 3),
(PA4, 4),
(PA5, 5),
(PA6, 6),
(PA7, 7),
(PA8, 8),
(PA9, 9),
(PA10, 10),
(PA11, 11),
(PA12, 12),
(PA13, 13),
(PA14, 14),
(PA15, 15),
(PA16, 16),
(PA17, 17),
(PA18, 18),
(PA19, 19),
(PA20, 20),
(PA21, 21),
(PA22, 22),
(PA23, 23),
(PA24, 24),
(PA25, 25),
(PA26, 26),
(PA27, 27),
(PA28, 28),
(PA29, 29),
(PA30, 30),
(PA31, 31),
]
);
declare_pins!(
B,
PinsB,
PORTB,
[
(PB0, 0),
(PB1, 1),
(PB2, 2),
(PB3, 3),
(PB4, 4),
(PB5, 5),
(PB6, 6),
(PB7, 7),
(PB8, 8),
(PB9, 9),
(PB10, 10),
(PB11, 11),
(PB12, 12),
(PB13, 13),
(PB14, 14),
(PB15, 15),
(PB16, 16),
(PB17, 17),
(PB18, 18),
(PB19, 19),
(PB20, 20),
(PB21, 21),
(PB22, 22),
(PB23, 23),
]
);

369
src/gpio/reg.rs Normal file
View File

@ -0,0 +1,369 @@
use super::dynpins::{self, DynGroup, DynPinId, DynPinMode};
use super::pins::{FilterClkSel, FilterType, PinError, PinState};
use va108xx::{ioconfig, porta, IOCONFIG, PORTA, PORTB};
/// Type definition to avoid confusion: These register blocks are identical
type PortRegisterBlock = porta::RegisterBlock;
//==================================================================================================
// ModeFields
//==================================================================================================
/// Collect all fields needed to set the [`PinMode`](super::PinMode)
#[derive(Default)]
struct ModeFields {
dir: bool,
opendrn: bool,
pull_en: bool,
/// true for pullup, false for pulldown
pull_dir: bool,
funsel: u8,
enb_input: bool,
}
impl From<DynPinMode> for ModeFields {
#[inline]
fn from(mode: DynPinMode) -> Self {
let mut fields = Self::default();
use DynPinMode::*;
match mode {
Input(config) => {
use dynpins::DynInput::*;
fields.dir = false;
match config {
Floating => {
fields.pull_en = false;
}
PullUp => {
fields.pull_en = true;
fields.pull_dir = true;
}
PullDown => {
fields.pull_en = true;
fields.pull_dir = false;
}
}
}
Output(config) => {
use dynpins::DynOutput::*;
fields.dir = true;
match config {
PushPull => {
fields.opendrn = false;
}
OpenDrain => {
fields.opendrn = true;
}
ReadableOpenDrain => {
fields.enb_input = true;
fields.opendrn = true;
}
ReadablePushPull => {
fields.enb_input = true;
fields.opendrn = false;
}
}
}
Alternate(config) => {
use dynpins::DynAlternate::*;
match config {
Funsel1 => {
fields.funsel = 1;
}
Funsel2 => {
fields.funsel = 2;
}
Funsel3 => {
fields.funsel = 3;
}
}
}
}
fields
}
}
//==================================================================================================
// Register Interface
//==================================================================================================
pub type IocfgPort = ioconfig::PORTA;
#[repr(C)]
pub(super) struct IOCFG_PORT_GROUP {
port: [IocfgPort; 32],
}
/// Provide a safe register interface for pin objects
///
/// [`PORTA`] and [`PORTB`], like every PAC `struct`, is [`Send`] but not [`Sync`], because it
/// points to a `RegisterBlock` of `VolatileCell`s. Unfortunately, such an
/// interface is quite restrictive. Instead, it would be ideal if we could split
/// the [`PORT`] into independent pins that are both [`Send`] and [`Sync`].
///
/// [`PORT`] is a single, zero-sized marker `struct` that provides access to
/// every [`PORT`] register. Instead, we would like to create zero-sized marker
/// `struct`s for every pin, where each pin is only allowed to control its own
/// registers. Furthermore, each pin `struct` should be a singleton, so that
/// exclusive access to the `struct` also guarantees exclusive access to the
/// corresponding registers. Finally, the pin `struct`s should not have any
/// interior mutability. Together, these requirements would allow the pin
/// `struct`s to be both [`Send`] and [`Sync`].
///
/// This trait creates a safe API for accomplishing these goals. Implementers
/// supply a pin ID through the [`id`] function. The remaining functions provide
/// a safe API for accessing the registers associated with that pin ID. Any
/// modification of the registers requires `&mut self`, which destroys interior
/// mutability.
///
/// # Safety
///
/// Users should only implement the [`id`] function. No default function
/// implementations should be overridden. The implementing type must also have
/// "control" over the corresponding pin ID, i.e. it must guarantee that a each
/// pin ID is a singleton.
///
/// [`id`]: Self::id
pub(super) unsafe trait RegisterInterface {
/// Provide a [`DynPinId`] identifying the set of registers controlled by
/// this type.
fn id(&self) -> DynPinId;
const PORTA: *const PortRegisterBlock = PORTA::ptr();
const PORTB: *const PortRegisterBlock = PORTB::ptr();
const PORT_CFG: *const IOCFG_PORT_GROUP = IOCONFIG::ptr() as *const _;
/// Change the pin mode
#[inline]
fn change_mode(&mut self, mode: DynPinMode) {
let ModeFields {
dir,
funsel,
opendrn,
pull_dir,
pull_en,
enb_input,
} = mode.into();
let (portreg, iocfg) = (self.port_reg(), self.iocfg_port());
iocfg.port[self.id().num as usize].write(|w| {
w.opendrn().bit(opendrn);
w.pen().bit(pull_en);
w.plevel().bit(pull_dir);
w.iewo().bit(enb_input);
unsafe { w.funsel().bits(funsel) }
});
let mask = self.mask_32();
unsafe {
if dir {
portreg.dir().modify(|r, w| w.bits(r.bits() | mask));
} else {
portreg.dir().modify(|r, w| w.bits(r.bits() & !mask));
}
}
}
#[inline]
fn port_reg(&self) -> &PortRegisterBlock {
match self.id().group {
DynGroup::A => unsafe { &(*Self::PORTA) },
DynGroup::B => unsafe { &(*Self::PORTB) },
}
}
fn iocfg_port(&self) -> &IOCFG_PORT_GROUP {
match self.id().group {
DynGroup::A => unsafe { &*Self::PORT_CFG },
DynGroup::B => unsafe { &*Self::PORT_CFG.add(1) },
}
}
#[inline]
fn mask_32(&self) -> u32 {
1 << self.id().num
}
#[inline]
fn enable_input_for_output(&self, enable: bool) {
let iocfg = self.iocfg_port();
iocfg.port[self.id().num as usize].modify(|_, w| w.iewo().bit(enable))
}
/// Set the direction of a pin
#[inline]
fn set_dir(&mut self, bit: bool) {
let portreg = self.port_reg();
let mask = self.mask_32();
// Safety: Only the bit for this Pin ID is modified
unsafe {
if bit {
portreg.dir().modify(|r, w| w.bits(r.bits() | mask));
} else {
portreg.dir().modify(|r, w| w.bits(r.bits() & !mask));
}
}
}
fn get_perid(&self) -> u32 {
let portreg = self.port_reg();
portreg.perid.read().bits()
}
/// Read the logic level of an output pin
fn read_pin(&self) -> bool {
let portreg = self.port_reg();
((portreg.datainraw().read().bits() >> self.id().num) & 0x01) == 1
}
// Get DATAMASK bit for this particular pin
#[inline(always)]
fn datamask(&self) -> bool {
let portreg = self.port_reg();
(portreg.datamask().read().bits() >> self.id().num) == 1
}
/// Read a pin but use the masked version but check whether the datamask for the pin is
/// cleared as well
fn read_pin_masked(&self) -> Result<bool, PinError> {
if !self.datamask() {
Err(PinError::IsMasked)
} else {
let portreg = self.port_reg();
Ok(((portreg.datain().read().bits() >> self.id().num) & 0x01) == 1)
}
}
/// Write the logic level of an output pin
#[inline]
fn write_pin(&mut self, bit: bool) {
let portreg = self.port_reg();
let mask = self.mask_32();
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
portreg.setout().write(|w| w.bits(mask));
} else {
portreg.clrout().write(|w| w.bits(mask));
}
}
}
/// Write the logic level of an output pin but check whether the datamask for the pin is
/// cleared as well
#[inline]
fn write_pin_masked(&mut self, bit: bool) -> Result<(), PinError> {
if !self.datamask() {
Err(PinError::IsMasked)
} else {
let portreg = self.port_reg();
let mask = self.mask_32();
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
portreg.setout().write(|w| w.bits(mask));
} else {
portreg.clrout().write(|w| w.bits(mask));
}
Ok(())
}
}
}
/// Toggle the logic level of an output pin
#[inline]
fn toggle(&mut self) {
let portreg = self.port_reg();
let mask = self.mask_32();
// Safety: TOGOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe { portreg.togout().write(|w| w.bits(mask)) };
}
/// Only useful for input pins
#[inline]
fn filter_type(&self, filter: FilterType, clksel: FilterClkSel) {
let iocfg = self.iocfg_port();
iocfg.port[self.id().num as usize].modify(|_, w| {
// Safety: Only write to register for this Pin ID
unsafe {
w.flttype().bits(filter as u8);
w.fltclk().bits(clksel as u8)
}
});
}
/// Set DATAMASK bit for this particular pin. 1 is the default
/// state of the bit and allows access of the corresponding bit
#[inline(always)]
fn set_datamask(&self) {
let portreg = self.port_reg();
unsafe {
portreg
.datamask()
.modify(|r, w| w.bits(r.bits() | self.mask_32()))
}
}
/// Clear DATAMASK bit for this particular pin. This prevents access
/// of the corresponding bit for output and input operations
#[inline(always)]
fn clear_datamask(&self) {
let portreg = self.port_reg();
unsafe {
portreg
.datamask()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()))
}
}
/// Only useful for output pins
/// See p.52 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
fn pulse_mode(&self, enable: bool, default_state: PinState) {
let portreg = self.port_reg();
unsafe {
if enable {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if default_state == PinState::Low {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for output pins
fn delay(&self, delay_1: bool, delay_2: bool) {
let portreg = self.port_reg();
unsafe {
if delay_1 {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if delay_2 {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}
}
}

View File

@ -7,10 +7,15 @@ pub mod gpio;
pub mod prelude;
pub mod time;
pub mod timer;
pub mod typelevel;
pub mod uart;
pub use va108xx as pac;
mod sealed {
mod private {
/// Super trait used to mark traits with an exhaustive set of
/// implementations
pub trait Sealed {}
}
pub(crate) use private::Sealed;

View File

@ -1,8 +1,8 @@
//! Prelude
pub use embedded_hal::prelude::*;
pub use crate::gpio::GpioExt as _va108xx_hal_gpio_GpioExt;
// embedded-hal doesnt yet have v2 in its prelude, so we need to
// export it ourselves
pub use embedded_hal::digital::v2::InputPin as _embedded_hal_gpio_InputPin;
pub use embedded_hal::digital::v2::OutputPin as _embedded_hal_gpio_OutputPin;
pub use embedded_hal::digital::v2::StatefulOutputPin as _embedded_hal_gpio_StatefulOutputPin;

60
src/typelevel.rs Normal file
View File

@ -0,0 +1,60 @@
///! # Module support type-level programming
///
/// This module is more or less taken from the
/// [ATSAMD HAL](https://docs.rs/atsamd-hal/0.13.0/atsamd_hal/typelevel/index.html).
/// You can find a thorough explanation of the patterns used there.
use crate::Sealed;
/// Type-level version of the [None] variant
#[derive(Default)]
pub struct NoneT;
impl Sealed for NoneT {}
/// Marker trait for type identity
///
/// This trait is used as part of the [`AnyKind`] trait pattern. It represents
/// the concept of type identity, because all implementors have
/// `<Self as Is>::Type == Self`. When used as a trait bound with a specific
/// type, it guarantees that the corresponding type parameter is exactly the
/// specific type. Stated differently, it guarantees that `T == Specific` in
/// the following example.
///
/// ```
/// where T: Is<Type = Specific>
/// ```
///
/// Moreover, the super traits guarantee that any instance of or reference to a
/// type `T` can be converted into the `Specific` type.
///
/// ```
/// fn example<T>(mut any: T)
/// where
/// T: Is<Type = Specific>,
/// {
/// let specific_mut: &mut Specific = any.as_mut();
/// let specific_ref: &Specific = any.as_ref();
/// let specific: Specific = any.into();
/// }
/// ```
///
/// [`AnyKind`]: #anykind-trait-pattern
pub trait Is
where
Self: Sealed,
Self: From<IsType<Self>>,
Self: Into<IsType<Self>>,
Self: AsRef<IsType<Self>>,
Self: AsMut<IsType<Self>>,
{
type Type;
}
/// Type alias for [`Is::Type`]
pub type IsType<T> = <T as Is>::Type;
impl<T> Is for T
where
T: Sealed + AsRef<T> + AsMut<T>,
{
type Type = T;
}

View File

@ -6,9 +6,10 @@ use libm::floorf;
use crate::clock::enable_peripheral_clock;
use crate::{
clock,
gpio::porta::{PA16, PA17, PA18, PA19, PA2, PA26, PA27, PA3, PA30, PA31, PA8, PA9},
gpio::portb::{PB18, PB19, PB20, PB21, PB22, PB23, PB6, PB7, PB8, PB9},
gpio::{AltFunc, FUNSEL1, FUNSEL2, FUNSEL3},
gpio::pins::{
Alternate, Funsel1, Funsel2, Funsel3, Pin, PA16, PA17, PA18, PA19, PA2, PA26, PA27, PA3,
PA30, PA31, PA8, PA9, PB18, PB19, PB20, PB21, PB22, PB23, PB6, PB7, PB8, PB9,
},
pac::{uarta as uart_base, SYSCONFIG, UARTA, UARTB},
prelude::*,
time::{Bps, Hertz},
@ -18,20 +19,20 @@ use embedded_hal::{blocking, serial};
pub trait Pins<UART> {}
impl Pins<UARTA> for (PA9<AltFunc<FUNSEL2>>, PA8<AltFunc<FUNSEL2>>) {}
impl Pins<UARTA> for (PA17<AltFunc<FUNSEL3>>, PA16<AltFunc<FUNSEL3>>) {}
impl Pins<UARTA> for (PA31<AltFunc<FUNSEL3>>, PA30<AltFunc<FUNSEL3>>) {}
impl Pins<UARTA> for (Pin<PA9, Alternate<Funsel2>>, Pin<PA8, Alternate<Funsel2>>) {}
impl Pins<UARTA> for (Pin<PA17, Alternate<Funsel3>>, Pin<PA16, Alternate<Funsel3>>) {}
impl Pins<UARTA> for (Pin<PA31, Alternate<Funsel3>>, Pin<PA30, Alternate<Funsel3>>) {}
impl Pins<UARTA> for (PB9<AltFunc<FUNSEL1>>, PB8<AltFunc<FUNSEL1>>) {}
impl Pins<UARTA> for (PB23<AltFunc<FUNSEL1>>, PB22<AltFunc<FUNSEL1>>) {}
impl Pins<UARTA> for (Pin<PB9, Alternate<Funsel1>>, Pin<PB8, Alternate<Funsel1>>) {}
impl Pins<UARTA> for (Pin<PB23, Alternate<Funsel1>>, Pin<PB22, Alternate<Funsel1>>) {}
impl Pins<UARTB> for (PA3<AltFunc<FUNSEL2>>, PA2<AltFunc<FUNSEL2>>) {}
impl Pins<UARTB> for (PA19<AltFunc<FUNSEL3>>, PA18<AltFunc<FUNSEL3>>) {}
impl Pins<UARTB> for (PA27<AltFunc<FUNSEL3>>, PA26<AltFunc<FUNSEL3>>) {}
impl Pins<UARTB> for (Pin<PA3, Alternate<Funsel2>>, Pin<PA2, Alternate<Funsel2>>) {}
impl Pins<UARTB> for (Pin<PA19, Alternate<Funsel3>>, Pin<PA18, Alternate<Funsel3>>) {}
impl Pins<UARTB> for (Pin<PA27, Alternate<Funsel3>>, Pin<PA26, Alternate<Funsel3>>) {}
impl Pins<UARTB> for (PB7<AltFunc<FUNSEL1>>, PB6<AltFunc<FUNSEL1>>) {}
impl Pins<UARTB> for (PB19<AltFunc<FUNSEL2>>, PB18<AltFunc<FUNSEL2>>) {}
impl Pins<UARTB> for (PB21<AltFunc<FUNSEL1>>, PB20<AltFunc<FUNSEL1>>) {}
impl Pins<UARTB> for (Pin<PB7, Alternate<Funsel1>>, Pin<PB6, Alternate<Funsel1>>) {}
impl Pins<UARTB> for (Pin<PB19, Alternate<Funsel2>>, Pin<PB18, Alternate<Funsel2>>) {}
impl Pins<UARTB> for (Pin<PB21, Alternate<Funsel1>>, Pin<PB20, Alternate<Funsel1>>) {}
#[derive(Debug)]
pub enum Error {